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ON THE NEW ROBUST LYAPUNOV UNIFORM STABILITY APPROACH
FOR NONLINEAR IMPULSIVE CAPUTO FRACTIONAL DIFFERENTIAL
EQUATIONS WITH NONLOCAL CONDITIONS

JACKSON EFIONG ANTE!*, SAMUEL OKON ESSANG?, AUGUSTINE OTOBI?,
SUNDAY EMMANUEL FADUGBA#, CHRISTIAN SOLOMON AKPAN?®, STEPHEN IKENNA OKEKES,
NKO SAMUEL BASSEY?, RUNYI EMMANUEL FRANCIS®, EDE MOSES AIGBEREMHON?,
AND BLESSED YAHWEH!

ABSTRACT. This study investigates the uniform stability of the trivial solution for nonlin-
ear impulsive Caputo fractional differential equations (ICFrDEs), leveraging on the powerful
framework of the vector Lyapunov functions. By employing a novel class of piecewise con-
tinuous Lyapunov functions - an extension of traditional Lyapunov functions, and integrating
comparison results, we derive comprehensive sufficient conditions for the uniform stability of
the trivial solution of the system. To illustrate the applicability and advancements of these
findings, a detailed example is provided, showcasing improvements over existing results and

highlighting the broader potential of this approach.

1. INTRODUCTION

For the past thirty years, the theory of fractional differential equations (FrDEs) which is seen
as an extension or the generalization of the traditional concept of differential equations, have
been used to model various real life problems and phenomena (see [1,7,8]).
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The earliest study of the concept began about the 19th century during a mathematical dis-
course that transpired between Leibnitz and L’hopital when the former introduced the notation
for derivative to be d"/dx™. This notation, however generated lots of questions among math-
ematicians - the question of whether the validity of the order n of the derivative will hold
if it is extended to non-integer. In any case, as a direct question to Leibnitz, L’hopital in
his letter asked: "what will be the result if n = 1/2?" In his response, Leibnitz averred, "it
could be an apparent paradox from which one day useful consequences would be drawn." Since
then, research interest in the study of fractional order derivatives has sparked of. With this
development, it has been observed that the behavior of several systems, including phenomena
with memory and hereditary characteristics can be modelled by fractional dynamical systems
(see [3,4,10]). As an interesting developing area of research in calculus during the last couple
of decades, fractional calculus offers an enormous robust characteristics with strong relevance
in contemporary applications. For a more exhaustive discourse on the subject, we would refer
interested readers to monographs [19,32,33].

Again, in the qualitative theory of FrDEs, one of the properties of research interest is the
stability of solutions. As argued in [5, 11, 12], stability property enables us to analyse the
behavior of solutions starting at varied points. Fundamental results on the stability properties
of solutions of FrDEs using the scalar Lyapunov function were examined in |11, 15,24, 33], and
sufficient conditions for the stability as well as the uniform stability properties of FrDEs using
the vector Lyapunov function were examined in [6-9)].

Moreso, in the analysis of the stability properties of solutions of fractional order systems, one
of the viable tool that is often employed is the Lyapunov’s second method, also called the Lya-
punov’s direct method. This method has been argued among researchers to be more versatile in
examining the stability properties of solutions compared to other approaches like the monotone
iteration method, Laplace Adomian decomposition method, Laplace transform method, the
Razumikhin technique, the use of matrix inequality, variational homotopy method, modified
predictor-corrector method, Elzaki transform method, etc. This fact is infact premised on the
ideal that the method allows us to examine the stability of solutions of differential systems
without first solving the given systems. The approach involves seeking an appropriately con-
tinuous Lyapunov functions that is positive definite whose time derivative along the trajectory
curve or solution path is negative semidefinite.

Furthermore, rapidly evolving alongside the theory of FrDEs is the mathematical theory of
impulsive differential equations (IDEs) which are also considered as very relevant models for
describing the true state of several real life processes and phenomena. The theory of IDEs is
much more robust and veritable in the modelling of real life situations in engineering, physics,
economics, computer science, finance, etc., compared to the corresponding theory of differential
equations [21].

Now, many evolution processes are characterized by the fact that at certain moments of time
they experience an abrupt change of state. These processes of perturbations are so abrupt
that their duration is often times considered to be negligible in comparison with the overall
duration of the process. The efficient applications of impulsive differential systems require the
finding of criteria for stability of their solutions [31]. However, suffice to state here that, the
use of Lyapunov’s second method has a restriction in its application to IDEs, notwithstanding


https://doi.org/10.28919/ejma.2025.5.18

Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2025.5.18 3

its versatility in the analysis of the stability properties of solutions of differential systems.
As observed in [35], the application of classical (continuous) Lyapunov functions significantly
limits the potential of the method, but since the solutions of the systems under assessment
are piecewise continuous, it becomes necessary to use Lyapunov functions which are analogous
with discontinuities of the first kind. Qualitative results on the stability properties of impulsive
differential systems have been examined in [12,21,36]. Also, [7,9] examined the eventual stability
properties of impulsive fractional order systems using the vector Lyapunov functions.

In this paper, the uniform stability of ICFrDEs is examined using the vector Lyapunov
functions which is generalized by a class of piecewise continuous Lyapunov functions. Together
with the comparison results, sufficient conditions for the uniform stability of the system is
established with an illustrated example.

2. PRELIMINARIES, DEFINITIONS AND NOTATIONS

Let R™ be an n-dimensional Euclidean space with norm ||.||, and let © be a domain in R"
containing the origin; R, = [0,00), R = (—00,0), tp € Ry, > 0.
Let J C Ry and define the following class of functions PCY[J, Q] = a: J — Q, «(t) as piecewise
continuous mapping with order ¢ from the domain J into the range 2 with points of disconti-
nuity ¢ € J at which «(t)) exists.
Fractional calculus being the generalization of the classical calculus to non integer order allows
for the extension of the traditional concepts of derivative and integral to functions with frac-
tional orders. It allows for functions with non integer orders which makes it much more flexible
in describing real world systems. See [2,20,25].
There are several definitions of fractional derivatives and fractional integrals

General case. Let the number n — 1 < ¢ < n,q > 0 be given, where n is a natural number
and I'(.) denotes the gamma function.

1 The Riemann-Liouville fractional derivative of order ¢ of z(t) is given by (see |9]

1 dr S
B0 = gy J, 0= e 2

2 The Caputo fractional derivative of order ¢ of x(t) is defined by (see |7])

1 t
€ Da(t) = / (t— 512 (s)ds, t > fo

L(n—q) Jy,
The Caputo derivatives has many properties that are similar to those of the standard
derivatives, which makes them easier to understand and apply. The initial conditions of
fractional differential equations using the Caputo derivative are also easier to interpret
in physical context, which is another reason why it is often used in applications of
fractional calculus.

3 The Grunwald-Letnikov fractional derivative of order ¢ of z(t) is given by (see [9])

(5

Dia(t) = lim — 3 (=1 (Calt — rh),t > 1

h—0+ h4
r=0
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and the Grunwald-Letnikov fractional Dini derivative of order ¢ of z(t) is given by

(see [11])

) [(t*hto)]
Dix(t) =limsup — »  (=1)"(“C,)z(t — rh),t > to
h—o+ h? =
where ?C,. are the binomial coefficients and [(t_hto)] denotes the integer part of (t_—hto)

Particular case. (when n=1). In most applications, the order of ¢ is often less than 1, so
that ¢ € (0,1). For simplicity of notation, we will use “D? instead of tCODq and the Caputo
fractional derivative of order q of the function x(t) is

1 /t _
_ t—s) %'ds, t >t
F<1_q) to( ) ’

3. IMPULSES IN FRACTIONAL ORDER SYSTEMS

(1) “Dir =

Consider the initial value problem (IVP) for the system of fractional differential equations
(FrDE) with a Caputo derivative for 0 < ¢ < 1,

(2) “Diz = f(t,x),t > to,2(ty) = o,
where v € RY | f € C[R; x RY,RY]|, f(t,0) =0 and (o, 79) € Ry x RV,

Some sufficient conditions for the existence of the global solutions to (4) are considered in

[30,38,39]. The IVP for FrDE (4) is equivalent to the following Volterra integral equation

(See [12]),

(3) x(t) = xo + / (t—s8)7 1 f(s,2(s))ds, t >t

() Ji

Consider the initial value problem for the system of impulsive fractional differential equations
(IFrDE) with a Caputo derivative for 0 < ¢ < 1,

ODix = f(t,x),t > to,t #tp, k=1,2,...
(4) Ax = I (z(ty)), k € N,t =ty
z(to) = o,
where 2,70 € RY, f: Ry x RY - RN andty e Ry, I, : RY - RY k=1,2,...
under the following assumptions: (Ap)

(i) 0<t; <ty <..<tlp<..andty — ooask— o0;

(i) f : Ry x RY — RY is continuous in (f;_1,%;] and for each z € RN k = 1,2, ...,
lim  f(t,y) = f(t],x) exists;
(ty) =t @)
(iii) I, : RN — RN
In this paper, we assume that f(¢,0) = 0, [;(0) = 0 for all k, so that we have the trivial
solution for (4), and the points ¢y, k = 1,2, ... are fixed such that t; < 5 < ... and lim ¢; = co.

k—o00
The system (4) with initial condition z(ty) = z¢ is assumed to have a solution z(t;tg, xo) €

PC4([ty, 0), RY).
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Remark 3.1. The second equation in (4) is called the impulsive condition, and the function

I (z(ty)) gives the amount of jump of the solution at the point ty.

The function V is continuous in (t;_1,%;] x RY and for each z € RV, k =1,2, ...,
lim  V(t,y) = V(¢ ,z),V is locally Lipschitzian in z and V (¢,0) = 0.

(ty) =t x)
Now, for any function V(t,z) € PC([ty,00) x &, RY) we define the Caputo fractional Dini

derivative as:

(5)
=
‘DiV(t,x) = li}fn %up %{V(t, r) — V(to, z0) — Z (=) IC) [V (t —rh, @ — hif(t,x)) — V (to, )]}
—0* r=1

t >ty where t € [tg,00), 2,79 € &, € C RN and there exists h > 0 such that t — rh € [ty, T)

Definition 3.1. A function g € PC[R",R"] is said to be quasi-monotone non-decreasing in x,
if v <y and x; = y; for 1 <i <n implies g;(z) < g;(y), Vi.

Definition 3.2. The zero solution of (4) is said to be:

(S1) stable if for every e > 0 and ty € Ry there exist § = 0(¢e,tg) > 0, continuous in ty such
that for any xo € RY, ||xo|| < § implies ||x(t;to, 0)| < € for t > to.

(S2) uniformly stable if for every e > 0 and ty € Ry there exist 6 = 0(e) > 0, continuous in to
such that for any xo € RN, ||xo|| < & implies ||z(t;to, 20)|| < € for t > to.

Definition 3.3. A function a(r) is said to belong to the class K if a € PC([0,v),R,],a(0) =0,
and a(r) is strictly monotone increasing in r.

In this paper, we define the following sets:
Sy = {z eRY i lz| <9}
Sy = {reRY:|lz| < ¢}

It suffices to say that the inequalities between vectors are understood to be component-wise
inequalities.

We will use the comparison results for the impulsive Caputo fractional differential equa-
tion of the type

0 Diu = g(t,u),t >to,t #ty, k=1,2,...
(6) Au = P (u(ty)), k € N, t =ty
u(ty) = uo,
existing for ¢t > ¢y, where u € R" R, = [tp,0),¢9 : Ry x R = R™ ¢(t,0) = 0,
where ¢ is the continuous mapping of R, x R"™ into R™. The function g € PC[R, x R™ R"] is
such that for any initial data (tg, ug) € Ry xR™, the system (6) with initial condition u(ty) = ug
is assumed to have a solution u(t; ¢y, ug) € PCY([ty, 00), R™).

Lemma 3.1. Assume m € PC([to, T] X Sy, RY) and suppose there exists t* € (to, T such that
for a; < ag, m(t*,aq) = m(t*, az) and m(t,ay) < m(t,aq) fortg <t < t*. Then if the Caputo
fractional Dini derivative of m exists at t*, then the inequality © DLm(t*, ay) = Dim(t*, ag) > 0

holds.
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Proof. Let V(t,z) = m(t,a1) — m(t, az).
Applying (5), we have

CDL(m(t*, a1) — m(t', ap)) = h,ri?jphl {Im(t*, 1) — m(t*, )] — [m(to, 1) — m(to, a2)]

t to]

- Z D qC [m(t* — rh,ay) — m(t* — rh, ay))]

—[m (to,oél)— m(to, 2]}

When m(t*, a;) = m(t*, az), we have

=52
1
CDi(m(t*,CH) —m(t*, ag)) = hmsgp T {=[m(to, 1) — m(tg, as)] — Z (—1)r+1qu
h—0 =

[m(t* —rh,aq) — m(t* —rh,as)] — [m(to, an) — m(to, aa)]}

= —limsup — ! {[m(to, a1) — m(to, a2)]

h—0%t h?
= tO
+ limsup — m(t* —rh, a t" —rh,«
msup - Z ) = mle* = rh,as)

[%}

— limsup L Z (=1)"qC,[m(to, a1) — m(to, az)]

q
h—0t+ —1

= —limsup — L {[m(to, a1) —m(to, a2)]

h—0t ha
= zo
— limsup — m(to, 1) — m(to, a2)]
h—0t ha Z

. 1
— —limsup— > (~1)7qC, mlte, a1) — m(ty, as)]

Applying equation 3.8 in |1 1], we have

(t — to)iq

DLt ) —m(t' ) = —Fa—

[m(to, a1) — m(to, a2)]
By the lemma, we have that
m(t,aq) —m(t,ag) < 0,forty <t <t
And so it follows that
DL (m(t*, 1) —m(t", a2)) >0
O

Remark 3.2. Lemma 3.2 extends Lemma 1 in [11], where the vectors m(t,cq) and m(t, as)

are compared component-wise.
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4. FRACTIONAL DIFFERENTIAL INEQUALITIES AND COMPARISON RESULTS FOR
IMPULSIVE VECTOR FRACTIONAL DIFFERENTIAL EQUATIONS

In this section, we assume that 0 < g < 1.

Theorem 4.1. Assume that

(1) g € PCIRy xR™ R"| and is continuous in (tx_1,tx|, k = 1,2, ... and g(t,u) is quasimonotone

nondecreasing in u for each u € R and  lim  g(t,u) = g(t;,u) exists;
(ty)— () u)

(it) V € PC[Ry x RN, RY] be locally Lipschitzian in x such that
DLV (t,x) < g(t, V(t,2)),t # ty, (t, 1) € Ry x RY
and
V(t,l’ + Ik(x(tk))) < pk(V(t,az)),t =1, € Sw

and the function py, : RY — RY is nondecreasing for k = 1,2, ...
(13i) r(t) = r(t;to,uo) € PCU([to, T],R™) is the mazximal solution of the the IVP for the IFrDE

(6).
Then,

(7) V(t,z(t) < r(t),t > to

where x(t) = z(t;tg, o) € PCU([to, T],RY) is any solution of (4) existing on [ty,o0), provided
that

(8) V(ts, zo) < ug.

Proof. Let n € Sy, =: {n € R" : ||n|| < ¥} be a small enough arbitrary vector and consider the

initial value problem for the following system of fractional differential equations.
°Diu = g(t,u) +n,Au = Yp(u(ty)),t = tr, k = 1,2, ...
u(ty) = uo + 1

(9)

for ¢ € [tg, 00).
The function w,(t,«) is a solution of (9), where o > 0, if and only if it satisfies the Volterra

Integral equation

(10) uy(t, ) = ug +1n+ ﬁ/t (t —8)7H(g(s,uy(s, @) +n)ds, t € [tg, 00)

Let the function m(t, o) € PC([to, T] x Sy, RY) be defined as m(t,«) = V (¢, 2*(t)).
We now prove that

(11) m(t, o) < u,(t,a), for te [ty,o0)
Observe that the inequality (11) holds for ¢ = ¢j i.e
m(ty, ) = V(to, o) < up < uy(to, )
Assume that the inequality (11) is not true, then there exist a point t; > ¢y such that

m(ty, a) = uy(ty, ) and m(t,a) <wu,(t,a) for te [ty 1)
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It follows from Lemma (3.1) that
“Dim(t;,a) =€ Diu,(t,a) >0

So that
DLV (tr, (1)) > DY (uy(tr, @)

and using (9) we arrive at

CDL(V (1, 2(t))) > g(tr, uy(tr, @) +1) > g(t, ulty, )

Therefore,
(12) “DY(m(tr, ) > g(tr, u(ty, @)
For t € [ty, T], we maintain that x*(t) satisfies (4) and the equality,
1
(13) lim sup = [2°(1) — 0 — S(a"(6), )] = (¢, 2°(£)
h—0*t h1

holds, where x*(t) is any other solution of (4).
[5]

(14) S(a™(t),h) = Y (=17 (IC) 2" (¢ — rh) — x0)]

r=1

is the Grunwald Letnikov fractional derivative and [55%] is the integer part of =0

Multiply (13) through by h? we have,

limsup[z*(t) — zo — S(z*(t), h)] = RIf(t,2*(t))

h—0+

" (t) — xo — limsup[S(z*(t), h)] = hIf(t,z*(t))

h—0t

2 (t) = wo — [S(@7(2), h) + p(h?)] = WO f (L, 2"(t))

(15) 2t (t) = hTf (2" (1)) = [S(@" (1), h) + 20 + p(hT)]
For t € [ty, T], we have
2

[
m(t, ) — m(to, ) — Z (1)) [m(t — rh, ) — m(ty, )]

[t to]
=V (t,z"*(t)) — V(to, zo) — Z (=1)"™C [V (t —rh,z*(t) — hf(t, z*(t)) — V(to, 70)]
[5]
= V(t,z*(t)) — V(to, o) — Z (=) C [V (t — rh,z*(t) — hf(t, 2*(t)) — V (to, 70)]

t t
(=]

+ Z D AC){V (t = rh, S(x7(t), h) + 2o + p(h?) — V (to, z0)]

(16) —[V(t —rh,z*(t —rh) — V(to), x0)] }
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Since V/(t,x) is locally Lipschtzian in the second variable, we have
t 1’0]

< L|(=1)"] Z (“Cr) £),h) + o+ p(h?) — 2" (t = rh)]|]

where L > 0 is the Lipschitz constant.

tto

(17) <L Z ‘G S (), h) + p(h?) = (27(t = rh) = o)l

Using equations (14), equation (17) becomes,
[52] )

<L Z G Z D)™HC, 27 (t — rh) — x0)] + p(h?) — (2" (t — rh) — x0)]]]

[52] [50] )
< I Z 1C(=1) (Y9G [ (t = rh) — xo)] + Y “Crp(h?)
r=1 r=1
t m

- Z 90, (x*(t — rh) — 0)]]]

) o [50]
(18) —)" Z WCp(x*(t—rh) — x)[ D 1C, — 1]+ Y 9Cyp(h7)|
r=1 r=1

Substituting equation (4.12) into (4.10) yields,

[Lh0]
=V(t,2*(t) = V(to,m0) — Y (1) THC,[V(t = rh,a*(t) — h9 f(t, 2*(t)) — V (to, 70)]
) [52] [52]
+L| Z )G, (¥ (t — rh) — 20)[ Y (=1)"C, — 1]+ Y (=1)THC,p(h7)|
[450]
=V(t,2*(t)) = V(to,m0) = Y (=1)"TC [V (t = rh,a*(t) — BUf (£, 2*(t)) — V (to, o))
[52] [52] [£52]
+L| Z )G, (2% (t — rh) — zo)[— D> _ (=1)"C, = 1]+ Y (=1)"C,p(h?)]

Dividing through by h? > 0 and taking the limsup as h — 0% we have,

1
“Dim(t,a) = limsup —[V (¢ 2*(t)) — V(to, 7o)

h—07+ ha
0
— Y ()G V (= rh,at () — hUf(E, 27 (E) = V(to, 70)]]
r=1
. [L50)
+lim msup o L Z 1) MC (¥ (t = rh) — z)[= D (—1)"C, — 1]

r=1
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tto

+ Z 1) ¢, p(h?) |

Recall

t—t
TO]

1
] E : rq 7y —
th(I)1+ 2 (—=1)"C, = —1 and h}lin%hlp ha —p(hf)

from equations (3.6) and (3.7) in [11] we have,

[tfto]

CDim(t,a) =C DLV (t, 2% (t +L||Z “(t —rh) — z0)[—(=1) — 1] + 0|

“Dim(t,a) = DLV (t,2*(t)) + 0

Using condition (7i) of Theorem 4.1 we have

(19) “Dim(t,a) < g(t, V(t,2"(t))) = g(t, m(t, a))
Also,
(20) mty, o) <ugand m(t}, o) = V({5 x(ty) + L(z(te)) < pr(m(ty))

Now, equation (19) with ¢ = ¢; contradicts (12), hence (11) holds.

For t € [ty, T], we now show that whenever 7; < 1y, then
(21> Uy (t7a) < Uy (t,Oé)

It is obvious that (21) holds for ¢ = t5. Assume the inequality (21) is not true. Then there
exist a point t; > ¢y such that w,, (t1, @) = u,, (t1, @) and u,, (t, ) < u,, (¢, «) for t € [to, t1).
By lemma (3.1), we have that

CD?&-(“m (tlaa) - u772<t1aa)) >0

However,
CDL (g, (tr, @) = Uy, (b, ) = DGy, (tr, ) = Dy, (1, @)
+Um 1, X um 1,0() +U,71 1, X +un2 1, X
- g(tlvu(tlva) + 771)) - [g(tlau(tha) + 772))]
= 771—7’]2<0

which is a contradiction and so (4.15) is true. Thus, equations (4.5) and (4.15) guarantee that
the family of solutions {u,(t,)}, t € [to,T] of (4.3) is uniformly bounded, i.e. there exists
P > 0 with |u,(t, a)| < P, with bound P on [to, 1.

We now show that the family {w,(¢, @)} is equicontinuous on [ty, T']. Assume K = sup{g(t,z) :
(t,x) € [to, T] x [—P, P]}. Also, fix a decreasing sequence {n;}2,(¢), such that Zliglo n; = 0 and
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consider a sequence of functions w,, (¢, ). Again let t;,ty € [to,T] with t; < t5, then we have
the following estimate

[, (2, @) = w (b1, )| = [luo +1i +

1 K q—1 )
o / (t2 — 5 (g (s, 1, (5,0)) +17)

1 -1
- (it s / (1 — $)1 (g5, 1 (5. ) + 7))

1 2 2_1
- @“/m (ta = )T (g (s, upi (s, @)))ds

- /1(t1 — 8)7 (g(s,uy,(s,)))ds||

to

_ % ~( /t;(tl—s)q—l— /tot2(t2—s)C"1)

IA

ds

ds

= | [ [ [ a
= | [ [ [ as

k, /tl t1 to
< — t—sq_l—/ t—Sq_1d8+/ ty — )71 ds
P(q) to <1 ) to <2 ) t1 <2 )
k t1 —1p)? to —t1)¢ to — tp)? to —t1)¢
B S [ S RN G e N B e
I'(q) q q q q
k
< m(tl — to)q + (tg — tl)q — (tg — to)q + (tQ — tl)q
k
= ———(t; —t9)? — (ta — t9)? + 2(ty — t1)4
F((]‘f‘l)(l 0) (2 0) (2 1)
2k
< NV gy

provided ||t — t1]| < 0 = (%)%, proving that the family of solutions {w,,(t;«)} is equi-
continuous. By the Arzela-Ascoli theorem, {u,,(t;a)}thas a subsequence {um]_ (t; )} which
converges uniformly to a function r(t) on [ty, T']. We then show that r(¢) is a solution of (10).
Equation (10) becomes

1 ¢ _
(22) U, (t,a) = o, +ni; + m/ (t—s)! 1(gij(3,Uij(3>77ij)) + nij)ds
to
Taking the limit as i; — oo in (22), yields
I _
(23) 0 = w0+ i [ (=9 alor(O)ds
to

Thus, r(t) is a solution of (6) on [tyg,T]. We claim that r(¢) is the maximal solution of (6).
Then from (11), we have that m(t, o) < w,(t, ) < r(t) on [to, T].

5. MAIN RESULTS

In this section, we will obtain sufficient conditions for the uniform stability of the system (4).
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Theorem 5.1 (Uniform Stability). Assume the following
(i) g € PC[Ry x R™" R"] satisfies (Ag)(it) and g(t,u) is quasi-monotone non-decreasing in
u with g(t,0) = 0.
(ii) V: Ry x Sy = RY, V € L is locally Lipschitzian in x with V (¢,0) = 0 such that

(24) “DIV(t,x) < g(t,V(t,x)),t #ty, (t,7) ERy x S,

holds for all (t,z) € Ry x Sy.
(ili) there exists a 1o > 0 such that xy € Sy implies that

x+ Ix(x) € Sy and V(t,x + Ii(x)) < Yp(V(t,x)),t =tg,x € Sy

and the function ¥y, : RY — RY is nondecreasing for k = 1,2, ...
(iv) b(|z])) < Vo(t,z) < a(||z]), where a,b € K and Vo(t,z) = Son, Vi(t, z)

Then the uniform stability of the trivial solution w = 0 of the IFrDE (6) implies
the uniform stability of the trivial solution x = 0 of (4).

Proof. Let 0 < € <4 and tg € R, be given.
Assume that the solution u = 0 of (6) is uniformly stable. Then given each b(e) > 0, and
to € R, there exist a positive function d; = d1(€) > 0 such that whenever

(25) Ug = Zuio < 0, we have Zui(t; to, ug) < b(e),t > to

i=1 i=1
where u(t; o, uo) is any solution of (6).
let us choose V (td,x9) < ug and

Zuz‘o = a(to, [|wol|)
=1

Since a(t,K) and a € C[R; x R, , R, ] we can find a positive function 6 = §(tg, €) > 0 such that

(26) a(to, ||zo||) < 01 and ||zo|| <
hold simultaneously. We claim that if
|lxo|| <6, then ||z(t, to, zo)|| < €t > to.

Suppose that this claim is not true. Then there would exists a point t; > ¢y and a solution z(t)
with ||zo|| < d such that

(27) lx(t1)|| = € and ||x(t)|| <€, fort € [to,t1).

This implies that xz(t) + Ix(x) € Sy, for t € [to, t1).
From (7) we have that

(28) Vo(t, z(t)) < ro(t,to, ug) fort € [to,t1).

Combining condition (iv) and (28) we have

(29) ble) < Z Vity, z(t)) < Z ri(t: to, uo)
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Using equations (25), (27) and (29) we have,

b(e) < D Viltr, a(t)) < 3 rilt;to, uo) < b(e)

- i=1
which leads to an absurdity that b(e) < b(e).
Hence, the uniform stability of the trivial solution u = 0 of (6) implies the uniform stability of
the trivial solution z = 0 of (4). O

6. APPLICATION

Let the points ty,tr < tgi1, ltmi ooty — 00 be fixed. Consider the vector impulsive Caputo
fractional differential equations

2
xricosecr
Canz'l(t) = 3,8inT, + 22— 2 — Sxy,t # ty,
x1
x2secx
(30) Cqug(t) = 3wycosecry + drasine, — 2 JtF by

Axy = sp(z(ty)), Axe = ng(z(ty)), t = tk, k; =1,2,..

for t > ty, with initial conditions
xl(ta’) = X190 and Ig(tg_) = X920

Consider a vector V = (V;, V5)T, where
Vi(t,z1,9) = 22 and Va(t, Ty, 12) = 23, with x = (71, z2) € R?, and its associated norm defined

by [[z] = v/t + 3.

Now
2

Volt,z) =Y Vilt, o1, 20) = 2 + 23
i=1
and so b(||z]]) < Vo(t,z) < a(||z]|) with b(r) = r and a(r) = r?, implying that a,b € K. From
(5), we compute the Caputo fractional Dini derivative for Vi (¢, z1,x25) = a3 for t > 0,t # t, as
follows:

CD‘ivl(twl,xQ) = limsup — {Vt:z V(to, o)

h—0+ h1
t to]
+Z (V(t —rh,x — hef(t, ) = V(to, 0)] }
[52]
= limsup — v {xl ri, + Z — W fi(t; w1, 2)° — 2T}
h—0+

[t to]

limsup {2 — %] + 3 (~1)°(°C,)[a? — 2 it 0, 3)
h—07F hi r=1

IN

+h*fy(t, ) — xfo]}

= 1 +
im sup o {wl T Z
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[t tO] z tO]

— Z( ) (qC )2$1hqf1 t $1,£L’2 Z qC thfl(t $1,.’L’2)}

r=1 r=1
58 50
= limsup — i {ml + Z — xfo — Z (_1)T(qcr)xf0
h—0+ —1
[t to]
—2my Y (=1)"(“C)R fi (w1, w0) |}
r=1
= to] = to]
= limsup — — (—1)"(?C)a3
h—0+ ha { Z —0 10
[t to]
—2a1 Y (=1)"("Co)h fi(t; 21, 72) }
r=1
Recall that from equations (3.7) and (3.8) in |1 1], we have
1 oy x?
lim sup — -, = —+—,
LTI T )
and
[£52]
lim S (-1)C
h—0+
r=0
Substituting we obtain
“DIVi(t; a1, 29) < i _ T + 224 f1(t; 21, 22)
+ 1 g L1y L2 — th<1—q> th(l—q) 1J1 y b1y L2
2
i
“DIVi(tiar,as) < m + 221 f1(t; 71, 72)
x? , r3cosecy
CDivl(t; x1,x2) < m + 21 (21 sinzy + 2x—12 — bxy)
< a:—% + 223 sinx, + 2xw5cosecry — 1027
— Tl —q)
As t — oo, % — 0, so that we have
“DIVi(t; a1, 19) < 42aisina; + 2vicosecxy — 1027
< 21(—10 + 2|sinx|) + 23(2 rsina]
< 77(-8) +23(2)
< =8V 4214
Therefore,

(31) “DLVi(t; 21, 39) < —8V1 +2V4
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Also, for zg € Sy, for t =t;,k =1,2, ..,

we have

V(t,x(t) + si) = |sp +x(t)| < V(¢ z(t))

Similarly, using (5), we compute the Caputo fractional Dini derivative for Vy(t, z1, 7o) = 22 as

follows:

“DiVa(t;zy,z0) =

IN

“DiVa(t;zy,a0) <
CDLVy(t; <
+ 2( ,331,1’2) >~

“DiVa(t;z,a0) <

ININ A

IN

IN

V(to,:ﬁo)}}

[(z2 — W9 fa(t; 21, 22)? — 230) }

qC QI‘thfQ(t T, 1‘2)

Y (F1) ()3,

lim sup — {V (t,x) — V(to, o)
h—o+ hi
[
+ Z (— V(t—rh,x—hif(t,z)) —
r=1
t to}
limsup —1{x x3, +
hoot M { 2 Z
[%}
limsup - {a3 — 2yl + > (~1)7(1C,) o} — 20209 f(t; 21, 22)
h—0+ he r=1
+h? fo(t, x9) — w30] }
t to t— to
] (=~
limsup —{x z3 +
maw L (s34 + 3 (G 3
[0
— Z qC h qu(t .%'1,.2132)}
159 159
limsup —q x5 + —x2 —
o (et 3 b3

[t to]

—2%2 Z

qC hqu(t xI1, 1‘2) ’}

(52 (2]
. 1
timsup {7 (<1)7(°C)a3 — Y (-1 (C)ady
h—0t r=0 r=0
(2]
—2x9 Z (=1)"(“Cr)h fo(t; 21, 22) }
r=1
2 2
3 20
— 2 t;x1,
FT(1—q)  #T(—q) + 22 fo(t; 21, w2)
ZL‘2
— 42 t;
(1 = ) + 232 fo(t; 71, 22)
x2 4 2ua(-3 4 dposi x%secxg
—_— x Tocoseck ToSINTL —
#T(1 — q) 2 2 2 2 1 o
L - 61‘200566$2 + 4x2sinx1 + 2$2S€CZL‘2
th(l _ q) 2 2 1
23(—6cosecry + 4sinzy) + 23 (2sects)
1
2 . 2
—6 4 _
1)2( |sinx2] + ‘S/Lnx1|)+x1(|0051’2’)

23(—6 +4) + 22 (2)
z3(—2) + 23(2)
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< =2V5 + 2V

Therefore,
(32) CDLV;(t; 21, 19) < 2V4 — 2V}
Also, for zp € Sy, for t =t;,k =1,2,.., we have
V(t,z(t) + ng) = |ng + x(t)| < V(t,2(t))

Combining (32) and (31), we have

(3) D,V < (‘28 _22) (g) = g(t.7)

Now consider the comparison system
(34) “Diu = g(t,u) = Au

-8 2
2 -2
The vectorial inequality (33) and all other conditions of Theorem 5.1 are satisfied since the

where A =

eigenvalues of A are all negative real parts. Hence, the system (34) is uniformly stable .
Therefore, the trivial solution xg = 0 of the system of IFrDE (30) is uniformly stable.

7. CONCLUSION

In this study, we have explored the uniform stability of the trivial solution for nonlinear
ICFrDEs using the framework of vector Lyapunov functions. By introducing a generalized
class of piecewise continuous Lyapunov functions and employing comparison results, we derived
the uniform stability of the trivial solution of the fractional dynamical systems. The provided
example not only validates the theoretical results but also extends and refines existing findings,
demonstrating the utility and versatility of the proposed approach. This work contributes
a significant step forward in the stability analysis of fractional impulsive systems and open

avenues for further research into more complex systems and applications.
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