S. Nagarajan, P. Mahesh Kumar, and K. Pattabiraman, Inverse sum indeg invariant of some graphs, Eur. J. Math. Appl. 1 (2021), Article ID 12.
Full Text: PDF
Volume 1 (2021), Article ID 12
https://doi.org/10.28919/ejma.2021.1.12
Published: 01/11/2021
Abstract:
The inverse sum indeg invariant $ISI(\Omega)$ of a simple graph $\Omega$ is defined as the sum of the terms $\frac{\gamma_\Omega(u)\gamma_\Omega(v)}{\gamma_\Omega(u)+\gamma_\Omega(v)}$ over all edges $uv$ of $\Omega$, where $\gamma_\Omega(u)$ denotes the degree of a vertex $u$ of $\Omega$. In this paper, we present several lower and upper bounds for inverse sum indeg invariant of some standard graphs.
How to Cite:
S. Nagarajan, P. Mahesh Kumar, and K. Pattabiraman, Inverse sum indeg invariant of some graphs, Eur. J. Math. Appl. 1 (2021), Article ID 12. https://doi.org/10.28919/ejma.2021.1.12