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MALLIAVIN CALCULUS AND BOOTSTRAP METHODS FOR
STOCHASTIC VOLATILITY MODELS

JAYA P. N. BISHWAL

Abstract. As a forward problem, in this paper we review some aspects of the method of
Malliavin calculus, also known as the stochastic calculus of variations, for the Monte Carlo
estimation of the sensitivity parameters (Greeks) of financial models. This helps in pricing
and hedging of derivative securities. As an inverse problem, we review bootstrap methods
for estimation and testing in continuous time stochastic volatility models based on discrete
observations. We put special emphasis on jumps and long memory in the volatility process.

1. Introduction

The paper is concerned with the study of statistics, econometrics and financial engineering
of high frequency financial data. The development of increasingly complex financial products
requires the use of advanced statistical methods. The purpose of the paper is to present
generalized bootstrap methods for estimation, calibration and Malliavin calculus methods for
pricing, hedging of derivative products (on equities, interest rate, credit risk), and portfolio
optimization. Special attention is paid to models in high dimension, models with jumps, models
with long-memory in stochastic volatility models.

Since Black and Scholes (1973) established the theory of option pricing which won Scholes a
Nobel prize, volatility has played an important role not only in derivative pricing, but also in
portfolio selection and risk management. Despite the assumption of constant volatility in Black
and Scholes (1973), it is widely recognized that volatility changes over time. The stylized facts
of volatility are: 1) volatility changes in time, 2) volatility is random, 3) volatility has heavy
tails, 4) volatility clusters on high level. Starting with Engle (1982)’s autoregressive conditional
heteroskedasticity (ARCH) model which won him a Nobel prize, various stochastic volatility
models have been proposed. On the other hand, volatility is often modeled as a parametrized
diffusion coefficient of a continuous time diffusion process and then the parameters are estimated
by various methods like filtered maximum likelihood or method of moments. One should also
focus on nonparametric estimation of volatility process. In principle, the more data we can
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use, the more accurate the estimate will be. However, one will have technological restriction
on the amount of data. Recently this kind of restriction have been removed by development
of computer power and data recording system. Those kind of data are called high-frequency
data. Such high frequency data lend the validity of the method based on quadratic variation
formula, that is called the realized volatility. Barndorff-Nielsen and Shephard (2001-2007) have
suggested modeling the volatility as a Levy driven Ornstein-Uhlenbeck process.

In the stochastic volatility model, the log-price y∗ = logS with S being the asset price,
follows

dy∗(t) = α(t)dt+ σ(t)dW (t),

dσ2(t) = α̃(t)dt+ σ̃(t)dW̃ (t)

where σ and α adapted processes, and the standard Brownian motions W and W̃ are allowed
to be correlated with correlation ρ < 0 known as the leverage effect.. The process σ is called the
instantaneous volatility or spot volatility and α is called the mean process. A simple example of
this is

α(t) = µt+ βσ2∗(t) where σ2∗(t) =

∫ t

0

σ2(u)du

in which case β is called the risk premium and σ2∗ is called the integrated variance.
Over an interval of time length h > 0, returns are defined as

yi := y∗(hi)− y∗((i− 1)h), i = 1, 2, · · · , T

which implies that
yi|αi, σ2

i ∼ N (αi, σ
2
i )

where
αi := α(ih)− α((i− 1))h)

and

σ2
i := σ2∗(ih)− σ2∗((i− 1))h) =

∫ ih

(i−1)h

σ2(u)du.

Here σ2
i is called the actual variance and αi is called the actual mean. Suppose one is interested

in estimating the actual volatility σi using M intra-h observations. A natural candidate is the
realized volatility given by √

[y∗M ] :=

√√√√ M∑
i=1

y2
j,i

where

yj,i := y∗
(

(i− 1)h+
jh

M

)
− y∗

(
(i− 1)h+

(j − 1)h

M

)
, j = 1, 2, · · · ,M.

When h→ 0, realized volatility converges in L2 to the integrated volatility. We consider the
fixed h case. One could also obtain large deviations and moderate deviations results.

First one should obtain Berry-Esseen type bound on

sup
x∈R

∣∣∣∣∣∣P

√

M
h

([y∗M ]− σ2
i )√

2σ
[4]
i

≤ x

− Φ(x)

∣∣∣∣∣∣ where σ
[4]
i :=

∫ ih

(i−1)h

σ4(u)du

is the actual quarticity and σ4 is the spot quarticity.
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One could use the decomposition technique (Michel and Pfanzagl (1971) developed for the
classical i.i.d. case): Decompose the rate of convergence of the numerator to normal distribution
and rate of convergence of the denominator to a constant. Note that

yj,i = αj + εj

where by Itô formula

αj :=

∫ (i−1)h+ jh
M

(i−1)h+
(j−1)h

M

α(u)du, εj :=

∫ (i−1)h+ jh
M

(i−1)h+
(j−1)h

M

σ(u)dW (u).

Hence

y2
j,i = α2

j + 2αjεj + ε2j = σ2
j + α2

j + 2αjεj + (ε2j − σ2
j ) = σ2

j + ej

where

ej := α2
j + 2αjεj + 2

∫ (i−1)h+ jh
M

(i−1)h+
(j−1)h

M

(∫ u

(i−1)h+
(j−1)h

M

σ(s)dWs

)
σ(u)dWu.

Thus

[y∗M ]− σ2
i =

M∑
j=1

ej := e∗M(h).

The term ej is called the realized volatility error. Since E(ej|σ2
j ) = 0, realized volatility is

an unbiased estimator of actual volatility. When M → ∞, y∗M → σ2
i almost surely, so it is

strongly consistent estimator.

lim
h→0

E(e∗M(h))√
h

= 0

since

e∗M(h) =
M∑
j=1

ej =
M∑
j=1

σ2
j (v

2
j − 1)

where vj ∼iid N(0, 1) and independent of σ2
j . It is clear that ej is a weak white noise sequence

which is uncorrelated with the actual volatility process σ2
j .

Thus √
M
h

([y∗M ]− σ2
i )√

2σ
[4]
i

=

√
M
h

∑M
j=1 σ

2
j (v

2
j − 1)√

2σ
[4]
i

.

One can apply the characteristic function technique followed by Esseen’s lemma for the numer-
ator. Then one can apply the splitting technique of Michel and Pfanzagl (1971) or the more
precise squeezing technique of Pfanzagl (1971). Then one should refine the result using the
generalized bootstrap techniques.

We will emphasize on model calibration and inference. The implied volatility smile phenom-
enon has led to the appearance of a large variety of extensions of the Black-Scholes model: the
local volatility models, diffusions with stochastic volatility, jump diffusions, and long memory
models. The model calibration is the reconstruction of model parameters from the prices of
traded options. It is an inverse problem to that of option pricing and as such, typically ill-posed.

We will also emphasize on interest rate models. The calibration problem is yet more complex
in the interest rate markets since in this case the empirical data that can be used includes a wider
variety of financial products from standard obligations to swaptions. Efficient computational
algorithms are thus most needed.
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A stochastic volatility model models both the underlier’s value and its volatility as stochastic
processes. As with a jump-diffusion model, this has the effect of giving the underlier’s value a
leptokurtic distribution. Heston’s (1993) model is a popular stochastic volatility model.

A jump-diffusion model adds random jumps to the geometric Brownian motion that Black-
Scholes (1973) assumes for the underlier. Among other things, this has the effect of giving the
underlier’s value a leptokurtic distribution.

It is well accepted that estimating financial volatility is a central issue in financial theory and
practice. To estimate volatility, researchers have given attention to high frequency data. Un-
fortunately, high-frequency data is often contaminated my movements dictated by institutional
factors of the market. Removing these institutionally driven factors, termed microstructure
effects, is vital to accurately determine the price volatility. Thus high frequency data is con-
taminated by market microstructure noise. The available market microstructure noise models
have used i.i.d. noise with constant variance to describe market microstructure effects. In con-
tinuous time, i.i.d. process is a process with extreme volatility and because of this, the observed
price process is dominated by the noise process and carries no information on the volatility of
the efficient price process. To overcome this problem, we propose fractional Brownian motion
driving noise for market microstructure noise which carries long memory of volatility.

The main difficulty in modeling and forecasting financial volatility is the fact that the
volatility is latent and not directly observable, like a hidden Markov model. Usually researchers
have used realized volatility as an observable proxy for latent volatility. Realized volatility is
defined as the summation of squared intra-day returns. It is a good estimate to estimate the
object of interest, the integrated volatility of an asset, so is optimal to use all the available
data. However, it is a common practice in measuring realized volatility to avoid the data at
highest frequency available, the tick-by-tick data. Instead, researchers tend to sample intra
daily returns at somewhat moderate frequencies such as 5, 10 or 30 minutes. This is due to the
suspicion that the market microstructure effects become more severe as sampling frequency
increases.

2. Stochastic Derivative and Elements of Malliavin Calculus

Let (Ω,F , P ) denote the Wiener space, i.e., Ω = C0[0, T ] is the Wiener space of continuous
functions on [0, T ] with initial value 0 which is equipped with the supremum norm ‖ . ‖,F
the Borel σ-algebra of subsets of Ω and P is the standard Wiener measure on (Ω,F). We will
denote by {Ft, t ∈ [0, T ]} the filtration generated by Brownian motion and completed by the
P -null sets. We will represent by W (ω, t) = ω(t), 0 ≤ t ≤ T, ω ∈ Ω the Wiener process on the
canonical probability space (Ω,F , P ).

On (Ω,F , P ) consider the homogeneous nonlinear Skorohod stochastic differential equation

dX(t) = f(θ,X(t))dt+ g(σ,X(t))dW (t), 0 ≤ t ≤ T

X(0) = ψ(X(T ))
(2.1)

ψ is a known function, f is a known real valued function defined on R satisfying the existence
and uniqueness of solution to (2.1), see Nualart (1995), θ ∈ Θ ⊂ R and σ ∈ Σ ⊂ R+ are
the unknown parameters which are to be estimated. Let θ0 and σ0 be the true values of
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the unknown parameters. On the basis of n-independent copies X1(t), X2(t), . . . , Xn(t) of
{X(t), 0 ≤ t ≤ T}, maximum likelihood estimation was studied in Bishwal (2010), which uses
the following Girsanov theorem for likelihood.

Anticipative Girsanov Theorem

The following is the nonadapted (anticipative) extension of the Girsanov theorem proved by
Kusuoka (1982, Theorem 6.4). See also Theorem 4.1.2 in Nualart (1995).

Theorem 2.1 Let V : Ω→ Ω be a mapping of the form

V (t, ω) = ω(t) +

∫ t

0

U(s, ω)ds,

where U is a measurable mapping from Ω in to H = L2(0, T ) and suppose that the following
conditions are satisfied:
(i) V is bijective.
(ii) For all ω ∈ Ω, there exists a Hilbert-Schmidt operator DU(ω) from H into itself such that:

(a)

‖U(ω +

∫ •
0

hsds)− U(ω)−DU(ω)h‖H = o(‖h‖H)

for all ω ∈ Ω as ‖h‖H → 0,
(b) h→ DU(ω+

∫ •
0
hsds) is continuous from H into L2([0, T ]2) the space of Hilbert-Schmidt

operators for all ω,
(c) I +DU(ω) : H → H is invertible.
Then if Q is the measure on Ω,F such that F = QV −1, Q is absolutely continuous with

respect to P and

dQ

dP
= |dc(−DU)| exp

(
−
∫ T

0

U(t)dWt −
1

2

∫ T

0

U2
t dt

)
where dc(−DU) denotes the Carleman-Fredholm determinant of the Hilbert-Schmidt operator
−DU and

∫ T
0
U(t)dW (t) is the Skorohod integral.

We recall that the Carleman-Fredholm determinant of a Hilbert-Schmidt operator B from
L2[0, T ] into itself is defined by the product expansion

dc(B) =
∞∏
j=1

(1− λj) exp(λj)

where {λj, j ≥ 1} are the nonzero eigenvalues of B counted as many times as its multiplicities,
see Simon (1979). In particular, if the operator B is nuclear, then

dc(B) = det(I −B) exp{trace B}.

Thus if the operator DU is nuclear, then

dc(−DU) = det(I +DU) exp{trace (−DU)}.

Maximum likelihood estimation of drift parameter of Skorohod stochastic differential equations
was studied in Bishwal (2010) using anticipative Girsanov transformation.
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Next we introduce some basic tools from Malliavin calculus. The idea of stochastic (or
Malliavin) derivative is to define the notion of differentiability within the family of random
variables that are equal to or can be approximated by functions of independent increments of
Brownian motion. Under suitable assumptions, this family is wide enough to contain solution
of stochastic differential equations. Let C∞b (Rn) be the set of C∞ functions g : Rn → R which
are bounded and have bounded derivatives of all orders. The class of all real random variables
of the form F (ω) = g(W (t1),W (t2), . . . ,W (tn)), g ∈ C∞b (Rn), called Wiener functionals, is
denoted by S. The space D1,p designates the Banach space which is the completion of S with
respect to the norm

‖F‖1,p = {E|F |p}1/p +

(
E

[{∫ T

0

|DsF |2ds
}p/2])1/p

,

where

DsF :=
n∑
i=1

∂g

∂xi
(W (t1),W (t2), . . . ,W (tn))I[0,ti](t).

More generally, the k-th order derivative of F is defined as the k-parameter process given by
D

(k)
s1...sk(F ) = Ds1Ds2 . . . DskF .
The space Dm,p is defined analogously and its associated norm is denoted by ‖.‖m,p. That is,

‖F‖m,p = {E|F |p}1/p +

(
E

[{∫ T

0

. . .

∫ T

0

|D(m)
s1...sm

F |2ds1 . . . dsm

}p/2])1/p

.

Wiener-Itô Chaos Expansion

The stochastic Sobolev space D1,2 consists of all FT - measurable random variables F ∈ L2(P )

with chaos expansion

F =
∞∑
n=0

In(fn), fn ∈ L2([0, T ]n)

satisfying the convergence criterion

‖F‖2
D1,2 :=

∞∑
n=1

nn!‖fn‖2
L2([0,T ]n).

Let F ∈ D1,2 ⊂ L2(P ), that is square-integrable. Then the Malliavin derivative operator DtF

of F at time t defined as the expansion

DtF =
∞∑
n=1

nIn−1(fn(·, t)), t ∈ [0, T ].

Skorohod Integral

The space S is dense in (D1,p, ‖.‖1,p), p ≥ 1. Set D1,∞ = ∩p≥1D1,p. The adjoint of the closed
unbounded operator D : L2(Ω) → L2([0, T ] × Ω) is usually denoted by δ and is called the
Skorohod integral. The domain of δ is the class of processes u ∈ L2([0, T ]× Ω such that∣∣∣∣E (∫ T

0

DtFutdt

)∣∣∣∣ ≤ C‖F‖L2(Ω),

https://doi.org/10.28919/ejma.2026.6.2


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2026.6.2 7

for all F ∈ S. Here C is a constant which may depend on u. In the case that u is in the domain
of δ, then δ(u) is the square integrable random variable defined by the duality relation

E(δ(u)F ) = E

(∫ T

0

DtFutdt

)
for all F ∈ D1,2. The Skorohod integral δ(u) turns out to be an extension of the classical Itô
integral and it allows one to integrate processes u not necessarily adapted. For this reason, one
also writes δ(u) =

∫ T
0
u(s)dW (s).

For any real number p ≥ 1 and any integer n ≥ 1 we set Ln,p = Lp([0, T ];Dn,p) and
L1,∞ = ∩p≥1L1,p. The processes u of the space L1,2 verify uI[0,t] ∈ Dom δ for each t ∈ [0, T ],
and for those processes one can define the indefinite Skorohod integral Yt = δ(uI[0,T ]) de-
noted also by

∫ t
0
u(s)dW (s). This process has continuous modification provided u ∈ L1,2 and

E(
∫ T

0
(
∫ T

0
|Dsur|2ds)pdr) < ∞ for some p > 2. The trajectory of this process is continuous

but highly irregular. Imkeller (1993) showed that, one can represent the Skorohod integral as
the composition of a Gaussian semimartingale depending on an infinite dimensional parameter
with a Gaussian vector.

The following proposition is a trivial consequence of the fact that Itô integral and thus also
iterated Itô integrals have zero expectation.

Proposition 2.1 For any u ∈ Dom(δ), the Skorohod integral has zero expectation, that is,

E(δ(u)) = 0.

Duality Relation For every X ∈ S and U ∈ Dom(δ),

E

(∫ T

0

(DtX)Utdt

)
= E

(
X

∫ T

0

Ut � dWt

)
.

Example 2.1 Let X = Wt. Then

DsX =

{
1 : s ≤ t

0 : s > t

Example 2.2 Let X =
∫ t

0
urdWr where u is a deterministic function. Then

DsX =

{
us : s ≤ t

0 : s > t

That is,

Dt

∫ T

0

s2dWs = t2.

Chain Rule Let ϕ ∈ C1
b and let X ∈ D1,2. Then

Dϕ(X) = ϕ′(X)DX.

DsW
2
t = 2WtI[0,t(s).

Let

X =

∫ t

0

urdWr.

Then

Ds

∫ t

0

urdWr = us +

∫ t

s

DsurdWr.
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Fundamental Theorem of Malliavin Calculus

Let {ut, 0 ≤ t ≤ T} be a stochastic process such that

E

(∫ T

0

u2
sds

)
<∞

and assume that for all s ∈ [0, T ], us ∈ D1,2 and that for all t ∈ [0, T ], Dtu ∈ Dom(∆).
Assume also that

E

[∫ T

0

(δ(Dtu))2dt

]
<∞.

Then ∫ T

0

usdWs ∈ D1,2 and Dt

(∫ T

0

usdWs

)
=

∫ T

0

DtusdWs + ut.

Clark-Haussman-Ocone Formula

The Clark-Haussman-Ocone formula expresses the martingale representation theorem in terms
of the Malliavin derivative.

Recall that the martingale representation theorem asserts that every square integrable mar-
tingale can be represented as a stochastic integral with respect to Brownian motion, i.e., for
every square integrable martingale X, there exists an square integrable process u such that

X = E(X) +

∫ T

0

usdWs.

If X is Malliavin differentiable, we have

DtX = ut +

∫ T

t

DtusdWs.

Thus

E(DtX|FWt ) = ut.

Hence if X ∈ D1,2, then

X = E(X) +

∫ T

0

E(DtX|FWt )dWt.

An interesting fact of the Clark-Ocone formula is that if X ∈ D1,2 and DX = 0, then X is
almost surely constant. The method based on Clack-Ocone formula has the advantage that it
does not depend on a Markovian setup.

Clark-Ocone Formula under Change of Measure

Let

W̃t =

∫ t

0

usds+Wt

https://doi.org/10.28919/ejma.2026.6.2
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where us is an adapted stochastic process satisfying the Novikov condition

E

(
exp

(∫ T

0

u2
sds

))
<∞.

By Girsanov theorem Q(dω) = ZTP (dω) where

Zt = exp

(
−
∫ t

0

usdWs −
1

2

∫ t

0

u2
sds

)
, 0 ≤ t ≤ T.

Let X ∈ D1,2 is FT measurable and satisfies

EQ‖X‖2 <∞,

EQ

∫ T

0

‖DtX‖2dt <∞,

EQ

[
|X|

∫ T

0

(∫ T

0

usdWs +
1

2

∫ t

0

(usDtus)ds

)2
]
<∞.

Then

X = EQ(X) +

∫ T

0

EQ[(DtX −X
∫ T

0

DtusdW̃s)|FWt ]dW̃t.

Bayes Rule

Let µ and ν be two probability measures on a measurable space (Ω,F) such that ν(dω) =

f(ω)ν(dω) for some f ∈ L1(µ). Let X be a random variable on (Ω,F) such that X ∈ L1(ν).
Let G ⊂ F be a σ-algebra. Then

Eµ(fX|G) = Eµ(f |G)Eν(X|G).

Let
Q(dω) = ZT (ω)P (dω)

where

Zt = exp

{
−
∫ t

0

usdWs −
1

2

∫ t

0

u2
sds

}
.

Corollary to Bayes Rule

Suppose G ∈ L1(Q). Then

EQ[G|Ft] =
E[ZTG|Ft]

Zt
.

Lemma 2.1 Using Clark-Ocone formula, we have

Dt(ZTF ) = ZT

[
DtF − F

(
ut +

∫ T

t

DtusdW̃s

)]
.

Black-Scholes Delta

Consider the Black-Scholes model for stock price

dSt = µStdt+ σStdWt

= (µ− σu)Stdt+ σStdW̃t

= rStdt+ σStdW̃t

https://doi.org/10.28919/ejma.2026.6.2
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since µ−r
σ

= u is the risk premium and Dtu = 0. Under the risk neutral measure Q,

dSt = rStdt+ σStdW̃t

which gives

St = S0 exp

{
(r − 1

2
σ2)t+ σW̃t

}
known as the geometric Brownian motion. The derivative of the call option EQ[e−r(t−T )(ST −
K)+|Ft] with respect to the stock price, known as Black-Scholes delta, is given by

∆t = e−r(t−T )σ−1S−1
t EQ[Dt(ST −K)+|Ft.]

But
Dt(ST −K)+ = I[K,∞)(ST )STσ.

By Markov property of St, this is the same as

∆t = er(t−T )S−1
t Ey

Q[ST−tI[K,∞)(ST−t)]|y=St

where Ey
Q is the expectation under the risk neutral measure Q when S0 = y.

Hence
∆t = er(t−T )S−1

t Ey[YT−tI[K,∞)(YT−t)]|y=St

where
Yt = S0 exp{(r − 1

2
σ2)t+ σWt}.

Since the distribution of Wt is known, ∆t can be explicitly expressed in terms of quantities
involving St and the normal distribution function.

The quantity ∆t represents the number of units we must invest in the risky investment at
time t in order to be guaranteed to get the payoff (ST − K)+ at time T . Let V ∆

0 represent
the corresponding initial fortune needed to achieve this. Thus V ∆

0 is the unique initial fortune,
which makes it possible to establish a self-financing portfolio with the same payoff at time T
as the option gives:

V ∆
0 = EQ[e−rT (ST −K)+] = E[e−rT (YT −K)+]

which again can be expressed explicitly by the normal distribution.

Financial Interpretation of the Clark-Ocone Formula

Let X be the payoff of an European option on an asset S. The dynamics of the discounted
price under the equivalent martingale measure (EMM) is given by

dS̃t = σtS̃tdWt.

If (α, β) is a replication strategy of the option, we have

X̃ = E[X̃] +

∫ T

0

αtdS̃t = E[X̃] +

∫ T

0

αtσtS̃tdWt.

On the other hand, by Clark-Ocone Formula,

X̃ = E[X̃] +

∫ T

0

E[DtX̃|FWt ]dWt.

https://doi.org/10.28919/ejma.2026.6.2
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Hence the replication strategy is given by

αt =
E[DtX̃|FWt ]

σtS̃t
, t ∈ [0, T ].

Stochastic Integration by Parts (SIBP)

The technique based on Malliavin calculus can be effective also when poor regularity conditions
are assumed on the payoff function F , i.e., direct application of the Monte carlo methods gives
unsatisfactory results, even if the underlying asset follows geometric Brownian motion.

The stochastic integration by parts allows removing the derivative of the payoff function,
thus improving the numerical approximation. More precisely, let us suppose that we want to
determine ∂αE[F (ST )Y ] where ST denotes the final price of the underlying asset depending on
a parameter α, e.g, α is ST in the case of Delta, α is volatility in the case of vega and Y is
some random variable., e.g, a discount factor. The idea is to try to express ∂αE[F (ST )Y ] in the
form

∫ T
0
DsF (ST )Y Usds for some adapted integrable process U . By using the duality relation,

formally we obtain
∂αE[F (ST )Y ] = E[F (ST )D∗(Y U)].

Let Y be some random variable, e.g., a discount factor. Let F ∈ C1
b and let X ∈ D1,2. Then

the following integration by parts holds:

E[F ′(X)Y ] = E

[
F (X)

∫ T

0

utY∫ T
0
usDsXds

� dWt

]
.

In general it is not allowed to take out a random variable from Itô integral. This can be
made more precise in the case of anticipative stochastic integral.

Let X ∈ D1,2 and let U be a second-order Skorohod integrable process. Then∫ T

0

XUt � dWt = X

∫ T

0

Ut � dWt −
∫ T

0

(DtX)Utdt.

The typical case when U is adapted, the above formula becomes∫ T

0

XUt � dWt = X

∫ T

0

UtdWt −
∫ T

0

(DtX)Utdt.

and so it is possible to express Skorohod integral as the sum of an Itô integral and a Lebesgue
integral.
Recall that by Itô formula ∫ T

0

WtdWt =
1

2
(W 2

T − T )

but by Integration by Parts (IBP) formula in Malliavin calculus, that is, a direct application
of the above formula ∫ T

0

WT � dWt = W 2
T − T.

This shows the difference between adapted and nonadapted integrands in stochastic calculus.
Thus even if the integrand does not depend on T , we have∫ T

0

WT � dWt 6= WT

∫ T

0

dWt.
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Bismut-Elworthy Formula

Let the diffusion process be given by

St = x+

∫ t

0

b(s, Ss)ds+

∫ t

0

σ(s, Ss)dWs

where x ∈ R and b, σ ∈ C1
b .

Then

E[∂xF (ST )G] =
1

T
E

[
F (ST )

(
G

∫ T

0

∂xSt
σ(t, St)

dWt −
∫ T

0

DtG
∂xSt
σ(t, St)

dt

)]
for every G ∈ D1,∞.

Stochastic Flow of Diffeomorphisms and Ocone-Karatzas Hedging

Let

St = x+

∫ t

0

b(s, Ss)ds+

∫ t

0

σ(s, Ss)dWs

where x ∈ R and b, σ ∈ C1,2
b . The stochastic flow (see Kunita (1994)) is given by

DsSt = σ(s,Xs) +

∫ t

s

∂xb(r, Sr)DsSrdr +

∫ t

s

∂xσ(r, Sr)DsSrdr.

Assume that the payoff function is F for the European option with maturity T . Then the
payoff functional is represented by the following Itô integral:

F (ST )− E(F (ST )) =

∫ T

0

β(t)dWt,

where
β(t) = E

[
DtF (ST )|FWt

]
and DtF (ST ) is the stochastic flow of F (ST ).

Further, assume that F ∈ C1. Then using the Clark-Ocone-Karatzas formula,

β(t) = E [〈ζ(t), dF (ST )〉] where ζ(t) = JT←tb(t, St)

and JT←t is the Jacobian of the stochastic flow (the linearized equation of the SDE driving the
flow) which satisfies

dtJT←t = (b′(t, St)dt+ σ′(t, St)dWt)JT←t

where ′ denotes derivative with respect to x.

3. Hedging and Greek Estimation

Due to the 2008-2011 financial crisis in the United States, both modeling and valuation of
financial products face challenges. Mathematical finance deals with pricing derivatives (that
derives its value from the performance of an underlying asset, e.g., a stock, a mutual fund
or an interest rate) products, e.g., options on stocks and bonds. For the derivation of option
price formula, one calculates mathematical expectation (the population mean) of a discounted
payoff function. Monte Carlo methods (based on the philosophy of law of large numbers,
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which basically says that for large sample, the sample mean converges in an appropriate sense
to the population mean) in mathematical finance and financial engineering are alternative
methods of pricing derivatives when analytical pricing formula is not available and when it
is available it is too difficult to use, see Glasserman (2004). European options are contracts
that are signed between two parties (usually a bank and a costumer) that allows to obtain
certain monetary benefits if the price of certain asset falls above (known as call option) or falls
below (known as put option) a certain fixed value, the strike price, at a certain fixed date,
the expiration date. Whereas European options can be exercised only at the expiration date,
American options are contracts which give the holder the right to exercise at any time on or
before the exercise date. A Greek is the derivative (mathematical differentiation as in calculus)
of the option price with respect to a parameter, also known as the sensitivity parameter. Greeks
or sensitivity parameters, are frequently used for hedging (mitigating risk by taking investment
position to offset potential losses/gains suffered by an individual or an organization), market
risk management and profit and loss attribution. Greeks measure the stability of a portfolio
with respect to change in parameters. For instance, one would be interested to know how
sensitive is the change in the option price for a corresponding change in the stock price. It is
important to carry out these calculations with high accuracy to prevent future instabilities in the
position of a company holding these options. If the Greek does not have a closed form formula
then one may think of performing Monte Carlo simulations in order to approximate it. There
are 13 sensitivity parameters of a derivative product: Delta, Gamma, Vega, Theta, Rho, Phi,
Speed, Volga, Vanna, Veta, Charm, Color and Zomma. In an idealized setting of continuous
trading in a complete financial market, the payoff of a contingent claim can be manufactured
or hedged through trading in underlying assets. The risk in a short position in an option, for
example is offset, by a delta-hedging strategy of holding delta units of each underlying asset,
where delta is simply the partial derivative of the option price with respect to the current
price of that underlying asset. Implementation of the strategy requires the knowledge of these
price sensitivities. Sensitivities with respect to other parameters, for example, derivative of
the option price with respect to the volatility, called the vega, and the second derivative of the
option price with respect to the asset price called the gamma are also widely used to measure
and manage risk. Theta is the first derivative with respect to time to maturity. Rho is the first
derivative with respect to the interest rate. Phi is the first derivative with respect to dividend
yield. Speed is the third derivative of the option price with respect to the stock price. Volga,
also called Vomma, is the second partial derivative of the option with respect to volatility.
Vanna is the second partial derivative once with respect to stock and once with respect to
volatility. Veta is the second partial derivative once with respect to maturity and once with
respect to maturity. Charm is the second partial derivative of option price, once with respect
to stock and once with respect to time to maturity. Color is the third partial derivative, twice
with respect to stock and once with respect to time to maturity. Zomma is the third partial
derivative of the option twice with respect to stock and once with respect to volatility.

One of the fundamental problems in finance is that the asset pricing models are continuous
but the data are discrete, see Bishwal (2008). Whereas the prices themselves can often be
observed in the market, their sensitivities can’t, so accurate calculation of sensitivities is even
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more important than calculation of prices. Thus derivative estimation presents both theoretical
and practical challenges to Monte Carlo simulation.

Traditionally, the methods for estimating sensitivities are broadly of two types: methods that
involve simulating at two or more values of the parameter of differentiation and methods that do
not. The first category- the finite difference approximation methods are easier to implement but
produce biased estimates. Methods of the second category produce unbiased estimates. Second
category methods are of two types: the pathwise method and the likelihood ratio method. Path-
wise method differentiates each simulated outcome with respect to the parameter of interest.
The likelihood ratio method differentiates a probability density rather than an outcome. When
applicable, pathwise method provides best estimates of the sensitivities. Compared with finite
difference methods, pathwise estimates require less computing time. Compared with likelihood
ratio method, pathwise estimates usually have smaller variance. The application of the pathwise
method requires interchanging the order of differentiation and integration. Pathwise method
yields unbiased estimates of the derivative of an option price if the option’s discounted payoff is
almost surely continuous in the parameter of differentiation. This excluded many options, for
example digital and barrier options. Finite difference methods are easy to implement, but they
have large mean square errors. The likelihood ratio method does not require any smoothness
in the discounted payoff because it is based on probability density instead. But its application
is limited, because it requires the explicit knowledge of the relevant probability densities and
often has large variance. Estimating second derivative is even more difficult than estimating
first derivative regardless of the method used. The pathwise method is generally inapplicable
to second derivative of option prices since a kink in an option payoff becomes a discontinuity
in the derivative of the payoff. Combination of pathwise method and likelihood ratio method
generally produce better gamma estimates than likelihood ratio method alone. We will study
a new method for Greek estimation known as the sequential Monte Carlo method combined
with Malliavin calculus method. In Malliavin calculus, also known as the stochastic calculus
of variations, the Malliavin derivative differentiates a random variable with respect to its un-
derlying noise generating process, see Nualart (1995). The Malliavin calculus method for the
estimation of Greeks developed in Fournie et al. (1999, 2001), Malliavin and Thalmier (2006)
first differentiates, but implementation requires the simulation of a discrete time approximation,
thus discretizes next. The question remains as to discretize the underlying asset price process
first and then differentiate or differentiate first and then discretize the asset price process. The
first route leads to Malliavin estimators. Chen and Glasserman (2007) interchange the order
and produce the same Malliavin estimators, that is, they discretize first and then differentiate.
For the discretization, Chen and Glasserman (2007) used Euler approximation which is a first
order approximation. In this paper, our first step is to use Milstein approximation which a
second order approximation to improve the discretization error and have faster rate of conver-
gence. Bishwal (2011) developed many higher order discretization schemes for approximation
of stochastic integrals. One can employ some of these schemes, especially the stochastic Boole’s
rule, for Greek estimation in order to further improve the accuracy of approximation. Finally,
numerical experiments should be performed. We suppose that the underlying model dynamics,
e.g, price of a stock, are given by the stochastic differential equation

dXt = f(Xt)dt+ g(Xt)dWt, X0 = x
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where Wt is a standard Brownian motion and f and g are smooth functions satisfying the
existence and uniqueness of the solution of the equation. With a discounted payoff function h
and maturity T , option price is

u(x) = E(h(XT ))

and option delta is

u′(x) = E(h′(XT ))
dXT

dx
where

dXt

dx
= Yt

is the pathwise derivative of Xt with respect to the initial state x. Thus

ξ1 := h′(XT )
dXT

dx
= h′(XT )YT

is an unbiased estimator of u′(x). The dynamics of the pathwise derivative is given by the
stochastic differential equation

dYt = f ′(Xt)Ytdt+ g′(Xt)YtdWt, Y0 = 1,

that is,

Yt = exp

{
(f ′(Xs)−

1

2
(g′(Xs))

2]ds+

∫ t

0

g′(Xs)dWs

}
.

It can be shown that

u′(x) = Ex

[
h(XT )

∫ T

0

a(t)
Yt

g(Xt)
dWt

]
where

∫ T
0
a(t)dt = 1. The stochastic integral∫ T

0

a(t)
Yt

g(Xt)
dWt

is called the Malliavin weight. With a(t) = 1
T
, 0 ≤ t ≤ T , the Malliavin estimator is given by

ξ3 := h(XT )
1

T

∫ T

0

Yt
g(Xt)

dWt,

see Fournie et al. (1999). For the Black-Scholes model

dXt = µXtdt+ σXtdWt,

u′(x) = Ex

[
h(XT )

WT

xσ0T

]
.

Thus the Malliavin estimator of ∆ is

h(XT )
WT

xσT
.

With p(x,XT ) being the transition density of XT given x, the likelihood ratio method (LRM)
estimator is given by

ξ2 := h(XT )
d

dx
log p(x,XT ).

The likelihood ratio method (LRM) Black-Scholes call delta estimator is given by

e−rT (XT −K)+ log(St/x)− (r − 1
2
σ2)T

xσT

which can be simulated as
e−rT (XT −K)+ Z

xσ
√
T
.

https://doi.org/10.28919/ejma.2026.6.2


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2026.6.2 16

Based on Euler discretization of the price SDE, this estimator can be seen as a limit of the
average of the combinations of pathwise and LRM estimators. One could study higher order
efficient Monte Carlo simulation methods for the derivation of the derivative (differentiation)
of the derivative price (option price), that is estimate the Greeks or sensitivities without using
Malliavin derivative but using elementary techniques. One could study the convergence of the
Greek estimators when the discretization of the SDE is done using the Milstein scheme and
other higher order schemes to the corresponding Malliavin estimators. Unbiasedness and the
rate of convergence of the new estimators will be studied. Based on discrete observations,
higher order approximation of the stochastic integral, studied in Bishwal (2008, 2011) could
be used to obtain better Greek estimators. The performance of the new estimators could be
numerically tested using computer programs, e.g., MATLAB.

Delta, Vega and Gamma of European Options

Weak regularity properties are assumed for the payoff F . The stochastic integration by parts
formula allows removing the derivative of the payoff function, thus improving the numerical
approximation. It is possible to prove the validity of the integration by parts formula for weakly
differentiable (or even differentiable in a distributional sense) functions.
Examples: Consider the Black-Scholes model for the underlying asset under the physical mea-
sure

dSt = µStdt+ σStdWt.

The Black-Scholes dynamics for the underlying asset of an option under the equivalent mar-
tingale measure is given by

ST = x exp

{
σWT +

(
r − 1

2
σ2

)
T

}
.

Delta:
DsST = σST and ∂xST =

ST
x
.

In the SIBP if u = 1 and Y = ∂αX, we obtain

E[∂αF (X)] = E

[
F (X)

∫ T

0

∂αX∫ T
0
DsXds

� dWt

]
.

Using this we obtain
∆ = e−rT∂xE[F (ST )]

= e−rTE

[
F (ST )

∫ T

0

∂xST∫ T
0
DsSTds

� dWt

]

= e−rTE

[
F (ST )

∫ T

0

1

σTx
dWt

]
=
e−rT

σTx
E[F (ST )WT ].

Vega:

∂σST = (WT − 2σT )ST , DsST = σST .

V = e−rT∂σE[F (ST )] = e−rTE

[
F (ST )

(
WT − σT

σT
WT −

1

σ

)]
.
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Gamma:

Γ = e−rT∂xxE[F (ST )] =
e−rT

σT
E[∂x

F (ST )

x
WT ]

=
e−rT

σTx2
E[F (ST )WT ] +

e−rT

σTx
E[∂xF (ST )WT ]

=
e−rT

σTx2
E[F (ST )WT ] +

e−rT

σTx
E[F ′(ST )∂xSTWT ]

=
e−rT

σTx2
E[F (ST )WT ] +

e−rT

σTx
E[F (ST )

∫ T

0

WT

σTx
� dWt]

=
e−rT

σTx2
E[F (ST )WT ] +

e−rT

σTx

1

σTx
E[F (ST )(W 2

T − T )]

=
e−rT

σTx2
E[F (ST )(

W 2
T − T
σT

−WT )].

Delta of Asian option

Let the arithmetic average be defined as

X =
1

T

∫ T

0

Stdt.

Observe that
∂xX =

X

x
,∫ T

0

DsXds =

∫ T

0

∫ T

0

DsStdtds = σ

∫ T

0

∫ T

0

Stdsdt = σ

∫ T

0

tStdt.

The Delta of the asian option is given by

∆ = e−rT∂xE[F (X)] =
e−rT

x
E[F ′(X)X] =

e−rT

σx
E

[
F (X)

∫ T

0

∫ T
0
Ssds∫ T

0
sSsds

� dWt

]

=
e−rT

x
E

[
F (X)

(
1

I1

(
WT

σ
+
I2

I1

)
− 1

)]
where

Ij =

∫ T
0
tjStdt∫ T

0
Stdt

, j = 1, 2.

Sensitivity with respect to correlation in Heston Model

Consider the Heston model

dSt =
√
VtSt

{√
1− ρ2dW 1

t + ρdW 2
t

}
,

dVt = α(β − Vt)dt+ σ
√
VtdW

2
t

whereW 1
t andW 2

t are two independent Brownian motions and the leverage ρ ∈ (−1, 1). Observe
that

ST = S0 +

∫ T

0

√
VtdW

1
t +

∫ T

0

√
VtdW

2
t −

1

2

∫ T

0

vtdt.

and
∂ρST = STG
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where

G := − ρ√
1− ρ2

∫ T

0

√
VtdW

1
t +

∫ T

0

√
VtdW

2
t .

Then

∂ρE[F (ST )] =
1

T
√

1− ρ2
E

[
F (ST )

(
G

∫ T

0

1√
Vt
dW 1

t +
ρT√
1− ρ2

)]
.

Similarly, other Greeks should be calculated.

4. Bootstrap and Volatility Estimation

In a series of papers, given in the reference, by Barndorff-Nielsen and Shephard (2001-2007)
(henceforth BN-S) have developed an asymptotic theory for realized volatility-like measures. In
particular, for a general stochastic volatility model, BN-S established a central limit theorem
(CLT) for realized volatility over a fixed interval of time, for instance a day, as the number of
intraday returns increases to infinity. They have also showed that a CLT applies to empirical
measures based on powers of intra day returns (realized power variation) and products of powers
of absolute returns (e.g., bipower variation). BN-S also provided a joint asymptotic distribution
theory for the realized volatility and realized bipower variation, and showed how to use this
distribution to test for the presence of jumps in asset prices.

For the first time, Goncalves and Meddahi (2004) proposed bootstrap methods for evaluating
high frequency data such as realized volatility to improve upon the first order theory of asymp-
totic mixed normal approximations of BN-S. They studied two bootstrap methods for realized
volatility: an i.i.d. (uniform) bootstrap and wild bootstrap. The i.i.d. bootstrap (cf. Efron
(1979)) generates bootstrap pseudo intraday returns by resampling with replacement the origi-
nal set of intraday returns. The wild bootstrap observations are generated by multiplying each
original intraday return by an i.i.d. draw from a distribution that is completely independent
of the original data. The wild bootstrap was introduced by Wu (1986), and further studied by
Liu (1988) and Mammen (1993), in the context of cross-section linear regression models subject
to unconditional heteroskedasticity in the error term. Zhang, Mykland and Ait-Sahalia (2004)
and Zhang (2004) considered an application of subsampling method to realized volatility under
stochastic volatility. In particular, they use subsampling plus averaging the bias correct the
realized volatility measure when microstructure noise is present. The generalized bootstrap
techniques could be used to estimate the distribution (as opposed to bias) of realized volatility.

A popular bootstrap for serially dependent data is block bootstrap. In our context, intraday
returns are (conditionally on the volatility path) independent, and this implies that blocking is
not necessary for asymptotic refinements of the bootstrap. The issue here is heteroskedasticity
and not serial correlation.

Malliavin calculus is a powerful tool to study the asymptotic expansion of distribution of
estimators in diffusion type models, see Yoshida (1997). The nondegeneracy of the Malliavin
covariance plays the same role in diffusion case as the Cramer condition in the i.i.d. case.
One should use Malliavin calculus for obtaining Edgeworth expansion of generalized bootstrap
statistics.
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Goncalves and Meddahi (2004) used Monte Carlo simulations and formal Edgeworth expan-
sions to compare the accuracy of the bootstrap and normal approximations. They showed that
i.i.d. provides an asymptotic refinement when volatility is constant. The absolute magnitude of
the coefficients describing the i.i.d. bootstrap error is smaller than the coefficients entering in
the first term Edgeworth expansion of the original statistic. The Edgeworth expansion for wild
bootstrap shows that it provides an asymptotic refinement when the volatility is heterogeneous
if one chooses the external random variable used to construct the wild bootstrap observations
appropriately.

One could use generalized bootstrap schemes for higher order accuracy in estimation and
testing in classical stochastic volatility models driven by standard Brownian motion. Then one
could also consider stochastic volatility models with jumps (for instance, Poisson type jumps)
and stochastic volatility models with long memory driven by fractional Brownian motion.

Hall and Presnell (1999) introduced a class of weighted-bootstrap techniques, called biased-
bootstrap or b-bootstrap methods. It is motivated by the need to adjust more conventional,
uniform-bootstrap methods in a surgical way, so as to alter some of their features while leav-
ing others unchanged. In the b-bootstrap, resampling probabilities are chosen to minimize
the distance of the weighted bootstrap distribution from the usual, uniform bootstrap distri-
bution, conditional on the data and subject to constraints that are designed to improve the
statistical performance. Empirical likelihood methods may be viewed as a particular case of
the b-bootstrap as also many techniques suggested for refining the generalised method of mo-
ments. The b-bootstrap has connection to tilting methods. It has also application to dependent
data in the context of empirical likelihood. Methods related to both empirical likelihood and
the b-bootstrap include the bootstrap likelihood technology of implied likelihood method for
making likelihood calculations from confidence intervals. Depending on the nature of the ad-
justment, the biased bootstrap can be used to reduce bias, or reduce variance, or render some
characteristic equal to a predetermined quantity. More specifically, applications of b-bootstrap
methods include hypothesis testing (b-bootstrap enables simulation under the null hypothesis
even when the hypothesis is false), b-bootstrap competitor to Tibshirani’s variance stabilization
method both density estimation and nonparametric regression under constraints, robustification
of general statistical procedures, sensitivity analysis, generalized method of moments, outlier
trimming, skewness and kurtosis reduction, shrinkage, and many more.

Bootstrap confidence intervals could also be studied, together with error reduction techniques.
Many ideas of linear regression problems could be extended to stochastic volatility models. Bose
and Chatterjee (2005) introduced a generalized bootstrap technique for estimators obtained by
solving estimating equations. Special cases are the classical bootstrap of Efron, the delete-
d jackknife, and variations of the Bayesian bootstrap. Under fairly general conditions they
investigate to establish (a) asymptotic normality of estimator and consistency of bootstrap
when model dimension is fixed or increasing with data size; (b) asymptotic representation of
resampling variance estimator and (c) higher order accuracy of the new generalized bootstrap
estimator for the bias corrected, studentized estimator.

In the classical setting, for instance, consider estimating the variance of the least squares
estimate in linear regressions. There are several resampling schemes available in the literature.
By establishing representation results, Liu and Singh (1992) classified these into two groups:
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Those that are efficient but not consistent under heteroscedasticity and those that are consistent
under heteroscedasticity (robust) but not efficient.

Classes of generalized bootstrap are introduced and in some sense all of the above schemes are
special cases of these bootstraps. By establishing higher order expansions, one can distinguish
between the estimators within the robust and the efficient class. First order representation
results are also established for high dimensional regression models where the number of param-
eters increases with the sample size.

For the related problem of estimating the entire distribution of the realized volatility, one
should study consistency of the generalized bootstrap. It is known from the existing works
that the paired bootstrap (which is robust) is not second order accurate for the ordinary least
squares estimator. One could show that with proper bias correction and studentization, a
(smooth) generalization of the paired bootstrap may be second order accurate. One could then
extend these ideas to estimates obtained by solving martingale estimating equations. One could
establish representation results for the bootstrap estimator and obtain some first and second
order distribution results. Representation results could also be obtained for the bootstrap
variance estimator.

One should also think to investigate how these ideas can be implemented in estimating
the distribution of M estimators. Generalized bootstrap schemes in martingale estimation
function should be introduced and their first and second order behavior should be studied.
New as well as unifying results on resampling plans in a large class of M estimators could be
obtained which includes all standard resampling schemes and a large class of common estimators
used in statistics. The performance of the bootstrap for nonregular models when the standard
conditions often assumed are violated, could be also be investigated. The following jackknife
and bootstrap techniques could be studied for stochastic volatility models:

1) Delete-1 jackknife (Quenoville (1949)), 2) Weighted Jackknife (Hinkley (1977)), 3)
Weighted Jackknife (Wu (1986)), 4) Weighted Jackknife (Liu and Singh (1992)), 5) Resid-
ual bootstrap (Efron (1979)), 6) External bootstrap (Wu (1986)), 7) Weighted bootstrap (Liu
(1988)), 8) Uncorrelated weights bootstrap (Chatterjee and Bose (2005)).

Goncalves and Meddahi (2004) compared wild bootstrap and i.i.d. bootstrap for realized
volatility. One could study generalized bootstrap methods for realized volatility. One could also
study other estimation methods. One should also study bootstrapping the Fourier estimator and
the Wavelet estimator of the realized volatility. One should employ several different generating
mechanisms for the instantaneous volatility process, Ornstein-Uhlenbeck, long memory and
jump processes. Market microstructure contamination could also be entertained using a model
with bid-ask bounce. Fourier estimators are known to be superior to realized volatility and
wavelet estimators when considering bid-ask bounce. One should also consider bootstrapping
the weighted realized volatility. This class nests several estimators.

One should also study bootstrapping the realized range-based variance, a statistics that
replaces every squared return of realized variance with a normalized squared range. Realized
range-based variance is asymptotically mixed normal and five times more efficient than the
realized variance. This is not surprising. In contrast to the estimator based on daily returns,
the range utilizes the information from the entire sample path and one would expect it to be
superior.
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One should also study bootstrapping continuous time GARCH model which is called COG-
ARCH model. In this context one should consider heavy-tailed distributions (in the sense that
all moments are not finite) of the volatility.

Beyond the first order theory of asymptotic mixed normal distribution of the realized volatil-
ity, one should obtain the Berry-Esseen bounds. Then one should consider the properties of
generalized bootstrap estimators of realized volatility and study their Edgeworth expansion.

One should also study the problem of testing of the parametric form of the volatility in a
stochastic differential equation driven by fractional Brownian motion with Hurst parameter
H > 1

2
. This class of models is important as it captures the long memory behavior of the

log-share prices. One should then extend to fractional stochastic volatility model.
Testing about volatility is an important problem in derivative pricing. A misspecification

of the volatility function could lead to misspecfied derivative prices. When the price process
follows the classical diffusion, Ait-Sahalia (1996) studied the volatility testing problem using
nonparametric density matching. His test is based on the comparison of parametric marginal
density with its nonparametric estimator. However, the classical diffusion does not take in
to account the long memory behavior of the price process. One could take the long memory
behavior of the price in to account using the fractional diffusion and study the testing problem
for volatility. One should study the asymptotic behavior of the test statistic.

A normalized fractional Brownian motion {WH
t , t ≥ 0} with Hurst parameter H ∈ (0, 1) is a

centered Gaussian process with continuous sample paths whose covariance kernel is given by

E(WH
t W

H
s ) =

1

2
(s2H + t2H − |t− s|2H), s, t ≥ 0.

The process is self similar (scale invariant) and it can be represented as a stochastic integral with
respect to standard Brownian motion. For H = 1

2
, the process is a standard Brownian motion.

For H 6= 1
2
, the fBm is not a semimartingale and not a Markov process, but a Dirichlet process.

The increments of the fBm are negatively correlated for H < 1
2
(anti-persistent) and positively

correlated for for H > 1
2
and in this case they display long-range dependence (persistence).

The parameter H which is also called the self similarity parameter, measures the intensity of
the long range dependence.

We assume that the price process of an underlying is a one dimensional fractional diffusion
satisfying the fractional Itô SDE

dXt = µ(Xt)dt+ σ(Xt)dW
H
t , 0 < t ≤ T

where µ and σ are smooth functions such that a unique solution of the above SDE exists and
{WH

t , t ∈ [0, T ]} is a fractional Brownian motion with Hurst coefficient H > 1/2. Assume the
σ2 has continuous derivatives up to second order.

For the pricing of contingent claims with a payoff function that depends on the evolution
of the underlying process X during the time period [0, T ], the derivative prices are calculated
under the risk-neutral quasi-martingale measure, which is not influenced by the drift function,
but the diffusion function σ captures the volatility of the underlying.

In the field of interest rate modeling, the specification of µ is also important. However, a
first step in evaluating a particular parametric interest rate model could be test of parametric
form of its volatility coefficient.
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It is often assumed that the diffusion coefficient belongs to a set of parametric functions ,i.e,
there exists an unknown parameter θ0 ∈ Θ such that σ(x) = σ(θ0, x). The hypotheses to be
tested are the null hypothesis
H0 : There exists θ0 ∈ Θ : for every t ∈ [0, T ] : σ(Xt) = σ(θ0, Xt) P-a.s.
versus the alternative hypothesis
H1: For all θ ∈ Θ: for every t ∈ [0, T ] : |σ(Xt)− σ(θ,Xt)| ≥ cn δn(Xt) P-a.s.

Here δn is the local shift in the alternative, a sequence of bounded functions and cn is the
order of difference between H0 and H1.
Assumptions:
(A1) The following holds for σ2:

|σ2(θ, x)− σ2(θ0, x)| ≤ D(x)|θ − θ0| ∀x ∈ Ix

where D(x) is a constant depending on x and the set Ix is defined by

Ix := {x : LT (x) ≥ ε > 0}

with an arbitrary number ε, where LT (x) denotes the local time of X at time T .
(A2) θ̂ is a 1−H root consistent parametric estimator of θ within the family of the parametric
model, i.e., |θ̂ − θ| = OP (n−(1−H)).

We introduce the following test statistics

τn(x) = {nhnLn(xi)}1−H

(
Sn(x)

σ̃2(θ̂, x)
− 1

)
.

The proposed test statistic is asymptotically equivalent to the L2 distance between Sn(·) and
σ̃2(θ̂, ·).

One should study the asymptotic behavior of the above test statistic. Corradi and Swanson
(2003) studied bootstrap specification test using an i.i.d. bootstrap. One should study
bootstrap specification test using the generalized bootstrap methods.

5. Jumps and Long-Memory

Recently long memory processes, i.e. processes with slowly decaying autocorrelation and pro-
cesses with jumps have received attention in finance, engineering and physics. The simplest
continuous time long memory process is the fractional Brownian motion discovered by Kol-
mogorov (1940) and later on studied by Levy (1948) and Mandelbrot and van Ness (1968).
Continuous time long memory jump process is fractional Levy process. Hence fractional Levy
process can also be called the Kolmogorov-Levy process.

A normalized fractional Brownian motion {WH
t , t ≥ 0} with Hurst parameter H ∈ (0, 1) is a

centered Gaussian process with continuous sample paths whose covariance kernel is given by

E(WH
t W

H
s ) =

1

2
(s2H + t2H − |t− s|2H), s, t ≥ 0.

The process is self similar (scale invariant) and it can be represented as a stochastic integral
with respect to standard Brownian motion. For H = 1

2
, the process is a standard Brownian

motion. For H 6= 1
2
, the fBm is not a semimartingale and not a Markov process, but a
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Dirichlet process. The increments of the fBm are negatively correlated for H < 1
2
and positively

correlated for H > 1
2
and in this case they display long-range dependence. The parameter H

which is also called the self similarity parameter, measures the intensity of the long range
dependence. The ARIMA(p, d, q) with autoregressive part of order p, moving average part of
order q and fractional difference parameter d ∈ (0, 0.5) process converge in Donsker sense to
fBm. See Mishura (2008).

The following processes, namely, fractional Poisson process, fractional Levy process, and
sub-fractional Levy processes could be used for the innovation driving the stochastic volatility
process.

Fractional Poisson process

A fractional Poisson process {WH(t), t > 0} with Hurst parameter H ∈ (1/2, 1) is defined as

WH(t) =
1

Γ(H − 1
2
)

∫ t

0

u
1
2
−H
(∫ u

0

τH−
1
2 (τ − u)H−

3
2dτ

)
dR(u)

where

R(u) =
N(u)√
λ
−
√
λu, λ > 0

and N(u) is a Poisson process.
The process is self-similar in the wide sense, has wide sense stationary increments, has fat-

tailed non-Gaussian distribution, and exhibits long range dependence. The process converges
to fractional Brownian motion in distribution. The process is self similar in the asymptotic
sense.

Strict sense, wide sense and asymptotic sense self-similarity are equivalent for fractional
Brownian motion.Stock returns are far from being self-similar in strict sense. The stochastic
volatility model we consider is

dSt =
√
V tdB(t),

dVt = µVtdt+ σVtdWH(t), t ≥ 0

The advantage of fractional Poisson process is that whereas fractional Brownian motion allows
for arbitrage when used as noise in the stock price process, the shot noise process itself can be
chosen arbitrage-free.

Hawkes processes are an efficient generalization of the Poisson processes to model a sequence
of arrivals over time of some types of events, that present self-exciting feature, in the sense that
each arrival increases the rate of future arrivals for some period of time. This class of counting
processes allows one to capture self-exciting phenomena in a more accurate way compared to
inhomogeneous Poisson processes or Cox processes. In finance, they are accurate to model
for example credit risk contagion, order book or microstructure noises’s feature of financial
markets.

A Hawkes process is a counting process At with stochastic intensity λt given by

λt = µ+

∫ t

0

Φ(t− s)dAs
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where µ > 0 and Φ : R→ R+ are two parameters. The parameter µ > 0 is called the background
intensity and the function Φ is called the excitation function. When Φ = 0, this a homogeneous
Poisson process.

A fractional Hawkes process {AH(t), t > 0} with Hurst parameter H ∈ (1/2, 1) is defined as

AH(t) =
1

Γ(H − 1
2
)

∫ t

0

u
1
2
−H
(∫ t

u

τH−
1
2 (τ − u)H−

3
2dτ

)
dR̃(u)

where

R̃(u) =
A(u)√
λt
−
√
λtu

and A(u) is a Hawkes process with stochastic intensity λt.

Fractional Levy Process

Levy driven processes of Ornstein-Uhlenbeck type have been extensively studied over the last
few years and widely used in finance, see Barndorff-Nielsen and Shephard (2001). FLOU pro-
cess generalizes fOU process to include jumps. The fractional Levy Ornstein-Uhlenbeck (fOU)
process, is an extension of fractional Ornstein-Uhlenbeck process with fractional Levy motion
(fLM) driving term. In finance, it could be useful as a generalization of fractional Vasicek
model, as one-factor short-term interest rate model which could take into account the long
memory effect and jump of the interest rate. This process was introduced by Marquardt (2006)
who also introduced fractional Levy process in Marquardt (2006). Using suitable transforma-
tion of the process, one can obtain a nonlinear stationary process satisfying a fractional SDE,
see Buchmann and Kluppelberg (2005). Brent (2003) used the process as temperature and
obtained weather derivative arbitrage free pricing formulas for European and average type op-
tions. Cheridito et al. obtained the fOU process as a Lamperti transformation of the fBM. The
model parameter is usually unknown and must be estimated from data.

Fractional Levy Process is defined as

MH,t =
1

Γ(H + 1
2
)

∫
R
[(t− s)H−1/2

+ − (−s)H−1/2
+ ]dMs, t ∈ R

where Mt, t ∈ R is a Levy process on R with E(M1) = 0, E(M2
1 ) <∞ and without Brownian

component. FLP has the following properties:
1) The covariance of the process is given by

cov(MH,t,MH,s) =
E(L(1)2

2Γ(2H + 1) sin(πH)
[|t|2H + |s|2H − |t− s|2H ].

2) MH is not a martingale. For a large class of Levy processes, Md is neither a semimartingale.
3)MH is Hölder continuous of any order β less than H − 1

2
. 4) MH has stationary increments.

5) MH is symmetric. 6) MH is self similar. 7) MH has infinite total variation on compacts.
8) The FIMA (fractionally integrated moving average) process is defined as

YH(t) =

∫ t

−∞
gH(t− u)L(du), t ∈ R

where

gH(t) =
1

Γ(H − 1
2
)

∫ t

0

g(t− s)sH−
3
2ds, t ∈ R
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and the kernel g is the kernel of a short memory moving average process.
The process YH(t) can be written as

YH(t) =

∫ t

−∞
g(t− u)dMH,u, t ∈ R.

Assuming that the kernel g : R → R satisfies g(t) = 0 for all t < 0 (causality) and |g(t)| ≤
Ce−ct for some constants C > 0 and c > 0 (has short memory), the FIMA process is stationary
and is infinite divisible.

Consider the kernel
g(t− s) = σeθ(t−s)I(0,∞)(t− s)

then
gH(t) =

σ

Γ(H − 1
2
)

∫ ∞
0

eθ(t−s)I(0,∞)(t− s)sH−
3
2ds, t ∈ R

Note that
UH,θ,σ
t =

∫
R
gH(t− u)L(du), t ∈ R

is the fractional Levy Ornstein-Uhlenbeck (FLOU) process satisfying the fractional Langevin
equation

dUt = θUtdt+ σdMH,t, t ∈ R.

The process has long memory.
Consider the Ornstein-Uhlenbeck process Xt satisfying the Itô stochastic differential equation

dXt = θXtdt+ dMH
t , t ≥ 0

where {MH
t } is a fractional Levy motion with H > 1/2 with the filtration {Ft}t≥0 and θ < 0 is

the unknown parameter to be estimated on the basis of continuous observation of the process
{Xt} on the time interval [0, T ].

Xt =

∫ t

−∞
eθ(t−s)dMs.

This process is stationary and is a process with long memory.
It can be shown that Xti is a stationary discrete time AR(1) process with autoregression

coefficient φ ∈ (0, 1) with the following representation

Xti = φXti−1
+ εti−1

where

φ = e−θh, εti−1
=

∫ ti

ti−1

e−θ(ti−u)dMu.

For exampleM is a gamma process or an inverse-Gaussian process. The fractional Levy process
(FLP) is a generalization of FBM. The FLP is not a martingale and not even a semimartingale
in general. FLP is a natural counterpart to FBM. It is Holder continuous. It has stationary
increments. It is symmetric. It is self-similar. Fractional stable process is a special case of FLP.

The fractional Levy Ornstein-Uhlenbeck (FLOU) process X was introduced in Marquardt
(2006). FLOU process is a LOU process which includes long memory.

We indroduce the ratio estimator of the drift. The ratio estimator of θ is defined as

θ̂n := − log

[
min

1≤i≤n

Xi∆

X(i−1)∆

]
.
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This estimator is motivated by the extreme value theory for the correlation parameter of an
AR(1) process whose innovation distribution is positive. See Davis and McCormick (1989). In
the case of exponential AR(1) process, it coincides with the maximum likelihood estimator. See
Nielsen and Shephard (2003).

The weak consistency of the ratio estimator in the LOU process was studied in Jongbloed
et al. (2006). The strong consistency and asymptotic Weibullness was studied in Brockwell,
Davis and Yang (2007) in the case of Gamma innovations. One can obtain strong consistency
and asymptotic Weibullness of the ratio estimator for the fLOU process.

Sub-fractional Levy Process

As a generalization of fractional Brownian motion we get the Hermite process of order k with
Hurst parameter H ∈ (1

2
, 1) which is defined as a multiple Wiener-Itô integral of order k with

respect to standard Brownian motion (B(t))t∈R

ZH,k
t := c(H, k)

∫
R

∫ t

0

k∏
j=1

(s− yi)
−( 1

2
+H−1

2
)

+ ds dB(y1)dB(y2) · · · dB(yk)

where x+ = max(x, 0) and the constant c(H, k) is a normalizing constant that ensures
E(ZH,k

t )2 = 1.

For k = 1 the process is fractional Brownian motion WH
t with Hurst parameter H ∈ (0, 1).

For k = 2 the process is Rosenblatt process. For k ≥ 2, the process is non-Gaussian.
The Rosenblatt process is not a semimartingale and for H > 1/2, the quadratic variation is

0. The distribution of the process is infinitely divisible. It is unknown yet whether the process
is Markov or not.

The covariance kernel R(t, s) is given by

R(t, s) := E[ZH,k
t ZH,k

s ] = c(H, k)2

∫ t

0

∫ s

0

[
(u− s)−( 1

2
+H−1

2
)

+ ds(v − y)
−( 1

2
+H−1

2
)

+ dy
]k
dudv.

Let

β(p, q) :=

∫ 1

0

zp−1(1− z)q−1dz, p, q > 0

be the beta function.
Using the identity∫ 1

0

∫
R

(u− s)a−1
+ ds(v − y)a−1

+ dy = β(a, 2a− 1)|u− v|2a−1,

we have

R(t, s) = c(H, k)2β

(
1

2
− 1−H

k
,
2H − 2

k

)k ∫ t

0

∫ s

0

(
|u− v|

2H−2
k

)k
dvdu

= c(H, k)2β(1
2
− 1−H

k
, 2H−2

k
)k

H(2H − 1)

1

2
(t2H + s2H − |t− s|2H).
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In order to obtain E(Z
(H,k)
t )2 = 1, choose

c(H, k)2 =

(
β(1

2
− 1−H

k
, 2H−2

k
)k

H(2H − 1)

)−1

and we have

R(t, s) =
1

2
(t2H + s2H − |t− s|2H).

Thus the covariance structure of the Hermite process and fractional Brownian motion are the
same. The process Z(H,k)

t is H-self similar with stationary increments and all moments are
finite.

For any p ≥ 1,

E|Z(H,k)
t − Z(H,k)

s |p ≤ c(p,H, k)|t− s|pH .

Thus the Hermite process has Hölder continuous paths of order δ < H.
A weighted fBm (wfBm) ξt has the covariance function

q(s, t) =

∫ s∧t

0

ua[(t− u)b + (s− u)b]du, s, t ≥ 0

where a > −1, −1 < b ≤ 1, |b| ≤ 1 + a. When a = 0, it is the usual fBm with Hurst parameter
(b+ 1)/2 up to a multiplicative constant. For b = 0 it is a time-inhomogeneous Bm.

The function ua is called the weight function of wfBm. For a = 0, this process is usual fBm
with Hurst parameter (b+1)/2. For the case b = 1, this process has the covariance of the process∫ t

0
Wradr whereW is standard Brownian motion. For b = 0, this process is time-inhomogeneous

Bm. The finite dimensional distributions of the process (T−a/2(ξt+T − ξT )), t ≥ 0 converge as
T → ∞ to those of fBm with Hurst parameter (1 + b)/2 multiplied by (2/(1 + b)))1/2. The
process has asymptotically stationary increments for long time intervals, but not for short time
intervals. For b 6= 0, the process is neither a semimartingale nor a Markov process.

This process occurs as the limit of occupation time fluctuations of a particle system of
independent particles moving in Rd with symmetric α-stable Levy process, 0 < α ≤ 2, started
from an inhomogeneous Poisson configuration with intensity measure dx/(1 + |x|γ), 0 < γ ≤
d = 1 < α, a = −γ/α, b = 1 − 1/α,−1 < a < 0, 0 < b ≤ 1 + a. The homogeneous case γ = 0

gives fBm.
A bi-fractional Brownian motion (bfBm) has covariance

1

2
(s2H + t2H)k − |t− s|2Hk), s, t ≥ 0, 0 < k ≤ 1.

For k = 1, it reduces to fBm. For H = 1/2, bfBm can be extended for 1 < k < 2.
Consider the Gaussian process with the covariance function

KH(s, t) = (2− 2H)

(
s2H + t2H − 1

2

[
(s+ t)2H + |s− t|2H

])
, s, t > 0

for 1 < H ≤ 2. The case H = 1/2 corresponds to Bm.
This process occurs as the limit of occupation time fluctuations of a particle system un-

dergoing a critical branching, i.e., each particle independently, at an exponentially distributed
lifetime, disappears with probability 1/2 or is replaced with two particles at the same site with
probability 1/2. For α = 2, one reaches super processes.
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Recently, sub-fractional Brownian (sub-FBM) motion which is a centered Gaussian process
with covariance function

CH(s, t) = s2H + t2H − 1

2

[
(s+ t)2H + |s− t|2H

]
, s, t > 0

for 0 < H < 1 introduced by Bojdecki, Gorostiza and Talarczyk (2004) has received some
attention recently. The interesting feature of this process is that this process has some of the
main properties of FBM, but the increments of the process are nonstationary, more weakly
correlated on non-overlapping time intervals than that of FBM, and its covariance decays
polynomially at a higher rate as the distance between the intervals tends to infinity. It would
be interesting to see extension of this paper to sub-FBM case. We generalize sub-fBM to
sub-FLP.

Sub-fractional Levy process is defined as

SH,t =
1

Γ(H + 1
2
)

∫
R
[(t− s)H−1/2

+ − (−s)H−1/2
+ ]dMs, t ∈ R

where Mt, t ∈ R is a Levy process on R with E(M1) = 0, E(M2
1 ) <∞ and without Brownian

component. SFLP has the following properties:
1) The covariance of the process is given by

cov(SH,t, SH,s) = s2H + t2H +
E(L(1)2

2Γ(2H + 1) sin(πH)
[|t|2H + |s|2H − |t− s|2H ].

2) SH is not a martingale. For a large class of Levy processes, SH is neither a semimartingale.
3) SH is Hölder continuous of any order β less than H − 1

2
. 4) SH has nonstationary incre-

ments. 5) SH is symmetric. 6) SH is self similar. 7) SH has infinite total variation on compacts.
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