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INTERACTION DYNAMICS FOR (3+1)-DIMENSIONAL COMBINED
PKP-BKP EQUATION

ALI DANLADI1,∗ AND ALHAJI TAHIR2

Abstract. This study explores the (3+1)-dimensional combined pKP-BKP equation and its
variants, specifically when certain parameters vanish, using the Hirota bilinear method and sym-
bolic computation. We have successfully derived various solutions, including breather waves,
two-wave interactions, lump-periodic solutions, and other novel interaction forms. All the pre-
sented solutions have been verified to satisfy the original equations through back-substitution,
aided by the Wolfram Mathematica package. To illustrate the nature of these solutions, their
visual characteristics are graphically depicted. The results contribute valuable insights into fun-
damental nonlinear fluid dynamics and enhance our understanding of computational physics
and engineering science within complex nonlinear, higher-dimensional wave fields.

1. Introduction

Nonlinear evolution equations arising in fluid dynamics, optical fibers, plasma dynamics, and
related fields have been extensively studied in the literature. Integrable equations are known to
admit exact multi-soliton solutions. Solitons are stable, localized waves whose shapes, ampli-
tudes, and velocities remain unchanged during propagation. Their interactions are considered
elastic if these properties remain invariant before and after the interaction, as exemplified by
the Korteweg-de Vries (KdV) equation [1–12]. However, inelastic interactions can also occur,
leading to phenomena such as fission and fusion of waves, as seen in the Burgers equation.
Furthermore, both elastic and inelastic interactions in various continuous integrable equations
have been widely analyzed and discussed.
Among the fundamental methods for obtaining soliton solutions are the inverse scattering trans-
form [1-10], the Riemann-Hilbert technique [11–20], the Darboux transformation [16–25], and
the Hirota direct method [6–36]. Notable solutions in mathematical physics, such as breather,
complexiton, lump, and rogue wave solutions can be seen as particular reductions of soliton
solutions under various conditions. Numerous effective approaches [12–24] have been employed
to investigate the complete integrability of nonlinear evolution equations, addressing both elas-
tic and inelastic interactions to produce new results in scientific research.
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Various prominent solutions, including breathers, lumps, and rogue waves, have been derived us-
ing a range of sophisticated techniques, such as the algebraicgeometric method, the inverse scat-
tering method, the Backlund transformation, Painleve analysis, Lax integrability, the Darboux
transformation [15–22], and the Hirota bilinear method [1–5,22–36], among others. For exam-
ple, in [34], solutions for a (2+1)-dimensional coupled partially nonlocal nonlinear Schrodinger
equation were obtained via a coupled relation using the Darboux method. Similarly, in [35,36],
N-soliton solutions, breathers, and lumps for the (2+1)-dimensional Hirota-Satsuma-Ito equa-
tion were derived using the Hirota bilinear method, the complex conjugate parameter, and the
long-wave limit method. The Hirota bilinear method is recognized as an efficient, convenient,
and powerful technique for exploring integrable nonlinear models in various contexts, including
Bose-Einstein condensates, plasma physics, ferromagnetic chains, water waves, and nonlinear
optical fibers. Its effectiveness has attracted widespread attention among researchers. Inte-
grable equations can be reformulated into Hirota bilinear forms through suitable dependent
variable transformations. Moreover, computer algebra systems such as Maple and Mathemat-
ica are invaluable for managing the otherwise labor-intensive computations involved.
The potential Kadomtsev-Petviashvili (pKP) equation read as

(1.1) Vxt + 6VxVxx + Vxxxx + aVyy = 0.

obtained by V in the KdV equation with Vx, and integrating with respect to x once.
Moreover, the (2+1)-dimensional integrable B-type Kadomtsev-Petviashvili (BKP) equation is
given by

(1.2) (15(Vx)
3 + 15VxVxxx + Vxxxxx)x + 5(Vxxxy + 3(VxVy)x) + Vxt − Vyy = 0,

that describes the interactions between exponentially localized structures, and has been used
as a model for the shallow water wave in fluids and the electrostatic wave potential in plasmas
[1–18]. Recently, Ma [1] proposed a combined form of the pKP eq. (1.1) and the BKP eq.
(1.2), known as the pKP-BKP equation, expressed as
(1.3)
a1(15(Vx)

3+15VxVxxx+Vxxxxx)x+a2(6VxVxx+Vxxxx)+a3(Vxxxy+3(VxVy)x)+a4Vxx+a5Vxt+a6Vyy = 0,

where ai are arbitrary constants and a5 6= 0. This newly proposed equation went under thorough
studies with useful findings in [1–5]. In [1], the Hirota conditions for N-soliton solutions are
studied and analyzed. Variety of soliton molecules were formed through solitons such as the
kink, lump or breather for the physical quantity V (x, y, t) in [2–5]. Resonant multi-soliton,
M-breather, M-lump and hybrid solutions of a combined pKP-BKP equation were formally
derived in [2–5]. Interactions such as collisions between lump waves and periodic waves, as
well as collisions between lumps and single or double kink soliton solutions, were also explored
in [6–36]. The combined pKP-BKP eq. (1.3), as a novel development, has been investigated in
depth, producing many significant results.
In [37], this equation was further extended to a new (3+1)-dimensional pKP-BKP model,
leading to additional advancements beyond the findings reported in [1–5]. The newly proposed
(3+1)-dimensional pKP-BKP equation is given by:
(1.4)
Vxt+α(15(Vx)

3+15VxVxxx+Vxxxxx)x+β(6VxVxx+Vxxxx)+γ(Vxxxy+3(VxVy)x)+aVxx+bVxt+cVxz+µVyy = 0,
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where some additional terms, namely bVxy, and cVxz were added to the pKP-BKP eq. (1.3), a5 is
set equal to 1, and v = V (x, y, z, t). The newly proposed pKP-BKP eq. (1.4) is slightly different
from Eq. (1.3) because of the newly added terms and the extension to (3+1)-dimensions.
The physical background of the governing eq. (1.4) represents the pioneer work of combining
nonlinear evolution equations to reveal nonlinear integrable equations as discussed in [1]. Our
main aim from this work is use the Hirota’s method to to transform the extended (3+1)-
dimensional combined pKP-BKP equation and its special cases into a bilinear form and then
obtain breather wave, two-waves, lump-kink and other new interactions for each of the model
equation and its special case.

2. The (3+1)-Dimensional Combined pKP-BKP Equation

The (3+1)-Dimensional Combined pKP-BKP Equation [37] is given by eq. (1.4).

2.1. The breather solution. To obtain the breather solution for eq(1.4) we first use the
transformation

(2.1) V (x, y, z, t) = 2
∂ log(f(x, y, z, t))

∂x
,

to convert eq.(1.4) into a Hirota bilinear form as:
(2.2)
f (afxx + bfxy + cfxz + fxt + βfxxxx + γfxxxy + µfyy + αfxxxxxx)− af2x − fy (bfx + γfxxx)− cfxfz
−ftfx − 4βfxfxxx − 6fxxxxxαfx − 3γfxfxxy + 15fxxxxαfxx + 3γfxxfxy − 10αf2xxx − µf2y + 3βf2xx = 0.

To obtain the breather solution, we use the test function [38]:

(2.3) f = q2 exp (p1χ1) + exp (−p1χ1) + q1 cos (p0χ2) ,

where χ1 = η1t+ x+ y + η2z, χ2 = η3t+ x+ y + η4z.

Substituting eq.(2.3) into eq.(2.2) then and performing the necessary manipulations, we obtain
a polynomial in powers of exponential and trigonometric functions. Collecting the coefficients
of the same power of trig and exponential functions and equating each to zero, yields an
algebraic system of equations. Solving this system of equation, we obtain the values of the
parameter that are involved.

Case One

When
p0 = −ip1, q1 = −2

√
q2, η3 = −2a− 2b− cη2 − cη4 − η1 − 2µ− 32αp40 + 8βp20.

(2.4) f = −2√q2 cosh (p1 (k + x+ y + η4z)) + q2e
p1(η1t+x+y+η2z) + e−p1(η1t+x+y+η2z).

Substitute eq.(2.4) into eq.(2.1), we obtain the exact breather solution as
(2.5)

V1(x, y, z, t) =
2
(
−2p1

√
q2 sinh (p1 (k + x+ y + η4z)) + p1q2e

p1(η1t+x+y+η2z) + p1
(
−e−p1(η1t+x+y+η2z)

))
−2√q2 cosh (p1 (k + x+ y + η4z)) + q2ep1(η1t+x+y+η2z) + e−p1(η1t+x+y+η2z)

,

where k = t (−2a− 2b− cη2 − cη4 − η1 − 2µ− 32αp41 − 8βp21).
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2.2. The two-waves solution. To obtain the two-waves solution, we use the test function [38]:

(2.6) f = δ3 sin (χ2) + δ4 sinh (χ3) + δ1 exp (χ1) + δ2 exp (−χ1) ,

where χ1 = η1t+ x+ y + η2z, χ2 = η3t+ x+ y + η4z, χ3 = η5t+ x+ y + η6z.

Substituting eq.(2.6) into eq.(2.2) and performing the necessary manipulations, we ob-
tain a polynomial in powers of exponential with trigonometric and exponential with hyperbolic
functions. Collecting the coefficients of the same power of exponential with trigonometric and
exponential with hyperbolic function and equating each to zero, yields an algebraic system of
equations. Solving this system of equation, we obtain the values of the parameter that are
involved.

Case One

When
δ2 = − δ24

4δ1
, δ3 = 0, η5 = −2a− 32α− 2b− 8β − cη2 − cη6 − 8γ − η1 − 2µ, we obtain

(2.7) f = δ4 sinh (k + x+ y + η6z)−
δ24e
−η1t−x−y−η2z

4δ1
+ δ1e

η1t+x+y+η2z.

Substitute eq.(2.7) into eq.(2.1), we obtain the exact two-waves solution as

(2.8) V2(x, y, z, t) =
2
(
δ4 cosh (k + x+ y + η6z) +

δ24e
−η1t−x−y−η2z

4δ1
+ δ1e

η1t+x+y+η2z
)

δ4 sinh (k + x+ y + η6z)− δ24e
−η1t−x−y−η2z

4δ1
+ δ1eη1t+x+y+η2z

,

where k = t (−2a− 32α− 2b− 8β − cη2 − cη6 − 8γ − η1 − 2µ) .

Case Two
When
δ2 =

δ23(10α−3β−3γ)
4δ1(10α+3β+3γ)

, δ4 = 0; η1 = −a+4α−b+2β−cη2+2γ−µ, η3 = −a+4α−b−2β−cη4−2γ−µ,
we obtain

(2.9) f = δ3 sin(k) +
δ23(10α− 3β − 3γ)e−k1−x−y−η2z

4δ1(10α + 3β + 3γ)
+ δ1e

k1+x+y+η2z.

Substitute eq.(2.9) into eq.(2.1), we obtain another exact two-waves solution as

(2.10) V3(x, y, z, t) =
2
(
δ3 cos(k)− δ23(10α−3β−3γ)e−k1−x−y−η2z

4δ1(10α+3β+3γ)
+ δ1e

k1+x+y+η2z
)

δ3 sin(k) +
δ23(10α−3β−3γ)e−k1−x−y−η2z

4δ1(10α+3β+3γ)
+ δ1ek1+x+y+η2z

,

where k = t (−a+ 4α− b− 2β − cη4 − 2γ − µ) + x + y + η4z, k1 =

t (−a+ 4α− b+ 2β − cη2 + 2γ − µ) .

2.3. The lump-periodic solution. To obtain the lump-periodic solution, we use the test
function [38]

(2.11) f = q2 cos (χ2) + q1 cosh (χ1) + q3 cosh (χ3) .

Substituting eq.(2.11) into eq.(2.2) and performing the necessary manipulations, we obtain a
polynomial in powers of hyperbolic with trigonometric functions. Collecting the coefficients of
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the same power and equating each to zero, yields an algebraic system of equations. Solving
this system of equation, we obtain the values of the parameter that are involved.
Case One
When
q1 = q3, q2 = 0, η5 = −2a− 32α− 2b− 8β − cη2 − cη6 − 8γ − η1 − 2µ.

we have,

(2.12) f = q3 cosh (k + x+ y + η6z) + q3 cosh (η1t+ x+ y + η2z) .

Substitute eq.(2.12) into eq.(2.1), we obtain the exact lump-periodic solution as

(2.13) V4(x, y, z, t) =
2 (q3 sinh (k + x+ y + η6z) + q3 sinh (η1t+ x+ y + η2z))

q3 cosh (k + x+ y + η6z) + q3 cosh (η1t+ x+ y + η2z)
,

where k = t (−2a− 32α− 2b− 8β − cη2 − cη6 − 8γ − η1 − 2µ) .

2.4. The new interaction solution. For the new interaction solution, we use the test function
[38],

(2.14) f = q2 exp (p1χ1) + q3 exp (−p1χ1) + q1 sin (p0χ2) + q4 sinh (p2χ3) ,

where χ1 = η1t+ x+ y + η2z, χ2 = η3t+ x+ y + η4z, χ3 = η5t+ x+ y + η6z.

Substituting eq.(2.14) into eq.(2.2) and performing the necessary manipulations, we obtain a
polynomial in powers of hyperbolic with trigonometric functions. Collecting the coefficients of
the same power and equating each to zero, yields an algebraic system of equations. Solving
this system of equation, we obtain the values of the parameter that are involved.
Case One
When
p1 = −ip0, q1 = −2

√
q2
√
q3, q4 = 0; η3 = −2a− 2b− cη2− cη4− η1− 2µ− 32αp40+8βp20+8γp20.

we have

(2.15) f = −2√q2
√
q3 sin (p0 (k + x+ y + η4z)) + q2e

−ip0(η1t+x+y+η2z) + q3e
ip0(η1t+x+y+η2z).

Substitute eq.(2.15) into eq.(2.1), we obtain exact new interaction solution as
(2.16)

V5(x, y, z, t) =
2
(
−2p0

√
q2
√
q3 cos (p0 (k + x+ y + η4z)) + (−i)p0q2e−ip0(η1t+x+y+η2z) + ip0q3e

ip0(η1t+x+y+η2z)
)

−2√q2
√
q3 sin (p0 (k + x+ y + η4z)) + q2e−ip0(η1t+x+y+η2z) + q3eip0(η1t+x+y+η2z)

,

where k = t (−2a− 2b− cη2 − cη4 − η1 − 2µ− 32αp40 + 8βp20 + 8γp20) .

Case Two
When
p1 = −p2, q1 = 0, q4 =

2
√
q2
√
q3
√
a+b+cη6+η5+µ+16αp42+4βp22+4γp22√

−a−b−cη6−η5−µ−16αp42−4βp22−4γp22
,

η2 =
−2a−2b−cη6−η1−η5−2µ−32αp42−8βp22−8γp22

c
,

we have

(2.17) f = q2e
−p2( kzc +η1t+x+y) + q3e

p2( kzc +η1t+x+y) +
2
√
k
√
q2
√
q3 sinh (p2 (η5t+ x+ y + η6z))√

−k
.
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Substitute eq.(2.17) into eq.(2.1), we obtain another new interaction solution as
(2.18)

V6(x, y, z, t) =

2

(
−p2q2e−p2(

kz
c +η1t+x+y) + p2q3e

p2( kz
c +η1t+x+y) +

2
√

k1p2
√
q2
√
q3 cosh(p2(η5t+x+y+η6z))√

−k1

)
q2e
−p2( kz

c +η1t+x+y) + q3e
p2( kz

c +η1t+x+y) +
2
√

k1√q2
√
q3 sinh(p2(η5t+x+y+η6z))√

−k1

,

where k = −2a− 2b− cη6 − η1 − η5 − 2µ− 32αp42 − 8βp22 − 8γp22, k1 = a+ b+ cη6 + η5 + µ+

16αp42 + 4βp22 + 4γp22.

3. The (3+1)-Dimensional Combined pKP-BKP Equation with β = 0

For β = 0 the new (3+1)-Dimensional pKP-BKP Equation [37] is given as:

(3.1) Vxt+α(15(Vx)3+15VxVxxx+Vxxxxx)x+γ(Vxxxy+3(VxVy)x)+aVxx+bVxt+cVxz+µVyy = 0.

3.1. The breather solution. To obtain the breather solution for eq.(3.1), we first use the
transformation given in eq.(2.1) and convert eq.(3.1) into a Hirota bilinear form as:
(3.2)
f (afxx + bfxy + cfxz + fxt + γfxxxy + µfyy + αfxxxxxx)− af 2

x − fy (bfx + γfxxx)− cfxfz − ftfx

−6fxxxxxαfx − 3γfxfxxy + 15fxxxxαfxx + 3γfxxfxy − 10αf 2
xxx − µf 2

y = 0.

Substituting eq.(2.3) into eq.(3.2) then and performing the necessary manipulations, we obtain
a polynomial in powers of exponential and trigonometric functions. Collecting the coefficients
of the same powers of these functions and equating each to zero, yields an algebraic system
of equations. Solving this system of equation, we obtain the values of the parameter that are
involved.

Case One
When
p1 = ip0, q1 = −2

√
q2, η3 = −2a− 2b− cη2 − cη4 − η1 − 2µ− 32αp40 + 8γp20, we have

(3.3) f = −2√q2 cos (p0 (k + x+ y + η4z)) + q2e
ip0(η1t+x+y+η2z) + e−ip0(η1t+x+y+η2z).

Substitute eq.(3.3) into eq.(2.1), we obtain the breather solution to eq.(3.1) as:
(3.4)

V1(x, y, z, t) =
2
(
2p0
√
q2 sin (p0 (k + x+ y + η4z)) + ip0q2e

ip0(η1t+x+y+η2z) + (−i)p0e−ip0(η1t+x+y+η2z)
)

−2√q2 cos (p0 (k + x+ y + η4z)) + q2eip0(η1t+x+y+η2z) + e−ip0(η1t+x+y+η2z)
.

where k = t (−2a− 2b− cη2 − cη4 − η1 − 2µ− 32αp40 + 8γp20) .

3.2. The two-waves solution. To obtain the two-waves solution, we use the test function
given in eq.(2.5): Substituting eq.(2.6) into eq.(3.2) and performing the necessary manipula-
tions, we obtain a polynomial in powers of exponential with trigonometric and exponential
with hyperbolic functions. Collecting the coefficients of the same powers of these functions
and equating each to zero, yields an algebraic system of equations. Solving this system of
equation, we obtain the values of the parameter that are involved.

Case One
When
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δ2 = − δ24
4δ1
, δ3 = 0, η5 = −2a− 32α− 2b− cη2 − cη6 − 8γ − η1 − 2µ,

we obtain

(3.5) f = δ4 sinh (k + x+ y + η6z)−
δ24e
−η1t−x−y−η2z

4δ1
+ δ1e

η1t+x+y+η2z.

Substitute eq.(3.5) into eq.(2.1), we obtain the exact two-waves solution to eq.(3.1) as

(3.6) V2(x, y, z, t) =
2
(
δ4 cosh (k + x+ y + η6z) +

δ24e
−η1t−x−y−η2z

4δ1
+ δ1e

η1t+x+y+η2z
)

δ4 sinh (k + x+ y + η6z)− δ24e
−η1t−x−y−η2z

4δ1
+ δ1eη1t+x+y+η2z

,

where k = t (−2a− 32α− 2b− cη2 − cη6 − 8γ − η1 − 2µ) .

Case Two
Wnen
δ2 =

δ23(10α−3γ)
4δ1(10α+3γ)

, δ4 = 0, η1 = −a+4α− b− cη2 +2γ − µ, η3 = −a+4α− b− cη4− 2γ − µ, we
have

(3.7) f = δ3 sin(k) +
δ23(10α− 3γ)e−k1t−x−y−η2z

4δ1(10α + 3γ)
+ δ1e

k1t+x+y+η2z.

Substitute eq.(3.7) into eq.(2.1), we obtain the another exact two-waves solution to eq.(3.1) as
V3(x, y, z, t) =
(3.8)
2
(
− δ23(10α−3γ) exp(−t(−a+4α−b−cη2+2γ−µ)−x−y−η2z)

4δ1(10α+3γ)
+ δ1 exp (t (−a+ 4α− b− cη2 + 2γ − µ) + x+ y + η2z) + δ3 cos(k)

)
δ23(10α−3γ) exp(−t(−a+4α−b−cη2+2γ−µ)−x−y−η2z)

4δ1(10α+3γ)
+ δ1 exp (t (−a+ 4α− b− cη2 + 2γ − µ) + x+ y + η2z) + δ3 sin(k)

,

where k = t (−a+ 4α− b− cη4 − 2γ − µ) + x+ y + η4z, k1 = −a+ 4α− b− cη2 + 2γ − µ.

3.3. The lump-periodic solution. To obtain the lump-periodic solution, we use the
test function eq.(2.11). Substituting eq.(2.11) into eq.(3.2) and performing the necessary
manipulations, we obtain a polynomial in powers of hyperbolic with trigonometric functions.
Collecting the coefficients of the same powers of thses functions and equating each to zero,
yields an algebraic system of equations. Solving this system of equation, we obtain the values
of the parameter that are involved.

Case One
When
q1 = −q3, q2 = 0, η5 = −2a− 32α− 2b− cη2 − cη6 − 8γ − η1 − 2µ, we obtain
(3.9)
f = q3 cosh (t (−2a− 32α− 2b− cη2 − cη6 − 8γ − η1 − 2µ) + x+ y + η6z)−q3 cosh (η1t+ x+ y + η2z) .

Substitute eq.(3.9) into eq.(2.1), we obtain exact lump-periodic solution to eq.(3.1) as
(3.10)

V4(x, y, z, t) =
2 (q3 sinh (t (−2a− 32α− 2b− cη2 − cη6 − 8γ − η1 − 2µ) + x+ y + η6z)− q3 sinh (η1t+ x+ y + η2z))

q3 cosh (t (−2a− 32α− 2b− cη2 − cη6 − 8γ − η1 − 2µ) + x+ y + η6z)− q3 cosh (η1t+ x+ y + η2z)
.

3.4. The new interaction solution. For the new interaction solution, we use the test
function given eq.(2.14). Substituting eq.(2.14) into eq.(3.2) and performing the necessary
manipulations, we obtain a polynomial in powers of hyperbolic with trigonometric functions.
Collecting the coefficients of the same powers of these functions and equating each to zero,
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yields an algebraic system of equations. Solving this system of equation, we obtain the values
of the parameter that are involved.

Case One
When
p1 = −ip0, q1 = 2

√
q2
√
q3, q4 = 0, η3 = −2a− 2b− cη2 − cη4 − η1 − 2µ− 32αp40 + 8γp20,

we obtain

(3.11) f = 2
√
q2
√
q3 sin(k) + q2e

−ip0(η1t+x+y+η2z) + q3e
ip0(η1t+x+y+η2z).

Substitute eq.(3.11) into eq.(2.1), we obtain exact new interaction solution to eq.(3.1) as
(3.12)

V5(x, y, z, t) =
2
(
2p0
√
q2
√
q3 cos(k) + (−i)p0q2e−ip0(η1t+x+y+η2z) + ip0q3e

ip0(η1t+x+y+η2z)
)

2
√
q2
√
q3 sin(k) + q2e−ip0(η1t+x+y+η2z) + q3eip0(η1t+x+y+η2z)

,

where k = p0 (t (−2a− 2b− cη2 − cη4 − η1 − 2µ− 32αp40 + 8γp20) + x+ y + η4z) .

Case-Two
When
p1 = p2, q1 = 0, q4 =

2
√
q2
√
q3
√
a+b+cη6+η5+µ+16αp42+4γp22√

−a−b−cη6−η5−µ−16αp42−4γp22
, η2 =

−2a−2b−cη6−η1−η5−2µ−32αp42−8γp22
c

,

we obtain

(3.13) f = q2e
p2( kzc +η1t+x+y) + q3e

−p2( kzc +η1t+x+y) +
2
√
k1√q2

√
q3 sinh (p2 (η5t+ x+ y + η6z))√

−k1
.

Substitute eq.(3.13) into eq.(2.1), we obtain another exact new interaction solution to eq.(3.1)
as
(3.14)

V6(x, y, z, t) =
2
(
p2q2e

p2( kzc +η1t+x+y) − p2q3e−p2(
kz
c
+η1t+x+y) +

2
√

k1p2
√
q2
√
q3 cosh(p2(η5t+x+y+η6z))√

−k1

)
q2e

p2( kzc +η1t+x+y) + q3e
−p2( kzc +η1t+x+y) +

2
√

k1√q2
√
q3 sinh(p2(η5t+x+y+η6z))√

−k1

,

where k = −2a−2b−cη6−η1−η5−2µ−32αp42−8γp22, k1 = a+b+cη6+η5+µ+16αp42+4γp22.

4. The (3+1)-Dimensional combined pKP-BKP Equation with γ = 0

For γ = 0, the new (3+1)-Dimensional pKP-BKP Equation is given as [37]:

(4.1) Vxt+α(15(Vx)3+15VxVxxx+Vxxxxx)x+β(6VxVxx+Vxxxx)+aVxx+bVxt+cVxz+µVyy = 0,

4.1. The breather solution. To obtain the breather solution for eq.(4.1) we first use the
transformation given in eq.(2.1), to convert eq.(4.1) into a Hirota bilinear form as:
(4.2)
f (afxx + bfxy + cfxz + fxt + βfxxxx + µfyy + αfxxxxxx)− af 2

x − bfxfy − cfxfz − ftfx − 4βfxfxxx

−6fxxxxxαfx + 15fxxxxαfxx − 10αf 2
xxx − µf 2

y + 3βf2xx = 0.

Substituting eq.(2.3) into eq.(4.2) then and performing the necessary manipulations, we obtain
a polynomial in powers of exponential and trigonometric functions. Collecting the coefficients
of the same powers of these functions and equating each to zero, yields an algebraic system
of equations. Solving this system of equation, we obtain the values of the parameter that are
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involved.
Case One
When
p1 = ip0, q1 = −2

√
q2, η3 = −2a− 2b− cη2 − cη4 − η1 − 2µ− 32αp40 + 8βp20,

we obtain

(4.3) f = −2√q2 cos(k) + q2e
ip0(η1t+x+y+η2z) + e−ip0(η1t+x+y+η2z).

Substitute eq.(4.3) into eq.(2.1), we obtain exact breather solution to eq.(4.1) as

(4.4) V1(x, y, z, t) =
2
(
2p0
√
q2 sin(k) + ip0q2e

ip0(η1t+x+y+η2z) + (−i)p0e−ip0(η1t+x+y+η2z)
)

−2√q2 cos(k) + q2eip0(η1t+x+y+η2z) + e−ip0(η1t+x+y+η2z)
,

where k = p0 (t (−2a− 2b− cη2 − cη4 − η1 − 2µ− 32αp40 + 8βp20) + x+ y + η4z) .

4.2. The Two-Waves Solution. To obtain the two-waves solution, we use the test function
given in eq.(2.6). Substituting eq.(2.6) into eq.(4.2) and performing the necessary manipula-
tions, we obtain a polynomial in powers of exponential with trigonometric and exponential
with hyperbolic functions. Collecting the coefficients of the same powers of these functions and
equating each to zero, yields an algebraic system of equations. Solving this system of equation,
we obtain the values of the parameter that are involved.
Case One
When
δ2 = − δ24

4δ1
, δ3 = 0, η5 = −2a− 32α− 2b− 8β − cη2 − cη6 − η1 − 2µ,

we obtain

(4.5) f = δ4 sinh(k)−
δ24e
−η1t−x−y−η2z

4δ1
+ δ1e

η1t+x+y+η2z.

Substitute eq.(4.541) into eq.(2.1), we obtain exact two-waves solution to eq.(4.1) as

(4.6) V2(x, y, z, t) =
2
(
δ4 cosh(k) +

δ24e
−η1t−x−y−η2z

4δ1
+ δ1e

η1t+x+y+η2z
)

δ4 sinh(k)− δ24e
−η1t−x−y−η2z

4δ1
+ δ1eη1t+x+y+η2z

,

where k = t (−2a− 32α− 2b− 8β − cη2 − cη6 − η1 − 2µ) + x+ y + η6z.

Case Two
When

δ2 =
δ23(10α−3β)
4δ1(10α+3β)

, δ4 = 0; η1 = −a+ 4α− b+ 2β − cη2 − µ, η3 = −a+ 4α− b− 2β − cη4 − µ,
we have

f =
δ23(10α−3β) exp(−t(−a+4α−b+2β−cη2−µ)−x−y−η2z)

4δ1(10α+3β)
+

(4.7) δ1 exp (t (−a+ 4α− b+ 2β − cη2 − µ) + x+ y + η2z) + δ3 sin(k).

Substitute eq.(4.7) into eq.(2.1), we obtain another exact two-waves solution to eq.(4.1) as
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V3(x, y, z, t) =
(4.8)
2
(
− δ23(10α−3β) exp(−t(−a+4α−b+2β−cη2−µ)−x−y−η2z)

4δ1(10α+3β)
+ δ1 exp (t (−a+ 4α− b+ 2β − cη2 − µ) + x+ y + η2z) + δ3 cos(k)

)
δ23(10α−3β) exp(−t(−a+4α−b+2β−cη2−µ)−x−y−η2z)

4δ1(10α+3β)
+ δ1 exp (t (−a+ 4α− b+ 2β − cη2 − µ) + x+ y + η2z) + δ3 sin(k)

,

where k = t (−a+ 4α− b− 2β − cη4 − µ) + x+ y + η4z.

4.3. The lump-periodic solution. To obtain the lump-periodic solution, we use the
test function eq.(2.11). Substituting eq.(2.11) into eq.(4.2) and performing the necessary
manipulations, we obtain a polynomial in powers of hyperbolic with trigonometric functions.
Collecting the coefficients of the same powers of these and equating each to zero, yields an
algebraic system of equations. Solving this system of equation, we obtain the values of the
parameter that are involved.
Case One When
q1 = −q3, q2 = 0, η5 = −2a− 32α− 2b− 8β − cη2 − cη6 − η1 − 2µ,

we obtain

(4.9) f = q3 cosh(k)− q3 cosh (η1t+ x+ y + η2z) .

Substitute eq.(4.9) into eq.(2.1), we obtain exact lump-periodic solution to eq.(4.1) as

(4.10) V4(x, y, z, t) =
2 (q3 sinh(k)− q3 sinh (η1t+ x+ y + η2z))

q3 cosh(k)− q3 cosh (η1t+ x+ y + η2z)
,

where k = t (−2a− 32α− 2b− 8β − cη2 − cη6 − η1 − 2µ) + x+ y + η6z.

4.4. The new interaction solution. For the new interaction solution, we use the test
function given in eq.(2.14). Substituting eq.(2.14) into eq.(4.2) and performing the necessary
manipulations, we obtain a polynomial in powers of hyperbolic with trigonometric functions.
Collecting the coefficients of the same powers of thses functions and equating each to zero,
yields an algebraic system of equations. Solving this system of equation, we obtain the values
of the parameter that are involved.
Case One
when

p1 =
√
−p20, q1 = 2

√
q2
√
q3, q4 = 0; η3 = −2a − 2b − cη2 − cη4 − η1 − 2µ − 32αp40 + 8βp20, we

obtain

(4.11) f = 2
√
q2
√
q3 sin(k) + q2e

√
−p20(η1t+x+y+η2z) + q3e

−
√
−p20(η1t+x+y+η2z).

Substitute eq.(4.11) into eq.(2.15), we obtain exact new interaction solution to eq.(4.1) as
(4.12)

V5(x, y, z, t) =
2
(
2p0
√
q2
√
q3 cos(k) +

√
−p20q2e

√
−p20(η1t+x+y+η2z) −

√
−p20q3e−

√
−p20(η1t+x+y+η2z)

)
2
√
q2
√
q3 sin(k) + q2e

√
−p20(η1t+x+y+η2z) + q3e

−
√
−p20(η1t+x+y+η2z)

,

where k = p0 (t (−2a− 2b− cη2 − cη4 − η1 − 2µ− 32αp40 + 8βp20) + x+ y + η4z) .

Case Two
when
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p1 = p2, q1 = 0, q4 =
2
√
q2
√
q3
√
a+b+cη6+η5+µ+16αp42+4βp22√

−a−b−cη6−η5−µ−16αp42−4βp22
, η2 =

−2a−2b−cη6−η1−η5−2µ−32αp42−8βp22
c

,

we obtain

(4.13) f = q2e
p2( kzc +η1t+x+y) + q3e

−p2( kzc +η1t+x+y) +
2
√
k1√q2

√
q3 sinh (p2 (η5t+ x+ y + η6z))√

−k1
.

Substitute eq.(4.13) into eq.(2.1), we obtain another exact new interaction solution to eq.(4.1)
as
(4.14)

V6(x, y, z, t) =
2
(
p2q2e

p2( kzc +η1t+x+y) − p2q3e−p2(
kz
c
+η1t+x+y) +

2
√

k1p2
√
q2
√
q3 cosh(p2(η5t+x+y+η6z))√

−k1

)
q2e

p2( kzc +η1t+x+y) + q3e
−p2( kzc +η1t+x+y) +

2
√

k1√q2
√
q3 sinh(p2(η5t+x+y+η6z))√

−k1

.

where k = −2a−2b−cη6−η1−η5−2µ−32αp42−8βp22, k1 = a+b+cη6+η5+µ+16αp42+4βp22.

5. Graphical Representation

In this section, we shall present the graphical representation for some of the obtained results
by choosing suitable values for the parameters that are involved.

(a) 3D Plot
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(b) Contour Plot
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(c) 2D Plot

Figure 1. 3D, contour and 2D of V1(x, y, z, t) plot given by eq. (2.5)

(a) 3D Plot
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(c) 2D Plot

Figure 2. 3D, contour and 2D of V3(x, y, z, t) plot given by eq. (2.10)
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(a) 3D Plot
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Figure 3. 3D, contour and 2D of Re[V3(x, y, z, t)] plot given by eq. (2.10)
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Figure 4. 3D, contour and 2D of V3(x, y, z, t) plot given by eq. (3.8)
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Figure 5. 3D, contour and 2D of V3(x, y, z, t) plot given by eq. (4.8)
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(a) 3D Plot
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Figure 6. 3D, contour and 2D of V3(x, y, z, t) plot given by eq. (4.8)

In figure 1, we depict surface profile of the breather solution V1(x, y, z, t) given by eq.(2.5)
in 3D, contour, and 2D by taking the following parameter values p0 = q2 = −1, a = b = c =

1;µ = α = β = γ = η1 = η2 = η4 = y = z = 1.

In figure 2, we depict absolute plot of surface profile of the two-waves solution V3(x, y, z, t) given
by eq.(2.10) in 3D, contour, and 2D by taking the following parameter values δ1 = δ2 = δ3 =

a = b = c = µ = α = β = γ = η1 = η2 = η4 = y = z = 1.

In figure 3, we depict real plot of surface profile of the two-waves solution V3(x, y, z, t) given
by eq.(2.10) in 3D, contour, and 2D by taking the following parameter values δ1 = 0.8, δ3 =

0.31, η2 = 1.2, η4 = −0.87, a = 1.46, b = −0.13, µ = −1.39, c = −0.8, γ = 0.87, α =

−0.54, β = −0.39, z = −0.76, y = 1.

In figure 4, we depict absolute plot of surface profile of the two-waves solution V3(x, y, z, t) given
by eq.(3.8) in 3D, contour, and 2D by taking the following parameter values δ1 = δ3 = 1; a =

b = c = 1;µ = α = β = γ = η1 = η2 = η4 = y = z = 1.

In figure 5, we depict absolute plot of surface profile of the two-waves solution V3(x, y, z, t) given
by eq.(4.8) in 3D, contour, and 2D by taking the following parameter values δ1 = δ3 = 1; a =

b = c = 1;µ = α = β = γ = η1 = η2 = η4 = y = z = 1.

In figure 6, we depict real plot of surface profile of the two-waves solution V3(x, y, z, t) given
by eq.(4.8) in 3D, contour, and 2D by taking the following parameter values δ1 = 0.8, p0 =

1.3, p2 = 1.3, q2 = 0.56, q3 = 0.56, δ3 = 0.8, δ4 = 0.31, η1 = 1.2, η2 = 1.2, η4 = −0.87, η5 =
−0.87, η6 = 1.2, a = 1.46, b = −0.13, µ = −1.39, c = −0.8, γ = 0.87, α = −0.54, β =

−0.39, z = −0.76, y = 1.

6. Conclusion

In this study, the (3+1)-dimensional combined pKP-BKP equation and its special cases were
analyzed using the Hirota bilinear method alongside symbolic computation techniques. A va-
riety of exact solutions, including breather waves, two-wave interactions, lump-kink structures,
lump-periodic solutions, and other novel interaction forms were successfully derived. All ob-
tained solutions were rigorously verified by substituting them back into the original equation
with the aid of the Mathematica 12 software package. To further illustrate their physical rele-
vance, the solutions’ characteristics were graphically presented for selected parameter values.
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The results of this work provide valuable insights into the behavior of nonlinear wave interac-
tions in multi-dimensional settings. They have potential application plications in advancing our
understanding of nonlinear fluid dynamics, plasma waves, and wave propagation in nonlinear
optical fibers. Moreover, these findings contribute to the modeling and analysis of complex
phenomena in computational physics, applied mathematics, and engineering disciplines where
multidimensional nonlinear wave processes play a significant role, such as oceanography, atmo-
spheric dynamics, and energy transport in advanced material systems.
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