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ON THE NEW ROBUST LYAPUNOV UNIFORM STABILITY APPROACH
FOR NONLINEAR IMPULSIVE CAPUTO FRACTIONAL DIFFERENTIAL

EQUATIONS WITH NONLOCAL CONDITIONS

JACKSON EFIONG ANTE1,∗, SAMUEL OKON ESSANG2, AUGUSTINE OTOBI3,
SUNDAY EMMANUEL FADUGBA4, CHRISTIAN SOLOMON AKPAN5, STEPHEN IKENNA OKEKE6,

NKO SAMUEL BASSEY7, RUNYI EMMANUEL FRANCIS8, EDE MOSES AIGBEREMHON9,
AND BLESSED YAHWEH10

Abstract. This study investigates the uniform stability of the trivial solution for nonlin-
ear impulsive Caputo fractional differential equations (ICFrDEs), leveraging on the powerful
framework of the vector Lyapunov functions. By employing a novel class of piecewise con-
tinuous Lyapunov functions - an extension of traditional Lyapunov functions, and integrating
comparison results, we derive comprehensive sufficient conditions for the uniform stability of
the trivial solution of the system. To illustrate the applicability and advancements of these
findings, a detailed example is provided, showcasing improvements over existing results and
highlighting the broader potential of this approach.

1. Introduction

For the past thirty years, the theory of fractional differential equations (FrDEs) which is seen
as an extension or the generalization of the traditional concept of differential equations, have
been used to model various real life problems and phenomena (see [1, 7, 8]).
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The earliest study of the concept began about the 19th century during a mathematical dis-
course that transpired between Leibnitz and L’hopital when the former introduced the notation
for derivative to be dn/dxn. This notation, however generated lots of questions among math-
ematicians - the question of whether the validity of the order n of the derivative will hold
if it is extended to non-integer. In any case, as a direct question to Leibnitz, L’hopital in
his letter asked: "what will be the result if n = 1/2?" In his response, Leibnitz averred, "it
could be an apparent paradox from which one day useful consequences would be drawn." Since
then, research interest in the study of fractional order derivatives has sparked of. With this
development, it has been observed that the behavior of several systems, including phenomena
with memory and hereditary characteristics can be modelled by fractional dynamical systems
(see [3, 4, 10]). As an interesting developing area of research in calculus during the last couple
of decades, fractional calculus offers an enormous robust characteristics with strong relevance
in contemporary applications. For a more exhaustive discourse on the subject, we would refer
interested readers to monographs [19,32,33].

Again, in the qualitative theory of FrDEs, one of the properties of research interest is the
stability of solutions. As argued in [5, 11, 12], stability property enables us to analyse the
behavior of solutions starting at varied points. Fundamental results on the stability properties
of solutions of FrDEs using the scalar Lyapunov function were examined in [11,15,24,33], and
sufficient conditions for the stability as well as the uniform stability properties of FrDEs using
the vector Lyapunov function were examined in [6–9].

Moreso, in the analysis of the stability properties of solutions of fractional order systems, one
of the viable tool that is often employed is the Lyapunov’s second method, also called the Lya-
punov’s direct method. This method has been argued among researchers to be more versatile in
examining the stability properties of solutions compared to other approaches like the monotone
iteration method, Laplace Adomian decomposition method, Laplace transform method, the
Razumikhin technique, the use of matrix inequality, variational homotopy method, modified
predictor-corrector method, Elzaki transform method, etc. This fact is infact premised on the
ideal that the method allows us to examine the stability of solutions of differential systems
without first solving the given systems. The approach involves seeking an appropriately con-
tinuous Lyapunov functions that is positive definite whose time derivative along the trajectory
curve or solution path is negative semidefinite.

Furthermore, rapidly evolving alongside the theory of FrDEs is the mathematical theory of
impulsive differential equations (IDEs) which are also considered as very relevant models for
describing the true state of several real life processes and phenomena. The theory of IDEs is
much more robust and veritable in the modelling of real life situations in engineering, physics,
economics, computer science, finance, etc., compared to the corresponding theory of differential
equations [21].

Now, many evolution processes are characterized by the fact that at certain moments of time
they experience an abrupt change of state. These processes of perturbations are so abrupt
that their duration is often times considered to be negligible in comparison with the overall
duration of the process. The efficient applications of impulsive differential systems require the
finding of criteria for stability of their solutions [34]. However, suffice to state here that, the
use of Lyapunov’s second method has a restriction in its application to IDEs, notwithstanding
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its versatility in the analysis of the stability properties of solutions of differential systems.
As observed in [35], the application of classical (continuous) Lyapunov functions significantly
limits the potential of the method, but since the solutions of the systems under assessment
are piecewise continuous, it becomes necessary to use Lyapunov functions which are analogous
with discontinuities of the first kind. Qualitative results on the stability properties of impulsive
differential systems have been examined in [12,21,36]. Also, [7,9] examined the eventual stability
properties of impulsive fractional order systems using the vector Lyapunov functions.

In this paper, the uniform stability of ICFrDEs is examined using the vector Lyapunov
functions which is generalized by a class of piecewise continuous Lyapunov functions. Together
with the comparison results, sufficient conditions for the uniform stability of the system is
established with an illustrated example.

2. Preliminaries, Definitions and Notations

Let Rn be an n-dimensional Euclidean space with norm ‖.‖, and let Ω be a domain in Rn

containing the origin; R+ = [0,∞), R = (−∞,∞), t0 ∈ R+, t > 0.
Let J ⊂ R+ and define the following class of functions PCq[J,Ω] = α : J → Ω, α(t) as piecewise
continuous mapping with order q from the domain J into the range Ω with points of disconti-
nuity tk ∈ J at which α(t+k ) exists.
Fractional calculus being the generalization of the classical calculus to non integer order allows
for the extension of the traditional concepts of derivative and integral to functions with frac-
tional orders. It allows for functions with non integer orders which makes it much more flexible
in describing real world systems. See [2, 20,25].
There are several definitions of fractional derivatives and fractional integrals

General case. Let the number n − 1 < q < n, q > 0 be given, where n is a natural number
and Γ(.) denotes the gamma function.

1 The Riemann-Liouville fractional derivative of order q of x(t) is given by (see [8]

RL
t0
Dq
tx(t) =

1

Γ(n− q)
dn

dtn

∫ t

t0

(t− s)n−q−1x(s)ds, t ≥ t0

2 The Caputo fractional derivative of order q of x(t) is defined by (see [7])

C
t0
Dqx(t) =

1

Γ(n− q)

∫ t

t0

(t− s)n−q−1x(n)(s)ds, t ≥ t0

The Caputo derivatives has many properties that are similar to those of the standard
derivatives, which makes them easier to understand and apply. The initial conditions of
fractional differential equations using the Caputo derivative are also easier to interpret
in physical context, which is another reason why it is often used in applications of
fractional calculus.

3 The Grunwald-Letnikov fractional derivative of order q of x(t) is given by (see [9])

Dq
0x(t) = lim

h→0+

1

hq

[
(t−t0)

h
]∑

r=0

(−1)r(qCr)x(t− rh), t ≥ t0
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and the Grunwald-Letnikov fractional Dini derivative of order q of x(t) is given by
(see [11])

Dq
0x(t) = lim sup

h→0+

1

hq

[
(t−t0)

h
]∑

r=0

(−1)r(qCr)x(t− rh), t ≥ t0

where qCr are the binomial coefficients and [ (t−t0)
h

] denotes the integer part of (t−t0)
h

.

Particular case. (when n=1). In most applications, the order of q is often less than 1, so
that q ∈ (0, 1). For simplicity of notation, we will use CDq instead of Ct0D

q and the Caputo
fractional derivative of order q of the function x(t) is

(1) CDqx =
1

Γ(1− q)

∫ t

t0

(t− s)−qx′ds, t ≥ t0

3. Impulses in Fractional Order Systems

Consider the initial value problem (IVP) for the system of fractional differential equations
(FrDE) with a Caputo derivative for 0 < q < 1,

(2) CDqx = f(t, x), t ≥ t0, x(t0) = x0,

where x ∈ RN , f ∈ C[R+ × RN ,RN ], f(t, 0) ≡ 0 and (t0, x0) ∈ R+ × RN .
Some sufficient conditions for the existence of the global solutions to (4) are considered in
[30, 38, 39]. The IVP for FrDE (4) is equivalent to the following Volterra integral equation
(See [12]),

(3) x(t) = x0 +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s))ds, t ≥ t0

Consider the initial value problem for the system of impulsive fractional differential equations
(IFrDE) with a Caputo derivative for 0 < q < 1,

(4)

CDqx = f(t, x), t ≥ t0, t 6= tk, k = 1, 2, ...

∆x = Ik(x(tk)), k ∈ N, t = tk

x(t0) = x0,

where x, x0 ∈ RN , f : R+ × RN → RN , and t0 ∈ R+, Ik : RN → RN , k = 1, 2, ...

under the following assumptions: (A0)

(i) 0 < t1 < t2 < ... < tk < ..., and tk →∞ as k →∞;

(ii) f : R+ × RN → RN , is continuous in (tk−1, tk] and for each x ∈ RN , k = 1, 2, ...,

lim
(t,y)→(t+k ,x)

f(t, y) = f(t+k , x) exists;

(iii) Ik : RN → RN

In this paper, we assume that f(t, 0) ≡ 0, Ik(0) = 0 for all k, so that we have the trivial
solution for (4), and the points tk, k = 1, 2, ... are fixed such that t1 < t2 < ... and lim

k→∞
tk =∞.

The system (4) with initial condition x(t0) = x0 is assumed to have a solution x(t; t0, x0) ∈
PCq([t0,∞),RN).

https://doi.org/10.28919/ejma.2025.5.18
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Remark 3.1. The second equation in (4) is called the impulsive condition, and the function
Ik(x(tk)) gives the amount of jump of the solution at the point tk.

The function V is continuous in (tk−1, tk]× RN and for each x ∈ RN , k = 1, 2, ...,
lim

(t,y)→(t+k ,x)
V (t, y) = V (t+k , x), V is locally Lipschitzian in x and V (t, 0) ≡ 0.

Now, for any function V (t, x) ∈ PC([t0,∞) × ξ,RN
+ ) we define the Caputo fractional Dini

derivative as:
(5)

cDq
+V (t, x) = lim sup

h→0+

1

hq
{V (t, x)− V (t0, x0)−

[
t−t0
h

]∑
r=1

(−1)r+1(qCr)[V (t− rh, x− hqf(t, x))− V (t0, x0)]}

t ≥ t0 where t ∈ [t0,∞), x, x0 ∈ ξ, ξ ⊂ RN and there exists h > 0 such that t− rh ∈ [t0, T )

Definition 3.1. A function g ∈ PC[Rn,Rn] is said to be quasi-monotone non-decreasing in x,
if x ≤ y and xi = yi for 1 ≤ i ≤ n implies gi(x) ≤ gi(y),∀i.

Definition 3.2. The zero solution of (4) is said to be:
(S1) stable if for every ε > 0 and t0 ∈ R+ there exist δ = δ(ε, t0) > 0, continuous in t0 such
that for any x0 ∈ RN , ‖x0‖ ≤ δ implies ‖x(t; t0, x0)‖ < ε for t ≥ t0.
(S2) uniformly stable if for every ε > 0 and t0 ∈ R+ there exist δ = δ(ε) > 0, continuous in t0
such that for any x0 ∈ RN , ‖x0‖ ≤ δ implies ‖x(t; t0, x0)‖ < ε for t ≥ t0.

Definition 3.3. A function a(r) is said to belong to the class K if a ∈ PC([0, ψ),R+], a(0) = 0,
and a(r) is strictly monotone increasing in r.

In this paper, we define the following sets:

S̄ψ = {x ∈ RN : ‖x‖ ≤ ψ}

Sψ = {x ∈ RN : ‖x‖ < ψ}

It suffices to say that the inequalities between vectors are understood to be component-wise
inequalities.

We will use the comparison results for the impulsive Caputo fractional differential equa-
tion of the type

(6)

c
t0
Dqu = g(t, u), t ≥ t0, t 6= tk, k = 1, 2, ...

∆u = ψk(u(tk)), k ∈ N, t = tk

u(t+0 ) = u0,

existing for t ≥ t0, where u ∈ Rn,R+ = [t0,∞), g : R+ × Rn → Rn, g(t, 0) ≡ 0,
where g is the continuous mapping of R+ × Rn into Rn. The function g ∈ PC[R+ × Rn,Rn] is
such that for any initial data (t0, u0) ∈ R+×Rn, the system (6) with initial condition u(t0) = u0

is assumed to have a solution u(t; t0, u0) ∈ PCq([t0,∞),Rn).

Lemma 3.1. Assume m ∈ PC([t0, T ]× S̄ψ,RN) and suppose there exists t∗ ∈ (t0, T ] such that
for α1 < α2, m(t∗, α1) = m(t∗, α2) and m(t, α1) < m(t, α2) for t0 ≤ t < t∗. Then if the Caputo
fractional Dini derivative of m exists at t∗, then the inequality CDq

+m(t∗, α1)−CDq
+m(t∗, α2) > 0

holds.

https://doi.org/10.28919/ejma.2025.5.18
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Proof. Let V (t, x) = m(t, α1)−m(t, α2).
Applying (5), we have

CDq
+(m(t∗, α1)−m(t∗, α2)) = lim sup

h→0+

1

hq
{[m(t∗, α1)−m(t∗, α2)]− [m(t0, α1)−m(t0, α2)]

−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[m(t∗ − rh, α1)−m(t∗ − rh, α2)]

−[m(t0, α1)−m(t0, α2)]}

When m(t∗, α1) = m(t∗, α2), we have

CDq
+(m(t∗, α1)−m(t∗, α2)) = lim sup

h→0+

1

hq
{−[m(t0, α1)−m(t0, α2)]−

[
t−t0
h

]∑
r=1

(−1)r+1qCr

[m(t∗ − rh, α1)−m(t∗ − rh, α2)]− [m(t0, α1)−m(t0, α2)]}

= − lim sup
h→0+

1

hq
{[m(t0, α1)−m(t0, α2)]

+ lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=1

(−1)rqCr[m(t∗ − rh, α1)−m(t∗ − rh, α2)]

− lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=1

(−1)rqCr[m(t0, α1)−m(t0, α2)]

= − lim sup
h→0+

1

hq
{[m(t0, α1)−m(t0, α2)]

− lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=1

(−1)rqCr[m(t0, α1)−m(t0, α2)]

= − lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)rqCr[m(t0, α1)−m(t0, α2)]

Applying equation 3.8 in [11], we have

cDq
+(m(t∗, α1)−m(t∗, α2)) = −(t− t0)−q

Γ(1− q)
[m(t0, α1)−m(t0, α2)]

By the lemma, we have that

m(t, α1)−m(t, α2) < 0, for t0 ≤ t < t∗

And so it follows that
cDq

+(m(t∗, α1)−m(t∗, α2)) > 0

�

Remark 3.2. Lemma 3.2 extends Lemma 1 in [11], where the vectors m(t, α1) and m(t, α2)

are compared component-wise.

https://doi.org/10.28919/ejma.2025.5.18
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4. Fractional Differential Inequalities and Comparison results for
Impulsive vector Fractional Differential Equations

In this section, we assume that 0 < q < 1.

Theorem 4.1. Assume that

(i) g ∈ PC[R+×Rn,Rn] and is continuous in (tk−1, tk], k = 1, 2, ... and g(t, u) is quasimonotone
nondecreasing in u for each u ∈ Rn and lim

(t,y)→(t+k ,u)
g(t, u) = g(t+k , u) exists;

(ii) V ∈ PC[R+ × RN ,RN
+ ] be locally Lipschitzian in x such that

CDq
+V (t, x) ≤ g(t, V (t, x)), t 6= tk, (t, x) ∈ R+ × RN

and
V (t, x+ Ik(x(tk))) ≤ ρk(V (t, x)), t = tk, x ∈ Sψ

and the function ρk : RN
+ → RN

+ is nondecreasing for k = 1, 2, ...

(iii) r(t) = r(t; t0, u0) ∈ PCq([t0, T ],Rn) is the maximal solution of the the IVP for the IFrDE
(6).
Then,

(7) V (t, x(t)) ≤ r(t), t ≥ t0

where x(t) = x(t; t0, x0) ∈ PCq([t0, T ],RN) is any solution of (4) existing on [t0,∞), provided
that

(8) V (t+0 , x0) ≤ u0.

Proof. Let η ∈ S̄ψ =: {η ∈ Rn : ‖η‖ ≤ ψ} be a small enough arbitrary vector and consider the
initial value problem for the following system of fractional differential equations.

(9)
cDqu = g(t, u) + η,∆u = ψk(u(tk)), t = tk, k = 1, 2, ...

u(t+0 ) = u0 + η

for t ∈ [t0,∞).
The function uη(t, α) is a solution of (9), where α > 0, if and only if it satisfies the Volterra
Integral equation

(10) uη(t, α) = u0 + η +
1

Γ(q)

∫ t

t0

(t− s)q−1(g(s, uη(s, α)) + η)ds, t ∈ [t0,∞)

Let the function m(t, α) ∈ PC([t0, T ]× S̄ψ,RN) be defined as m(t, α) = V (t, x∗(t)).
We now prove that

(11) m(t, α) < uη(t, α), for t ∈ [t0,∞)

Observe that the inequality (11) holds for t = t0 i.e

m(t0, α) = V (t0, x0) ≤ u0 < uη(t0, α)

Assume that the inequality (11) is not true, then there exist a point t1 > t0 such that

m(t1, α) = uη(t1, α) and m(t, α) < uη(t, α) for t ∈ [t0, t1)

https://doi.org/10.28919/ejma.2025.5.18
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It follows from Lemma (3.1) that

CDq
+m(t1, α)−C Dq

+uη(t1, α) > 0

So that
CDq

+(V (t1, x(t1))) >C Dq
+(uη(t1, α))

and using (9) we arrive at

CDq
+(V (t1, x(t1))) > g(t1, uη(t1, α) + η) > g(t1, u(t1, α))

Therefore,

(12) CDq
+(m(t1, α)) > g(t1, u(t1, α))

For t ∈ [t0, T ], we maintain that x∗(t) satisfies (4) and the equality,

(13) lim sup
h→0+

1

hq
[x∗(t)− x0 − S(x∗(t), h)] = f(t, x∗(t))

holds, where x∗(t) is any other solution of (4).

(14) S(x∗(t), h) =

[
t−t0
h

]∑
r=1

(−1)r+1(qCr)[x
∗(t− rh)− x0)]

is the Grunwald Letnikov fractional derivative and [ t−t0
h

] is the integer part of t−t0
h

.

Multiply (13) through by hq we have,

lim sup
h→0+

[x∗(t)− x0 − S(x∗(t), h)] = hqf(t, x∗(t))

x∗(t)− x0 − lim sup
h→0+

[S(x∗(t), h)] = hqf(t, x∗(t))

x∗(t)− x0 − [S(x∗(t), h) + ρ(hq)] = hqf(t, x∗(t))

(15) x∗(t)− hqf(t, x∗(t)) = [S(x∗(t), h) + x0 + ρ(hq)]

For t ∈ [t0, T ], we have

m(t, α)−m(t0, α)−
[
t−t0
h

]∑
r=1

(−1)r+1(qCr)[m(t− rh, α)−m(t0, α)]

= V (t, x∗(t))− V (t0, x0)−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

= V (t, x∗(t))− V (t0, x0)−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

+

[
t−t0
h

]∑
r=1

(−1)r+1(qCr){[V (t− rh, S(x∗(t), h) + x0 + ρ(hq)− V (t0, x0)]

−[V (t− rh, x∗(t− rh)− V (t0), x0)]}(16)

https://doi.org/10.28919/ejma.2025.5.18
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Since V (t, x) is locally Lipschtzian in the second variable, we have

≤ L|(−1)r+1|‖
[
t−t0
h

]∑
r=1

(qCr)[S(x∗(t), h) + x0 + ρ(hq)− x∗(t− rh)]||

where L > 0 is the Lipschitz constant.

(17) ≤ L‖
[
t−t0
h

]∑
r=1

qCr[S(x∗(t), h) + ρ(hq)− (x∗(t− rh)− x0)]||

Using equations (14), equation (17) becomes,

≤ L‖
[
t−t0
h

]∑
r=1

qCr(

[
t−t0
h

]∑
r=1

(−1)r+1qCr[x
∗(t− rh)− x0)] + ρ(hq)− (x∗(t− rh)− x0)]||

≤ L‖
[
t−t0
h

]∑
r=1

qCr(−1)r+1(

[
t−t0
h

]∑
r=1

qCr[x
∗(t− rh)− x0)] +

[
t−t0
h

]∑
r=1

qCrρ(hq)

−
[
t−t0
h

]∑
r=1

qCr(x
∗(t− rh)− x0)]||

(18) ≤ L(−1)r+1‖
[
t−t0
h

]∑
r=1

qCr(x
∗(t− rh)− x0)[

[
t−t0
h

]∑
r=1

qCr − 1] +

[
t−t0
h

]∑
r=1

qCrρ(hq)‖

Substituting equation (4.12) into (4.10) yields,

= V (t, x∗(t))− V (t0, x0)−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

+L‖
[
t−t0
h

]∑
r=1

(−1)r+1qCr(x
∗(t− rh)− x0)[

[
t−t0
h

]∑
r=1

(−1)r+1qCr − 1] +

[
t−t0
h

]∑
r=1

(−1)r+1qCrρ(hq)‖

= V (t, x∗(t))− V (t0, x0)−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]

+L‖
[
t−t0
h

]∑
r=1

(−1)r+1qCr(x
∗(t− rh)− x0)[−

[
t−t0
h

]∑
r=1

(−1)rqCr − 1] +

[
t−t0
h

]∑
r=1

(−1)r+1qCrρ(hq)‖

Dividing through by hq > 0 and taking the limsup as h→ 0+ we have,

CDq
+m(t, α) = lim sup

h→0+

1

hq
[V (t, x∗(t))− V (t0, x0)

−
[
t−t0
h

]∑
r=1

(−1)r+1qCr[V (t− rh, x∗(t)− hqf(t, x∗(t))− V (t0, x0)]]

+ lim sup
h→0+

1

hq
L‖

[
t−t0
h

]∑
r=1

(−1)r+1qCr(x
∗(t− rh)− x0)[−

[
t−t0
h

]∑
r=1

(−1)rqCr − 1]
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+

[
t−t0
h

]∑
r=1

(−1)r+1qCrρ(hq)‖

Recall

lim
h→0+

[
t−t0
h

]∑
r=1

(−1)rqCr = −1 and lim sup
h→0+

1

hq
ρ(hq) = 0

from equations (3.6) and (3.7) in [11] we have,

CDq
+m(t, α) =C Dq

+V (t, x∗(t)) + L‖
[
t−t0
h

]∑
r=1

(x∗(t− rh)− x0)[−(−1)− 1] + 0‖

CDq
+m(t, α) =C Dq

+V (t, x∗(t)) + 0

Using condition (ii) of Theorem 4.1 we have

(19) CDq
+m(t, α) ≤ g(t, V (t, x∗(t))) = g(t,m(t, α))

Also,

(20) m(t+0 , α) ≤ u0 and m(t+k , α) = V (t+k , x(tk) + Ik(x(tk)) ≤ ρk(m(tk))

Now, equation (19) with t = t1 contradicts (12), hence (11) holds.
�

For t ∈ [t0, T ], we now show that whenever η1 < η2, then

(21) uη1(t, α) < uη2(t, α)

It is obvious that (21) holds for t = t0. Assume the inequality (21) is not true. Then there
exist a point t1 > t0 such that uη1(t1, α) = uη2(t1, α) and uη1(t, α) < uη2(t, α) for t ∈ [t0, t1).
By lemma (3.1), we have that

CDq
+(uη1(t1, α)− uη2(t1, α)) > 0

However,

CDq
+(uη1(t1, α)− uη2(t1, α)) = CDq

+uη1(t1, α)−C Dq
+uη2(t1, α)

= g(t1, u(t1, α) + η1))− [g(t1, u(t1, α) + η2))]

= η1 − η2 < 0

which is a contradiction and so (4.15) is true. Thus, equations (4.5) and (4.15) guarantee that
the family of solutions {uη(t, α)}, t ∈ [t0, T ] of (4.3) is uniformly bounded, i.e. there exists
P > 0 with |uη(t, α)| ≤ P , with bound P on [t0, T ].
We now show that the family {uη(t, α)} is equicontinuous on [t0, T ]. Assume K = sup{g(t, x) :

(t, x) ∈ [t0, T ]× [−P, P ]}. Also, fix a decreasing sequence {ηi}∞i=1(t), such that lim
i→∞

ηi = 0 and
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consider a sequence of functions uηi(t, α). Again let t1, t2 ∈ [t0, T ] with t1 < t2, then we have
the following estimate

‖uηi(t2, α)− uηi(t1, α)‖ = ‖u0 + ηi +
1

Γ(q)

∫ t2

t0

(t2 − s)q−1(g(s, uηi(s, α)) + ηi)

− (u0 + ηi +
1

Γ(q)

∫ t1

t0

(t1 − s)q−1(g(s, uηi(s, α)) + ηi))‖

=
1

Γ(q)
‖
∫ t2

t0

(t2 − s)q−1(g(s, uηi(s, α)))ds

−
∫ t1

t0

(t1 − s)q−1(g(s, uηi(s, α)))ds‖

≤ k

Γ(q)

∣∣∣∣∫ t2

t0

(t2 − s)q−1 −
∫ t1

t0

(t1 − s)q−1

∣∣∣∣ ds
=

k

Γ(q)

∣∣∣∣−(

∫ t1

t0

(t1 − s)q−1 −
∫ t2

t0

(t2 − s)q−1)

∣∣∣∣ ds
=

k

Γ(q)

∣∣∣∣∫ t1

t0

(t1 − s)q−1 − (

∫ t1

t0

(t2 − s)q−1 +

∫ t2

t1

(t2 − s)q−1)

∣∣∣∣ ds
=

k

Γ(q)

∣∣∣∣∫ t1

t0

(t1 − s)q−1 −
∫ t1

t0

(t2 − s)q−1 −
∫ t2

t1

(t2 − s)q−1

∣∣∣∣ ds
≤ k

Γ(q)

∣∣∣∣∫ t1

t0

(t1 − s)q−1 −
∫ t1

t0

(t2 − s)q−1

∣∣∣∣ ds+

∣∣∣∣∫ t2

t1

(t2 − s)q−1

∣∣∣∣ ds
=

k

Γ(q)

∣∣∣∣(t1 − t0)q

q
+

(t2 − t1)q

q
− (t2 − t0)q

q

∣∣∣∣+ |(t2 − t1)q

q
|

≤ k

Γ(q + 1)
(t1 − t0)q + (t2 − t1)q − (t2 − t0)q + (t2 − t1)q

=
k

Γ(q + 1)
(t1 − t0)q − (t2 − t0)q + 2(t2 − t1)q

≤ 2k

Γ(q + 1)
(t2 − t1)q < ε

provided ‖t2 − t1‖ < δ = ( εΓ(q+1)
2k

)
1
q , proving that the family of solutions {uηi(t;α)} is equi-

continuous. By the Arzela-Ascoli theorem, {uηi(t;α)}has a subsequence {uηij (t;α)} which
converges uniformly to a function r(t) on [t0, T ]. We then show that r(t) is a solution of (10).
Equation (10) becomes

(22) uηij (t, α) = u0ij
+ ηij +

1

Γ(q)

∫ t

t0

(t− s)q−1(gij(s, uij(s, ηij)) + ηij)ds

Taking the limit as ij →∞ in (22), yields

(23) r(t) = u0 +
1

Γ(q)

∫ t

t0

(t− s)q−1(g(s, r(t)))ds

Thus, r(t) is a solution of (6) on [t0, T ]. We claim that r(t) is the maximal solution of (6).
Then from (11), we have that m(t, α) < uη(t, α) ≤ r(t) on [t0, T ].

5. Main Results

In this section, we will obtain sufficient conditions for the uniform stability of the system (4).
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Theorem 5.1 (Uniform Stability). Assume the following

(i) g ∈ PC[R+ ×Rn,Rn] satisfies (A0)(ii) and g(t, u) is quasi-monotone non-decreasing in
u with g(t, 0) ≡ 0.

(ii) V : R+ × Sψ → RN
+ , V ∈ L is locally Lipschitzian in x with V (t, 0) ≡ 0 such that

(24) CDq
+V (t, x) ≤ g(t, V (t, x)), t 6= tk, (t, x) ∈ R+ × Sψ

holds for all (t, x) ∈ R+ × Sψ.
(iii) there exists a ψ0 > 0 such that x0 ∈ Sψ implies that

x+ Ik(x) ∈ Sψ and V (t, x+ Ik(x)) ≤ ψk(V (t, x)), t = tk, x ∈ Sψ

and the function ψk : RN
+ → RN

+ is nondecreasing for k = 1, 2, ...

(iv) b(‖x‖) ≤ V0(t, x) ≤ a(‖x‖), where a, b ∈ K and V0(t, x) =
∑N

i=1 Vi(t, x)

Then the uniform stability of the trivial solution u = 0 of the IFrDE (6) implies
the uniform stability of the trivial solution x = 0 of (4).

Proof. Let 0 < ε < ψ and t0 ∈ R+ be given.
Assume that the solution u = 0 of (6) is uniformly stable. Then given each b(ε) > 0, and
t0 ∈ R+, there exist a positive function δ1 = δ1(ε) > 0 such that whenever

(25) u0 =
n∑
i=1

ui0 < δ, we have
n∑
i=1

ui(t; t0, u0) ≤ b(ε), t ≥ t0

where u(t; t0, u0) is any solution of (6).
let us choose V (t+0 , x0) ≤ u0 and

n∑
i=1

ui0 = a(t0, ‖x0‖)

Since a(t,K) and a ∈ C[R+×R+,R+] we can find a positive function δ = δ(t0, ε) > 0 such that

(26) a(t0, ‖x0‖) < δ1 and ‖x0‖ < δ

hold simultaneously. We claim that if

‖x0‖ ≤ δ, then ‖x(t, t0, x0)‖ ≤ ε, t ≥ t0.

Suppose that this claim is not true. Then there would exists a point t1 > t0 and a solution x(t)

with ‖x0‖ < δ such that

(27) ‖x(t1)‖ = ε and ‖x(t)‖ < ε, for t ∈ [t0, t1).

This implies that x(t) + Ik(x) ∈ Sψ for t ∈ [t0, t1).
From (7) we have that

(28) V0(t, x(t)) ≤ r0(t, t0, u0) for t ∈ [t0, t1).

Combining condition (iv) and (28) we have

(29) b(ε) ≤
n∑
i=1

Vi(t1, x(t1)) ≤
n∑
i=1

ri(t; t0, u0)
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Using equations (25), (27) and (29) we have,

b(ε) ≤
n∑
i=1

Vi(t1, x(t1)) ≤
n∑
i=1

ri(t; t0, u0) < b(ε)

which leads to an absurdity that b(ε) < b(ε).
Hence, the uniform stability of the trivial solution u = 0 of (6) implies the uniform stability of
the trivial solution x = 0 of (4). �

6. Application

Let the points tk, tk < tk+1, limk→∞tk → ∞ be fixed. Consider the vector impulsive Caputo
fractional differential equations

(30)

CDqx1(t) = x1sinx1 +
x2

2cosecx2

x1

− 5x1, t 6= tk

CDqx2(t) = 3x2cosecx2 + 4x2sinx1 −
x2

1secx2

x2

, t 6= tk

∆x1 = sk(x(tk)),∆x2 = nk(x(tk)), t = tk, k = 1, 2, ...

for t ≥ t0, with initial conditions

x1(t+0 ) = x10 and x2(t+0 ) = x20

Consider a vector V = (V1, V2)T , where
V1(t, x1, x2) = x2

1 and V2(t, x1, x2) = x2
2, with x = (x1, x2) ∈ R2, and its associated norm defined

by ‖x‖ =
√
x2

1 + x2
2.

Now

V0(t, x) =
2∑
i=1

Vi(t, x1, x2) = x2
1 + x2

2

and so b(‖x‖) ≤ V0(t, x) ≤ a(‖x‖) with b(r) = r and a(r) = r2, implying that a, b ∈ K. From
(5), we compute the Caputo fractional Dini derivative for V1(t, x1, x2) = x2

1 for t > 0, t 6= tk as
follows:

CDq
+V1(t;x1, x2) = lim sup

h→0+

1

hq
{
V (t, x)− V (t0, x0)

+

[
t−t0
h

]∑
r=1

(−1)r(qCr)[V (t− rh, x− hqf(t, x))− V (t0, x0)]
}

= lim sup
h→0+

1

hq
{
x2

1 − x2
10 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)[(x1 − hqf1(t;x1, x2)2 − x2
10]
}

≤ lim sup
h→0+

1

hq
{
x2

1 − x2
10|+

[
t−t0
h

]∑
r=1

(−1)r(qCr)[x
2
1 − 2x1h

qf1(t;x1, x2)

+h2qf1(t, x1)− x2
10]
}

= lim sup
h→0+

1

hq
{
x2

1 − x2
10 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
1
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−
[
t−t0
h

]∑
r=1

(−1)r(qCr)2x1h
qf1(t;x1, x2)−

[
t−t0
h

]∑
r=1

(−1)r(qCr)h
2qf1(t;x1, x2)

}

= lim sup
h→0+

1

hq
{
x2

1 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
1 − x2

10 −
[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
10

−2x1

[
t−t0
h

]∑
r=1

(−1)r(qCr)h
qf1(t;x1, x2)|

}

= lim sup
h→0+

1

hq
{ [

t−t0
h

]∑
r=0

(−1)r(qCr)x
2
1 −

[
t−t0
h

]∑
r=0

(−1)r(qCr)x
2
10

−2x1

[
t−t0
h

]∑
r=1

(−1)r(qCr)h
qf1(t;x1, x2)

}
Recall that from equations (3.7) and (3.8) in [11], we have

lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)r(qCr) =
x2

1

tqΓ(1− q)
,

and

lim
h→0+

[
t−t0
h

]∑
r=0

(−1)rqCr = −1

Substituting we obtain

CDq
+V1(t;x1, x2) ≤ x2

1

tqΓ(1− q)
− x2

10

tqΓ(1− q)
+ 2x1f1(t;x1, x2)

CDq
+V1(t;x1, x2) ≤ x2

1

tqΓ(1− q)
+ 2x1f1(t;x1, x2)

CDq
+V1(t;x1, x2) ≤ x2

1

tqΓ(1− q)
+ 2x1(x1sinx1 +

x2
2cosecx2

x1

− 5x1)

≤ x2
1

tqΓ(1− q)
+ 2x2

1sinx1 + 2x2
2cosecx2 − 10x2

1

As t→∞, x21
tqΓ(1−q) → 0, so that we have

CDq
+V1(t;x1, x2) ≤ +2x2

1sinx1 + 2x2
2cosecx2 − 10x2

1

≤ x2
1(−10 + 2|sinx1|) + x2

2(2
1

|sinx2|
)

≤ x2
1(−8) + x2

2(2)

≤ −8V1 + 2V2

Therefore,

(31) CDq
+V1(t;x1, x2) ≤ −8V1 + 2V2
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Also, for x0 ∈ Sψ, for t = tk, k = 1, 2, .., we have

V (t, x(t) + sk) = |sk + x(t)| ≤ V (t, x(t))

Similarly, using (5), we compute the Caputo fractional Dini derivative for V2(t, x1, x2) = x2
2 as

follows:
CDq

+V2(t;x1, x2) = lim sup
h→0+

1

hq
{
V (t, x)− V (t0, x0)

+

[
t−t0
h

]∑
r=1

(−1)r(qCr)[V (t− rh, x− hqf(t, x))− V (t0, x0)]
}

= lim sup
h→0+

1

hq
{
x2

2 − x2
20 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)[(x2 − hqf2(t;x1, x2)2 − x2
20]
}

≤ lim sup
h→0+

1

hq
{
x2

2 − x2
20|+

[
t−t0
h

]∑
r=1

(−1)r(qCr)[x
2
2 − 2x2h

qf2(t;x1, x2)

+h2qf2(t, x2)− x2
20]
}

= lim sup
h→0+

1

hq
{
x2

2 − x2
20 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
2 −

[
t−t0
h

]∑
r=1

(−1)r(qCr)2x2h
qf2(t;x1, x2)

−
[
t−t0
h

]∑
r=1

(−1)r(qCr)h
2qf2(t;x1, x2)

}

= lim sup
h→0+

1

hq
{
x2

2 +

[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
2 − x2

20 −
[
t−t0
h

]∑
r=1

(−1)r(qCr)x
2
20

−2x2

[
t−t0
h

]∑
r=1

(−1)r(qCr)h
qf2(t;x1, x2)|

}

= lim sup
h→0+

1

hq
{ [

t−t0
h

]∑
r=0

(−1)r(qCr)x
2
2 −

[
t−t0
h

]∑
r=0

(−1)r(qCr)x
2
20

−2x2

[
t−t0
h

]∑
r=1

(−1)r(qCr)h
qf2(t;x1, x2)

}
CDq

+V2(t;x1, x2) ≤ x2
2

tqΓ(1− q)
− x2

20

tqΓ(1− q)
+ 2x2f2(t;x1, x2)

CDq
+V2(t;x1, x2) ≤ x2

2

tqΓ(1− q)
+ 2x2f2(t;x1, x2)

CDq
+V2(t;x1, x2) ≤ x2

2

tqΓ(1− q)
+ 2x2(−3x2cosecx2 + 4x2sinx1 −

x2
1secx2

x2
)

≤ x2
1

tqΓ(1− q)
− 6x2

2cosecx2 + 4x2
2sinx1 + 2x2

1secx2

≤ x2
2(−6cosecx2 + 4sinx1) + x2

1(2secx2)

≤ x2
2(−6

1

|sinx2|
+ 4|sinx1|) + x2

1(
2

|cosx2|
)

≤ x2
2(−6 + 4) + x2

1(2)

≤ x2
2(−2) + x2

1(2)
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≤ −2V2 + 2V1

Therefore,

(32) CDq
+V1(t;x1, x2) ≤ 2V1 − 2V2

Also, for x0 ∈ Sψ, for t = tk, k = 1, 2, .., we have

V (t, x(t) + nk) = |nk + x(t)| ≤ V (t, x(t))

Combining (32) and (31), we have

(33) CD+V ≤

(
−8 2

2 −2

)(
V1

V2

)
= g(t, V )

Now consider the comparison system

(34) CDqu = g(t, u) = Au

where A =

(
−8 2

2 −2

)
.

The vectorial inequality (33) and all other conditions of Theorem 5.1 are satisfied since the
eigenvalues of A are all negative real parts. Hence, the system (34) is uniformly stable .
Therefore, the trivial solution x0 = 0 of the system of IFrDE (30) is uniformly stable.

7. Conclusion

In this study, we have explored the uniform stability of the trivial solution for nonlinear
ICFrDEs using the framework of vector Lyapunov functions. By introducing a generalized
class of piecewise continuous Lyapunov functions and employing comparison results, we derived
the uniform stability of the trivial solution of the fractional dynamical systems. The provided
example not only validates the theoretical results but also extends and refines existing findings,
demonstrating the utility and versatility of the proposed approach. This work contributes
a significant step forward in the stability analysis of fractional impulsive systems and open
avenues for further research into more complex systems and applications.
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