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STABILITY RESULTS OF POSITIVE SOLUTIONS FOR (p, q)-LAPLACIAN
SYSTEM WITH APPLICATIONS

SALAH A. KHAFAGY1,∗ AND Z. SADEGHI2

Abstract. In the present article, we investigate the stability results concerning the weak
solutions of the following (p, q)-Laplacian system

−∆pu+ λp|u|p−2u = a(x)f(u, v) in Ω,

−∆qv + λq|v|q−2v = b(x)g(u, v) in Ω,

Σu = 0 = Σv on ∂Ω.


where ∆pu ≡ div[|∇u|p−2∇u], with p > 1, denotes the p-Laplacian operator. Here λp, λq are
positive parameters, a(x), b(x) are continuous functions from Ω toR and f, g : [0,∞)×[0,∞)→
R are C1 functions. Ω ⊂ Rn is a bounded domain with smooth boundary Σu = ρl(x)u+ (1−
ρ) ∂u

∂n where ρ ∈ [0, 1], l : ∂Ω → R+ where l = 1 when ρ = 1. Under certain conditions, we
establish that every positive weak solution is either stable or unstable.

1. Introduction

In the last few years, a great deal of attention has been focused on the study of the stability
properties of weak solutions for linear [6], semilinear (see [13, 14,16]), semipositone (see [4, 5]),
nonlinear (see [2, 8–12]) and fractional (see [7]) systems, The practical importance of these
systems is evident in reaction-diffusion problems and Newtonian fluids, among others; see [3]
and references therein.

In [15], the author hase proved some stability theorems concerning the positive solutions of
the following semilinear system

(1) −∆u = λf(u) in Ω, Σu = 0 on ∂Ω,

for different values of the function f .
Khafagy in [8] have been studied the stability and instability for the nonlinear problem

(2)
−∆P,pu+ a(x)|u|p−2u = λb(x)uα in Ω,

Σu = 0 on ∂Ω.

}
where ∆P,pu ≡ div[P (x)|∇u|p−2∇u] with p > 1, is the weighted p-Laplacian, a(x) and P (x)

are weight functions, b(x) : Ω→ R is a continuous function satisfing either b(x) > 0 or b(x) < 0

∀ x ∈ Ω, λ is a positive parameter, 0 < α < p − 1 and Ω ⊂ RN is a bounded domain with
smooth boundary. The boundary condition is given by Σu = ρl(x)u+(1−ρ)∂u

∂n
where ρ ∈ [0, 1]
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and l : ∂Ω → R+ with l = 1 when ρ = 1. The author proved that if 0 < α < p − 1 and
b(x) > 0(< 0) ∀ x ∈ Ω, then every positive weak solutions u of the problem (2) is linearly
stable (unstable) respectively.

In the present paper, we are concerned with the study of the stability results of positive weak
solutions for the following (p, q)-Laplacian system

(3)
−∆pu+ λp|u|p−2u = a(x)f(u, v) in Ω,

−∆qv + λq|v|q−2v = b(x)g(u, v) in Ω,

Σu = 0 = Σv on ∂Ω.


where ∆pu ≡ div[|∇u|p−2∇u], with p > 1, denotes the p-Laplacian operator, λp, λq are pos-

itive parameters, a(x) and b(x) : Ω→ R are continuous functions satisfing either a(x), b(x) > 0

or a(x), b(x) < 0 for all x ∈ Ω. f and g : [0,∞)×[0,∞)→ R are C1 functions, and Ω ⊂ Rn is a
bounded domain with smooth boundary Σu = ρl(x)u+ (1−ρ)∂u

∂n
where ρ ∈ [0, 1], l : ∂Ω→ R+

with l = 1 when ρ = 1. The condition Σu = ρl(x)u + (1 − ρ)∂u
∂n

= 0 is the Dirichlet condition
when ρ = 1, the Neumann condition when ρ = 0 or the mixed condition for other values of ρ.
The so-called p-Laplacian boundary value problems arise in a variety of physical phenom-
ena, such: flow through porous media, reaction-diffusion problems, petroleum extraction, non-
Newtonian fluids, etc. So, the study of such problems and their generalizations hase attracted
several mathematicians in recent years.

Finally, the plan of our paper is as follows. In the next section, we establish the stability
results of the positive weak solutions of system (3). Section 3 is devoted to some applications
regarding the stability results for system (3).

As we know, the linearized equation of system (3) about (u, v) is given by

(4)
−(p− 1)[div[|∇u|p−2∇w]− λp|u|p−2w]− a(x)fu(u, v)w − a(x)fv(u, v)z = µw, in Ω,

−(q − 1)[div[|∇v|q−2∇z]− λq|v|q−2z]− b(x)gu(u, v)w − b(x)gv(u, v)z = µz, in Ω,

Σw = 0 = Σz, on ∂Ω,


for any positive weak solution (u, v) of system (3), where µ is the eigenvalue corresponding

to the eigenfunction (φ, ψ) and fu(u, v) is the partial derivative of f with respect to u.

Definition 1.1. We call a solution (u, v) of (3) a linearly stable solution if all eigenvalues of
(4) are strictly positive, which can be implied if the principal eigenvalue µ1 > 0. Otherwise
(u, v) is linearly unstable.

2. Main results

In this section, we assume the following hypotheses:

(C1) The function
f(u, v)

up−1
is a strictly increasing (decreasing) function with respect to the

variable u, i.e., ufu(u, v)− (p− 1)f(u, v) > 0(< 0).

(C2) The function
g(u, v)

vq−1
is a strictly increasing (decreasing) function with respect to the

variable v, i.e., vgv(u, v)− (q − 1)g(u, v) > 0(< 0).

(C3) ufv and vgu have the same sign, i.e., ufv, vgu > 0 (< 0).

(C4) a(x) and b(x) have the same sign, i.e., a(x), b(x) > 0 (< 0).

Under these hypotheses, the stability results of the positive weak solutions (u, v) for system
(3) will be discussed in the following theorems.

https://doi.org/10.28919/ejma.2026.6.3


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2026.6.3 3

Theorem 2.1. If
f(u, v)

up−1
and g(u, v)/vq−1 are strictly increasing, ufv, vgu > 0 and a(x), b(x) >

0, then every positive weak solution (u, v) of system ( 3) is linearly unstable.

Proof. Let (u0, v0) be any positive weak solution of (3), then the linearized equation about
(u0, v0) is

(5)
−(p− 1)[div[|∇u0|p−2∇w]− λp|u0|p−2w]− a(x)[fuw + fvz] = µw, in Ω,

−(q − 1)[div[|∇v0|q−2∇z]− λq|v0|q−2z]− b(x)[guw + gvz] = µz, in Ω,

Σw = 0 = Σz, on ∂Ω.


Let µ1 be the first eigenvalue of (5), and let (φ, ψ), with φ, ψ ≥ 0, be the corresponding

eigenfunctions. Multiplying the first equation of (3) by (p − 1)φ and integrating over Ω, we
have

(6) (p− 1)[

∫
Ω

div[|∇u0|p−2∇u0]φdx− λp
∫
Ω

|u0|p−2u0φdx+

∫
Ω

a(x)f(u0, v0)φdx] = 0.

Also, multiplying the second equation of (3) by (q − 1)ψ and integrating over Ω, we obtain

(7) (q − 1)[

∫
Ω

div[|∇v0|q−2∇v0]ψdx− λq
∫
Ω

|v0|q−2v0ψdx+

∫
Ω

b(x)g(u0, v0)ψdx] = 0.

On the other hand, multiplying the first equation of (5) by u0 and integrating over Ω, we
derive

µ1

∫
Ω

u0φdx = −(p− 1)[

∫
Ω

div[|∇u0|p−2∇φ]u0 − λp
∫
Ω

|u0|p−2u0φ]dx

−
∫
Ω

a(x)fu(u0, v0)u0φdx−
∫
Ω

a(x)fv(u0, v0)u0ψdx.(8)

Also, multiplying the second equation of (5) by v0 and integrating over Ω, we obtain

µ1

∫
Ω

v0ψdx = −(q − 1)[

∫
Ω

div[|∇v0|q−2∇ψ]v0 − λq
∫
Ω

|v0|q−2v0ψ]dx

−
∫
Ω

b(x)gu(u0, v0)v0φdx−
∫
Ω

b(x)gv(u0, v0)v0ψdx.(9)

Now, (6) − (8) give

−µ1

∫
Ω

u0φdx = (p− 1)[

∫
Ω

div[|∇u0|p−2∇φ]u0 −
∫
Ω

div[|∇u0|p−2∇u0]φ]dx

+

∫
Ω

a(x)(u0fu − (p− 1)f)φdx+

∫
Ω

a(x)u0fvψdx.(10)

By applying Green’s first identity to the first term of the right-hand side of (10), we have get

(11)
∫
Ω

[div[|∇u0|p−2∇φ]u0 − div[|∇u0|p−2∇u0]φ]dx =

∫
∂Ω

|∇u0|p−2[u0
∂φ

∂n
− φ∂u0

∂n
]ds.
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Inserting (11) in (10), we obtain

−µ1

∫
Ω

u0φdx = (p− 1)

∫
∂Ω

|∇u0|p−2[u0
∂φ

∂n
− φ∂u0

∂n
]ds

+

∫
Ω

a(x)(u0fu − (p− 1)f)φdx+

∫
Ω

a(x)u0fvψdx.(12)

Similarly, (7) − (9) provide

−µ1

∫
Ω

v0ψdx = (q − 1)[

∫
Ω

div[|∇v0|q−2∇ψ]v0dx−
∫
Ω

div[|∇v0|q−2∇v0]ψdx]

+

∫
Ω

b(x)(v0gv − (q − 1)g)ψdx+

∫
Ω

b(x)v0guφdx.(13)

Additionally, using Green’s first identity on the first term of the right-hand side of (13),
implies

(14)
∫
Ω

[div[|∇v0|q−2∇ψ]v0 − div[|∇v0|q−2∇v0]ψ]dx =

∫
∂Ω

|∇v0|q−2[v0
∂ψ

∂n
− ψ∂v0

∂n
]ds.

Next, by applying (14) to (13), we get

−µ1

∫
Ω

v0ψdx = (q − 1)

∫
∂Ω

|∇v0|q−2[v0
∂ψ

∂n
− ψ∂v0

∂n
]ds

+

∫
Ω

b(x)(v0gv − (q − 1)g)ψdx+

∫
Ω

b(x)v0guφdx.(15)

Adding (12) and (15), one hase

−µ1

∫
Ω

[u0φ+ v0ψ]dx = (p− 1)

∫
∂Ω

|∇u0|p−2[u0
∂φ

∂n
− φ∂u0

∂n
]ds

+ (q − 1)

∫
∂Ω

|∇v0|q−2[v0
∂ψ

∂n
− ψ∂v0

∂n
]ds

+

∫
Ω

a(x)(u0fu − (p− 1)f)φdx+

∫
Ω

b(x)(v0gv − (q − 1)g)ψdx

+

∫
Ω

a(x)u0fvψdx+

∫
Ω

b(x)v0guφdx,(16)

Now, when ρ = 1, we have Σu0 = u0 = 0 and Σv0 = v0 = 0 for s ∈ ∂Ω. Additionally,
φ = ψ = 0 for s ∈ ∂Ω. Then

(17)
∫
∂Ω

|∇u0|p−2[u0
∂φ(s)

∂n
− φ∂u0(s)

∂n
]ds = 0 and

∫
∂Ω

|∇v0|q−2[v0
∂ψ(s)

∂n
− ψ∂v0(s)

∂n
]ds = 0.

Also, when ρ 6= 1, we have
∂u0

∂n
= − ρlu0

1− ρ
,
∂φ

∂n
= − ρlφ

1− ρ
,

and
∂v0

∂n
= − ρlv0

1− ρ
,
∂ψ

∂n
= − ρlψ

1− ρ
,
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and thus we obtain again the result given by (17).
Consequently, (16) becomes

−µ1

∫
Ω

[u0φ+ v0ψ]dx =

∫
Ω

a(x)(u0fu − (p− 1)f)φdx+

∫
Ω

b(x)(v0gv − (q − 1)g)ψdx

+

∫
Ω

a(x)u0fvψdx+

∫
Ω

b(x)v0guφdx.(18)

Since
f(u, v)

up−1
and

g(u, v)

vq−1
are strictly increasing, we can deduce from assumption C1 that

(19) [u0fu(u0, v0)− (p− 1)f(u0, v0)] > 0 and [v0gv(u0, v0)− (q − 1)g(u0, v0)] > 0

Since (19) and the facts that ufv > 0, vgu > 0, a(x) > 0 and b(x) > 0 for all x ∈ Ω, then
equation (18) becomes

−µ1

∫
Ω

[u0φ+ v0ψ]dx > 0.

The result follows if µ1 < 0.

Theorem 2.2. If
f(u, v)

up−1
and

g(u, v)

vq−1
are strictly increasing, ufv, vgu > 0, and a(x), b(x) < 0

forall x ∈ Ω, then every weak solutions (u, v) for system (3) is linearly stable.

Proof. Following the approach used in the proof of Theorem 2.1, we have

−µ1

∫
Ω

[u0φ+ v0ψ]dx < 0,

which implies that µ1 > 0 and hence the result follows.

Theorem 2.3. If
f(u, v)

up−1
and

g(u, v)

vq−1
are strictly decreasing, ufv, vgu < 0, and a(x), b(x) < 0

for all x ∈ Ω, then every weak solution (u, v) for system (3) is linearly unstable.

Proof. The proof of this theorem is similar to that of Theorem 2.1 and Theorem 2.2. We
obtain

−µ1

∫
Ω

[u0φ+ v0ψ]dx > 0,

and since µ1 < 0, the result follows.

Theorem 2.4. If
f(u, v)

up−1
and

g(u, v)

vq−1
are strictly decreasing, ufv, vgu < 0, and a(x), b(x) > 0

for all x ∈ Ω, then every weak solution (u, v) for system (3) is linearly stable.

Proof. The proof of this theorem proceeds in the same way as for the previous Theorems
and we can easily obtain that

−µ1

∫
Ω

[u0φ+ v0ψ]dx < 0.

Since µ1 > 0, the result follows.

Remark 2.5. For the system (3), when f(u, v) = uβvγ, g(u, v) = urvδ, and a(x) = b(x) = λ

where λ, β, γ, δ and r are positive constants with β > p−1 and δ > q−1, we have some results
in [1].
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3. Applications

Here we introduce some examples to demonstrate the effectiveness of our results.

Example 1. Consider the reaction-diffusion system with unequal diffusion coefficients in-
volving the Laplacian

(20)
−∆u = ah(u, v) in Ω,

−∆v = bk(u, v) in Ω,

Σu = 0 = Σv on ∂Ω,


where a and b are positive constants, h and k are strictly increasing (decreasing) functions

with uhv, vku > 0(< 0) . Hence, according to Theorem 2.1 and Theorem 2.4 with p = q = 2

and λp = λq = 0, we have
(i) If h and k are strictly increasing functions and uhv, vku > 0, then every weak solution

(u, v) of system (20) is linearly unstable.
(i) If h and k are strictly decreasing functions and uhv, vku < 0, then every weak solution

(u, v) of system (20) is linearly stable.

Example 2. Consider the reaction-diffusion system with unequal diffusion coefficients in-
volving the (p, q)−Laplacian

(21)
−∆pu = a uαvβ in Ω,

−∆qv = b uγvδ in Ω,

Σu = 0 = Σv on ∂Ω.


where a, b, α, β, γ and δ are positive constants, α > p− 1 and δ > q− 1. Hence, according to

Theorem 2.1 with λp = λq = 0, every weak solution (u, v) of system (21) is linearly unstable.
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