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BIFURCATION, OPTICAL SOLUTIONS, AND MODULATION
INSTABILITY ANALYSIS OF THE COMPLEX NONLINEAR

(2+1)-DIMENSIONAL δ-POTENTIAL SCHRÖDINGER EQUATION

LAMA ABDULAZIZ ALHAKIM1, ADNAN AHMAD MAHMUD2,*, ALAAEDDIN MOUSSA1,
YAZID MATI1, BOUBEKEUR GASMI3, AND HACI MEHMET BASKONUS4

Abstract. This study conducts a thorough examination of the nonlinear (2+1)-dimensional
time-space fractional Schrödinger equation associated with a δ-potential. Initially, bifurcation
theory is employed to analyze the bifurcation, and the phase portrait of the solutions is sub-
sequently investigated. Thereafter, the enhanced Cham technique is utilized to derive various
types of traveling wave solutions, including periodic multi-wave solitons, condal waves, and
kinks. Additionally, graphical representations of several obtained solutions are provided to
facilitate a clearer understanding of the dynamic behaviors of the results. Furthermore, a lin-
ear stability analysis approach is introduced to perform an instability-modulated estimation
for the model under scrutiny. The findings illustrate the effectiveness and versatility of our
methodology in relation to other mathematical and physical models.

1. Introduction

In recent decades, mathematicians have focused on exploring complex phenomena in var-
ious fields of nonlinear sciences, including fluid dynamics, plasma physics, condensed matter
physics, and others. As a result, many research studies have been conducted to describe these
phenomena, particularly by using nonlinear evolution equations (NLEEs). Different types of
NLEEs vary in their structures, properties, complexity, and practical applications. Various
methods have been used in the literature to investigate these equations to obtain exact analyt-
ical solutions with different types and structures. Some of the most recent methods include the
dual auxiliary equation technique, with its generalization [1–3], the expansion form of the frac-
tional exp(−Φ(η)) technique that uses the Katugampola’s fractional derivative [4], the Cham
method [5] that generalizes several methods, the tanh(η) expansion method [6], the expansion
form of sine-Gordon method [7], the extended direct algebraic method [8]. These approaches
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have led to diverse solutions, including polynomial, exponential, rational, trigonometric, elliptic,
and hyperbolic functions.

This paper investigates an essential and complex NLEE, namely the complex nonlinear (2+1)-
dimensional time-space fractional Schrödinger’s equation with the potential δ [9] (hereinafter
referred to as δ-Schrödinger’s equation), given in the following form:

(1) iDαt Ξ +
1

2
D2α
xxΞ− aδΞ− b | Ξ |2 Ξ = 0,

where δ denotes the Dirac measure at the origin, a, b are non-zero constants, andDα indicates
the conformable operators of order 0 < α ≤ 1, as promoted in [10], defined by:

(2) Dαt (f(t)) = lim
$→0

f(t+$t1−α)− f(t)

$
, ∀ t > 0, 0 < α ≤ 1.

The chain rule, which is the most significant instruction of the conformable operators, is
organized as follows:

Dαt f (g (t)) = f ′g[g (t)]Dαt (g (t) .

This section first presents the previous works dealing with the δ-NLSE, then summarizes
studies addressing the bifurcation theory, and finally provides the most recent research that has
examined the modulation instability analysis of solutions to nonlinear equations. In Baleanu
et al. [11], the enveloped complex form of the Ansatz function approach was applied to obtain
bright and dark optical solitons. The extended version of the expansion sinh-Gordon equation
method has been utilized in [9], led to the construction of diverse soliton solutions, includ-
ing bright, dark-soliton combined forms of dark-bright soliton, and singular periodic traveling
waves. The above two works also present some necessary conditions to certify the existence of
the solutions. In Cheng et al. [12], the authors converted the δ-NLSE into a drift-admitting
jump technique and proposed a novel second-order finite difference scheme to find some solutions
that were validated using numerical examples. Deift et al. [13] employed the transformations
of Backlünd to expand solutions from the half to the whole lines, and the nonlinear steepest-
descent approach for Riemann-Hilbert problems has been employed to examine the stability of
the stationary one-soliton solution. Additionally, the study in Li et al. [14] applied the gener-
alized rational version of the exponential function approach to obtain complex, trigonometric,
and hyperbolic soliton solutions. The authors in [15] employed the multi-symplectic Runge-
Kutta-Nyström methods for analyzing the δ-NLSE. Moreover, [16] demonstrated that modified
scattering and global solutions with decay in L∞ were produced from minimal starting data
in a balanced Sobolev space. The authors of [17] illustrated how two solitons may separate
from a soliton that is distributed by an outside δ-potential. The authors in [18] demonstrated,
using the distorted Fourier transform, according to a certain compact asymmetrical pattern,
a solution exists that converges to this small asymptotic profile. Besides, there are extra re-
sources that provide details about different generation methods, and models [19–23]. Several
researchers examined the bifurcation of the outcomes to explore the alterations in the overall
framework of systems with dynamics as characteristics are varied. This bifurcation was used
in [24] to discuss the dynamical actions of the Kodomtsev-Petviashvili equation, in [3] for the



nonlinear Schrödinger’s equation in the recognize of conformable operator, in [25] for the un-
predictable fraction Hirota–Maccari system, in [2] for the time-fractional nonlinear maccari’s
system, and in [5] for the (2+1)-multidimensional Bogoyavlenskii’s breaking soliton problems.

The modulation instability analysis of solutions was examined in [26] for the (3+1)-
dimensional nonlinear Schrödinger’s equation, in [27] for the modify unstable NSE, in [28]
for Radhakrishnan-Kundu-Lakshmanan model that has a coupled vector form, in [29] for the
Lakshmanan–Porsezian– Daniel system with the parabolic rule of non-linearity, in [30] for the
nonlinear Manakov-system, in [31] for the quadratic-cubic nonlinear Schrödinger’s equation,
and in [14] for the cubic NSE with repelling δ-potential. Different physical, mathematical, and
engineering models have been investigated using semi-analytic methods [32–36], finally, the
unified approach [37].

To summarize, some previous studies have explored the δ-NLSE, but none utilized the con-
formable operator we used in our research. The bifurcation concept was the main strategy
utilized to explore the bifurcation and phase portrait of the results. Finally, only a few studies
have looked into modulation instability analysis.

The rest of the work is arranged in the following manner: In Section 1, we present previous
works dealing with the Schrödinger’s equation. Section 2 presents the bifurcation and phase
portrait of the solutions. Section 3 explains the steps of the improved Cham method followed
in Section 4 by its application to find exact solutions to δ-Schrödinger’s equation as well as
the graphical representation of some obtained solutions to help readers better understand their
propagation and features. Section 5 gives a study of instability modulation analysis of stationary
solutions. Section 6 concludes the paper.

2. Bifurcation and phase portraits to δ-Schrödinger’s equation

The present section discusses the bifurcation and phase profile of traveling wave solutions to
δ-Schrödinger’s equation. For this aim, we consider the following form of alteration:

(3) Ξ (x, t) = Θ(η)eiψ; η =

(
xα

α
− pt

α

α

)
; ψ =

(
p
xα

α
+ r

tα

α

)
,

where p and r are non-zero constants. Putting Eq. (3) into Eq. (1), we obtain:

(4) i (−pΘ′ + irΘ) eiψ +
1

2

(
Θ′′ − p2Θ + i2pΘ′

)
eiψ − aδΘ− bΘ3eiψ = 0,

which leads, after simplification, to Eq. (5) where "′" stands for d
dξ
.

(5) Θ′′ − 2bΘ3 − (p2 + 2(r + aδ))Θ = 0.

By setting Θ′ = φ, we have the following planar system:

(6)

{
dΘ
dη

= φ,
dφ
dη

= 2bΘ3 + (p2 + 2(r + aδ))Θ.

The Jacobian matrix J(Θ, φ) is given by Eq. (7).

(7) J(Θ, φ) =

(
0 1

6bΘ2 + p2 + 2(r + aδ) 0

)
,



The characteristic polynomial of J(Θ, φ) is P (λ) = λ2−(6bΘ2 +p2 +2(r+aδ)). To evaluate the
fixed points of system (6), we set dΘ

dη
= 0 and dφ

dη
= 0 For getting the subsequent pair of instances:

Case 1: Where b > 0 and (p2 + 2(r + aδ)) > 0, we have a fixed point E0(0, 0). Since
P (λ) = λ2 − (p2 + 2(r + aδ)), the eigenvalues are:

λ12 = ±
√
p2 + 2(r + aδ),

which implies that E0 is a saddle point. Initially one of the eigenvalues is positive, we can
deduce that the fixed point E0 is unstable. Furthermore, there are a pair of homoclinic cycles
at E0 and Eq. (5) has two solitary wave solutions. Figure (1), generated using Maple 2022,
depicts this example.

(a) 2D phase
portrait

(b) 3D phase portrait

Figure 1. Phase portrait of system (6) when p = r = a = b = 1 and δ = 1.

Case 2: Where b > 0 and (p2 + 2(r + aδ)) < 0, there are three fixed points E0(0, 0),

E1(
√
−p2+2(r+aδ)

2b
, 0), and E2(−

√
−p2+2(r+aδ)

2b
, 0). At E0(0, 0), we have:

P (λ) = λ2 − (p2 + 2(r + aδ)),

which in turn leads to:
λ1,2 = ±i

√
−(p2 + 2(r + aδ)).

Therefore, E0 is a center because λ1 and λ2 are two purely imaginary numbers and stable in
the sense of Lyapunov.

At the equilibrium points (Θe, φe) = (±
√
−p2+2(r+aδ)

2b
, 0), we have P (λ) = λ2 + 2(p2 + 2(r +

aδ)), leading to two eigenvalues:

λ1,2 = ±
√
−[p2 + 2(r + aδ)],

which implies that we have two unstable saddle fixed points.
consequently, there is an assortment of periodic cycles at E0, two homoclinic cycles at E1,2,

and two series of bounded open orbits on the left (resp. right) sides at E1 (resp. E2). As a
result, Eq. (5) has a collection of periodic wave solutions, two kink (anti-kink) wave solutions,
and a series of breaking wave solutions. Figure (2), generated using Maple 2022, demonstrates
this example.



(a) Two-
dimensional
phase portrait

(b) Three-dimensional phase
portrait

Figure 2. Phases portrayal of system (6) when p = 1, r = −1, a = −2, b = 1,

and δ = 1.

3. The improved Cham method

In this section, we introduce the improved Cham method, an extension version of the Cham
method recently proposed in [5], by describing its steps using the nonlinear partial differential
equation given in Eq. (8):

(8) F (J ,Jt,Jx,Jxt,Jxx,Jtt, · · · ) = 0,

herein J = J (x, t) is undetermined function.

Step 1. Use the transformation J (x, t) = G(η) with η = x − vt to convert Eq. (8) to the
following differential equation:

(9) P (G,Gη, Gηη, Gηηη, ...) = 0.

Step 2. Express the solutions of Eq. (9) as a polynomial in
(

tanh(Z(η))
tanh(η)

)
as follows:

(10) G (η) = +
N∑
i=0

ai

(
tanh (Z(η))

tanh (η)

)i
+

N∑
j=1

bj

(
tanh (Z(η))

tanh (η)

)−j
; a2

N + b2
N 6= 0,

where ai, bj (i, j = 0, 1, ..., N) are constant.
By applying the balancing declaration between the nonlinear terms, when the higher order

has been equivalent to the greatest degree in Eq. (9), one directly fetches the value of the
integer N . The term

(
tanh(Z(η))

tanh(η)

)
satisfies the following differential equation :

(11)
(

tanh (Z(η))

tanh (η)

)′
= A

(
tanh (Z(η))

tanh (η)

)2

+B

(
tanh (Z(η))

tanh (η)

)
+ C.

As a result, the following solutions can be obtained:



Family 1 : When 4AC −B2 > 0 and AC 6= 0,
(12)(

tanh (Z(η))

tanh (η)

)
= −

B tanh (η) + tan

(√
tanh(η)2(4AC−B2)(η0−η)

2 tanh(η)

)√
tanh (η)2 (4AC −B2)

2A tanh (η)
, η0 ∈ R.

Family 2 : When 4AC −B2 < 0 and AC 6= 0,
(13)(

tanh (Z(η))

tanh (η)

)
= −

B tanh (η)− tanh

(√
tanh(η)2(B2−4AC)(η0−η)

2 tanh(η)

)√
tanh (η)2 (B2 − 4AC)

2A tanh (η)
, η0 ∈ R.

Family 3 : When 4AC −B2 = 0 and AC > 0,

(14)
(

tanh (Z(η))

tanh (η)

)
= −

2ACξ2 − 1− tanh
(

ln(η)−ln(ACξ−
√
AC)+η0

2

)
2Aξ

(√
ACη − 1

) , η0 ∈ R.

Family 4 : When A, B both are zero, and C be different from zero ,

(15)
(

tanh (Z(η))

tanh (η)

)
=
C(ln(tanh(η) + 1)− ln(tanh(η)− 1))

2
− η0, η0 ∈ R.

Family 5 : When A, B both are non zero parameters, and C = 0,

(16)


(

tanh(Z(η))
tanh(η)

)
= − B(exp(2ξ)−1) exp(Bξ)

tanh(η)(A exp(Bξ)−η0)(exp(2ξ)+1)
, η0 ∈ R,

η /∈
{

1
B

ln
(
η0
A

)
, 0
}
, |( B(exp(2ξ)−1) exp(Bξ)

(A exp(Bξ)−η0)(exp(2ξ)+1)
| < 1.

Family 6 : When A is different from zero, and B, C both are zero,

(17)
(

tanh (Z(η))

tanh (η)

)
=

1

η0 − Aξ
, η0 ∈ R.

Family 7 : When A is zero, and B, C are not zero,

(18)
(

tanh (Z(η))

tanh (η)

)
= −C +Bξ0 exp (Bξ)

B
, η0 ∈ R.

4. Exact solutions to δ-Schrödinger’s equation

This section employs the improved Cham method to obtain semi-analytic solutions to Eq.
(1). We start by utilizing the homogeneous balance between Θ3 and Θ′′, from Eq. (5), to get
the value N = 1. This leads to solutions of Eq. (5) that take the following form:

(19) Θ (η) = b1

(
tanh (Z(η))

tanh (η)

)−1

+ a0 + a1

(
tanh (Z(η))

tanh (η)

)
,

where a0, a1 and b1 are constant, such that a2
1+b2

1 6= 0. By replacing Eq. (11), and Eq. (19) into

Eq. (5), we can rehabilitate the left-hand side into some terms of
(

tanh(Z(η))
tanh(η)

)j
, (j = 0, 1, 2, ....).

Trying to organize separately the coefficient of the consequential polynomials and assign them
to zero, to fetch an algebraic system of equations as follows:



(20)



(2A2a1 − 2ba3
1) = 0,

3ABa1 − 6ba0a
2
1 = 0,

2a1

(
−3a1b1b+ AC + B2

2
− 3a2

0b− aδ −
p2

2
− r
)

= 0,

(
(BC − 12ba0b1) a1 + Ab1B − 2

(
a2

0b+ aδ + p2

2
+ r
)
a0

)
= 0,

2b1

(
−3a1b1b+ AC + B2

2
− 3a2

0b− aδ −
p2

2
− r
)

= 0,

(3BCb1 − 6ba0b
2
1) = 0,

2C2b1 − 2bb3
1 = 0.

The algebraic system for b1, a0, a1, p, r, A, B and C, was solved using Maple 2022, to obtain
the following solutions:

Family 1:
(21){
r = AC − B2

4
− aδ − p2

2
, a0 =

B

2
√
b
, b1 =

C√
b
, a1 = 0, A = A, B = B, C = C

}

(22) Θ1 (η) =
C√
b

(
tanh (Z(η))

tanh (η)

)−1

+
B

2
√
b
.

Using Eq.(22) and solutions of Eq.(11), we obtain the following exact solutions of Eq.(1):

Case (1.1): When 4AC −B2 > 0 and AC 6= 0,
(23)

Ξ1.1 (η) =

 C√
b

−B tanh(η)+tan

(√
tanh(η)2(4AC−B2)(η0−η)

2 tanh(η)

)√
tanh(η)2(4AC−B2)

2A tanh(η)


−1

+ B
2
√
b

× eiψ

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
+ (AC − B2

4
− aδ − p2

2
) t
α

α

)
, η0 ∈ R.

Case (1.2): When 4AC −B2 < 0 and AC 6= 0,
(24)

Ξ1.2 (η) =

 C√
b

−B tanh(η)−tanh

(√
tanh(η)2(B2−4AC)(η0−η)

2 tanh(η)

)√
tanh(η)2(B2−4AC)

2A tanh(η)


−1

+ B
2
√
b

× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
+ (AC − B2

4
− aδ − p2

2
) t
α

α

)
, η0 ∈ R.



Case (1.3): When 4AC −B2 = 0 and AC > 0,

(25)


Ξ1.3 (η) =

 C√
b

(
−

2ACξ2−1−tanh

(
ln(η)−ln(ACξ−

√
AC)+η0

2

)
2Aξ(

√
ACη−1)

)−1

+ B
2
√
b

× eiψ,
η =

(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
+ (−aδ − p2

2
) t
α

α

)
, η0 ∈ R.

Case (1.4): When A = 0, B = 0 and C 6= 0,

(26)


Ξ1.4 (η) =

(
C√
b

(
tanh(Z(η))

tanh(η)

)−1
)
× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
+ (−aδ − p2

2
) t
α

α

)
, η0 ∈ R.

Case (1.5): When A = 0, B 6= 0 and C 6= 0,

(27)


Ξ1.5 (η) =

(
C√
b

(
−C+Bξ0 exp(Bξ)

B

)−1

+ B
2
√
b

)
× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
+ (−B2

4
− aδ − p2

2
) t
α

α

)
, η0 ∈ R.

(a) Three-dimensional real-part (b) Three-dimensional imaginary-
part

Figure 3. Absolute value of Ξ1.1 (η) when A = 1, B = 1, C = 1, η0 = 2, p =

−2, b = 1, and α = 1
3
(kink wave solution).



(a) Three-dimensional real-part (b) Three-dimensional
imaginary-part

Figure 4. Real and imaginary parts of Ξ1.1 (η) when A = 1, B = 1, C = 1, η0 =

2, p = −2, b = 1, and α = 1
3
(periodic multi-wave solitons).

(a) Three-dimensional real-
part

(b) Three-dimensional
imaginary-part

Figure 5. Real and imaginary figures for Ξ1.3 (η) when A = 2, C = 2, η0 =

2, p = −2, b = 1, a = 0.2, δ = 0.3 and α = 1 (kinky-periodic lump wave).

Family 2:

(28)
{
r = AC − B2

4
− aδ − p2

2
, b1 = 0, a0 =

B

2
√
b
, a1 =

A√
b
, A = A, B = B, C = C

}

(29) Θ2 (η) =
B

2
√
b

+
A√
b

(
tanh (Z(η))

tanh (η)

)
.

Using Eq.(28) and solutions of Eq.(11), the following exact solutions to Eq.(1) are achieved:



Case (2.1): When 4AC −B2 > 0 and AC 6= 0,
(30)

Ξ2.1 (η) =

 B
2
√
b

+ A√
b

−B tanh(η)+tan

(√
tanh(η)2(4AC−B2)(η0−η)

2 tanh(η)

)√
tanh(η)2(4AC−B2)

2A tanh(η)


× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
+ (AC − B2

4
− aδ − p2

2
) t
α

α

)
, η0 ∈ R.

Case (2.2): When 4AC −B2 < 0 and AC 6= 0,
(31)

Ξ2.2 (η) =

 B
2
√
b

+ A√
b

−B tanh(η)−tanh

(√
tanh(η)2(B2−4AC)(η0−η)

2 tanh(η)

)√
tanh(η)2(B2−4AC)

2A tanh(η)


× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
+ (AC − B2

4
− aδ − p2

2
) t
α

α

)
, η0 ∈ R.

Case (2.3): When 4AC −B2 = 0 and AC > 0,

(32)


Ξ2.3 (η) =

(
B

2
√
b

+ A√
b

(
−

2ACξ2−1−tanh

(
ln(η)−ln(ACξ−

√
AC)+η0

2

)
2Aξ(

√
ACη−1)

))
× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
+ (−aδ − p2

2
) t
α

α

)
, η0 ∈ R.

Case (2.4): A 6= 0, B = 0 and C = 0,

(33)


Ξ2.4 (η) = A√

b

(
1

η0−Aξ

)
× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
+ (−aδ − p2

2
) t
α

α

)
, η0 ∈ R.

Case (2.5): A 6= 0, B 6= 0 and C = 0,

(34)


Ξ2.5 (η) =

(
B

2
√
b

+ A√
b

(
− B(exp(2ξ)−1) exp(Bξ)

tanh(η)(A exp(Bξ)−η0)(exp(2ξ)+1)

))
× eiψ,

η /∈
{

1
B

ln
(
η0
A

)
, 0
}
, |( B(exp(2ξ)−1) exp(Bξ)

(A exp(Bξ)−η0)(exp(2ξ)+1)
| < 1, η0 ∈ R



(a) Three-dimensional real-
part

(b) Three-dimensional
imaginary-part

Figure 6. Real and imaginary profiles of Ξ2.2 (η)) when A = 1
4
, B = 2, C =

1, η0 = 2, p = −2, b = 0.8, and α = 1
8
(coindal wave solutions).

Family 3:

(35)
{
r =
−(4AC + 2aδ + p2)

2
, a0 = 0, a1 =

A√
b
, b1 =

C√
b
, A = A, B = 0, C = C

}

(36) Θ3 (η) =
C√
b

(
tanh (Z(η))

tanh (η)

)−1

+
A√
b

(
tanh (Z(η))

tanh (η)

)
.

Using Eq.(36) and solutions of Eq.(11), we obtain the following exact solutions of Eq.(1):

Case (3.1): When 4AC −B2 > 0 and AC 6= 0,

(37)



Ξ3.1 (η) =



C√
b

− tan

(√
tanh(η)2(4AC)(η0−η)

2 tanh(η)

)√
tanh(η)2(4AC)

2A tanh(η)


−1

+

A√
b

− tan

(√
tanh(η)2(4AC)(η0−η)

2 tanh(η)

)√
tanh(η)2(4AC)

2A tanh(η)




× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
− (4AC+2aδ+p2

2
) t
α

α

)
, η0 ∈ R.



Case (3.2): When 4AC −B2 < 0 and AC 6= 0,

(38)



Ξ3.2 (η) =



C√
b

−− tanh

(√
tanh(η)2(−4AC)(η0−η)

2 tanh(η)

)√
tanh(η)2(−4AC)

2A tanh(η)


−1

+

A√
b

−− tanh

(√
tanh(η)2(−4AC)(η0−η)

2 tanh(η)

)√
tanh(η)2(−4AC)

2A tanh(η)




× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
− (4AC+2aδ+p2

2
) t
α

α

)
, η0 ∈ R.

Case (3.3): When A = 0, B = 0 and C 6= 0,

(39)


Ξ3.3 (η) = C√

b

(
C(ln(tanh(η)+1)−ln(tanh(η)−1))

2
− η0

)−1

× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
− (2aδ+p2

2
) t
α

α

)
, η0 ∈ R.

Case (3.4): A 6= 0, B = 0 and C = 0,

(40)


Ξ3.4 (η) = A√

b

(
1

η0−Aξ

)
× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
− (2aδ+p2

2
) t
α

α

)
, η0 ∈ R.

Case (3.5): A 6= 0, B 6= 0 and C = 0,
(41)

Ξ3.5 (η) =

(
C√
b

(
− B(exp(2ξ)−1) exp(Bξ)

tanh(η)(A exp(Bξ)−η0)(exp(2ξ)+1)

)−1
+ A√

b

(
− B(exp(2ξ)−1) exp(Bξ)

tanh(η)(A exp(Bξ)−η0)(exp(2ξ)+1)

))
× eiψ,

η /∈
{

1
B ln

(
η0
A

)
, 0
}
, |( B(exp(2ξ)−1) exp(Bξ)

(A exp(Bξ)−η0)(exp(2ξ)+1) | < 1, η0 ∈ R

(a) Three-dimensional real-
part

(b) Three-dimensional
imaginary-part

Figure 7. Absolute value of Ξ3.1 (η)) when A = 2, C = 4, η0 = 2, p = −2, b =

0.8, and α = 1 (resp. α = 1
9
) (periodic singular solution).



Family 4:

(42)
{
r =
−(−8AC + 2aδ + p2)

2
, a0 = 0, a1 =

A√
b
, b1 = − C√

b
, A = A, B = 0, C = C

}

(43) Θ4 (η) = − C√
b

(
tanh (Z(η))

tanh (η)

)−1

+
A√
b

(
tanh (Z(η))

tanh (η)

)
.

Using Eq.(43) and solutions of Eq.(11), we obtain the following exact solutions of Eq.(1):

Case (4.1): When 4AC −B2 > 0 and AC 6= 0,

(44)



Ξ4.1 (η) =



−C√
b

− tan

(√
tanh(η)2(4AC)(η0−η)

2 tanh(η)

)√
tanh(η)2(4AC)

2A tanh(η)


−1

+

A√
b

− tan

(√
tanh(η)2(4AC)(η0−η)

2 tanh(η)

)√
tanh(η)2(4AC)

2A tanh(η)




× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
− (−8AC+2aδ+p2)

2
tα

α

)
, η0 ∈ R.

Case (4.2): When 4AC −B2 < 0 and AC 6= 0,

(45)



Ξ4.2 (η) =



−C√
b

− tanh

(√
tanh(η)2(−4AC)(η0−η)

2 tanh(η)

)√
tanh(η)2(−4AC)

2A tanh(η)


−1

+

A√
b

−− tanh

(√
tanh(η)2(−4AC)(η0−η)

2 tanh(η)

)√
tanh(η)2(−4AC)

2A tanh(η)




× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
− (−8AC+2aδ+p2)

2
tα

α

)
, η0 ∈ R.

Case (4.3): When A = 0, B = 0 and C 6= 0,

(46)


Ξ4.3 (η) = −C√

b

(
C(ln(tanh(η)+1)−ln(tanh(η)−1))

2
− η0

)−1

× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
− (2aδ+p2)

2
tα

α

)
, η0 ∈ R.

Case (4.4): A 6= 0, B = 0 and C = 0,

(47)


Ξ4.4 (η) = A√

b

(
1

η0−Aξ

)
× eiψ,

η =
(
xα

α
− p tα

α

)
, ψ =

(
px

α

α
− (−(2aδ+p2)

2
) t
α

α

)
, η0 ∈ R.



(a) Three-dimensional real-
part

(b) Three-dimensional
imaginary-part

Figure 8. Real and imaginary values of Ξ4.1 (η) when A = 1, C = 1, η0 = 2, p =

−2, b = 0.8, a = 0.2, δ = 0.3 and α = 1 (periodic multi-wave).

5. Instability modulation commentary

In the following section, we operate using the linear stability analysis and perform an
instability-modulated assessment on the steady solutions of Eq.(1). We assume that the per-
manent solutions to Eq.(1) were originally stated in the following manner:

(48) Ξ(x, t) = (
√
p0 + ε(x, t))eibp0x,

where ε(x, t)) is a small perturbation and p0 is the normal optical power. Putting Eq.(48) into
Eq.(1) we get:

(49) iDαt ε+
1

2

(
D2α
xxε+ 2ibp0D

α
x ε− b2p2

0(
√
p0 + ε)

)
− aδ(√p0 + ε)− b(√p0 + ε)2(

√
p0 + ε)∗ = 0,

where the * indicates the conjugate to the unknown complex function ε which can be written
as:
(50)

iDαt ε+
1

2
D2α
xxε+ibp0D

α
x ε−(

√
p0+ε)(

b2p2
0

2
+aδ+bp0)−bp0(ε+ε∗)−b

(
2
√
p0 | ε |2 +ε2

√
p0 + ε2ε∗

)
= 0.

After linearizing Eq.(50), we find:

(51) iDαt ε+
1

2
D2α
xxε+ ibp0D

α
x ε− bp0(ε+ ε∗)− (

√
p0 + ε)(

b2p2
0

2
+ aδ + bp0) = 0.

Suppose that the solutions of Eq.(51) take the form:

(52) ε(x, t) = L1e
i(λx+βt) + L2e

−i(λx+βt)

By re installing Eq.(52) into Eq.(51), we obtain:

− βL1e
i(λx+βt) + βL2e

−i(λx+βt) − 1

2
(λ2L1e

i(λx+βt) + λ2L2e
−i(λx+βt))

+ bp0λL2e
−i(λx+βt) − bp0(L1 + L2)ei(λx+βt) − bp0(L1 + L2)e−i(λx+βt)

− (
√
p0 + L1e

i(λx+βt) + L2e
−i(λx+βt))(

b2p2
0

2
+ aδ + bp0)− bp0λL1e

i(λx+βt) = 0.

(53)



By splitting the coefficients of ei(λx+βt) and e−i(λx+βt), we get:

− aδL1 −
1

2
b2L1P

2
0 − bβL1P0 − 2bL1P0 − bL2P0 − αL1 +

1

2
β4L2

1 = 0,

− aδL2 −
1

2
b2L2P

2
0 + bβL2P0 − bL1P0 − 2bL2P0 + αL2 +

1

2
β4L2

2 = 0.

(54)

From Eq.(54) we can easily derive the following matrix form for L1 and L2:
(55)(

−β + λ4L1

2 − 2bp0 − bp0λ− b2p20
2 − aδ −bp0

−bp0 β + λ4L2

2 + bp0λ− 2bp0 − b2p20
2 − aδ

)(
L1

L2

)
=

(
0

0

)
.

The coefficients matrix in Eq.(55) has a not trivial solution if the factor determinant is
identical to zero. By enhancing the determinant, we acquire the results that follow:

a2δ2 − α2 + ab2δP 2
0 + 4abδP0 −

1

2
aβ4δL1 −

1

2
aβ4δL2 +

1

4
b4P 4

0 + 2b3P 3
0

− 1

4
b2β4L1P

2
0 −

1

4
b2β4L2P

2
0 − b2β2P 2

0 + 3b2P 2
0 +

1

2
bβ5L1P0 −

1

2
bβ5L2P0

− bβ4L1P0 − bβ4L2P0 − 2αbβP0 +
1

2
αβ4L1 −

1

2
αβ4L2 +

1

4
β8L1L2 = 0.

(56)

Eq. (56) has the following solutions for β:

(57) β =
λ4L1

4
− λ4L2

4
− bp0λ∓

1

4

√
(−λ4(L1 + L2) + 2bp0(bp0 + 6) + 4aδ) (−λ4(L1 + L2) + 2bp0(bp0 + 2) + 4aδ).

Eq.(57) guarantees the stability of the steady-state condition. If the wave number β has an
imaginary portion, the steady-state solution is unstable when the disturbance rises geometri-
cally. Nevertheless, if the wave number β is real, the state of stability is stable under tiny
disturbances. Consequently, the crucial requirement for an instance of modulating instabilities
that results given Eq.(56) is where:

(58)
(
−λ4(L1 + L2) + 2bp0(bp0 + 6) + 4aδ

) (
−λ4(L1 + L2) + 2bp0(bp0 + 2) + 4aδ

)
< 0.

Currently, to analyze the instability modulating amplitude bandwidth, it ought to be ob-
served the following:

(59) g(λ) = 2Im(β) =
λ4

2
(L1 − L2)− 2bp0λ∓

1

2

√
(−λ4(L1 + L2) + 2bp0(bp0 + 6) + 4aδ) (−λ4(L1 + L2) + 2bp0(bp0 + 2) + 4aδ).

Thus, we are faced with the following instances: Case (1): if

(60) g(λ) = 2Im(β) =
λ4

2
(L1 − L2)− 2bp0λ−

1

2

√
(−λ4(L1 + L2) + 2bp0(bp0 + 6) + 4aδ) (−λ4(L1 + L2) + 2bp0(bp0 + 2) + 4aδ).

The subsequent sub-cases are accessible:
Case (1.1): If L1 = −2

3
, L2 = 5

3
, δ = 2

5
, b = 2, P1 = 1, and a = 1

4
, we obtain:

g1.1(λ) =
−7λ4

6
− 4λ− 1

10

√
(−162 + 5λ4) (−82 + 5λ4).



Case (1.2): If L1 = 3
2
, L2 = 3

4
, δ = −1

2
, b = −2

3
, P1 = 1

3
, and a = −3

5
, we obtain:

g1.2(λ) =
3λ4

8
+

4λ

9
−
√

(−664 + 3645λ4) (2216 + 3645λ4)

3240
.

Case (1.3): If L1 = −1
3
, L2 = 2

5
, δ = −3

4
, b = −1

2
, P0 = 3

2
, and a = 5

4
, we obtain:

g1.3(λ) =
1

240
(−88λ4 + 360λ−

√
(675 + 8λ4) (1395 + 8λ4).

Case (1.4): If L1 = −1
2
, L2 = −5

4
, δ = 1

5
, b = 4

3
, P1 = 1

2
, and a = 3

4
, we obtain:

g1.4(λ) =
3λ4

8
− 4λ

3
−
√

7 (244 + 45λ4) (748 + 315λ4)

360
.

The figure below shows the modulation gain spectra for the above sub-cases for the mentioned
values in the legend.
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Figure 9. The standard-GVD domain instability modulating gained spectrum
for various values in Eq.(60).

Case (2): if

(61) g(λ) = 2Im(β) =
λ4

2
(L1 − L2)− 2bp0λ+

1

2

√
(−λ4(L1 + L2) + 2bp0(bp0 + 6) + 4aδ) (−λ4(L1 + L2) + 2bp0(bp0 + 2) + 4aδ).

The next sub-cases have been achieved:

Case (2.1): If L1 = 2
3
, L2 = 5

3
, δ = −2

5
, b = 2

3
, P0 = 1

3
, and a = 1

4
, we obtain:

g2.1(λ) = −λ
4

2
− 4λ

9
+

√
7 (135λ4 − 34) (945λ4 − 958)

810
.

Case (2.2): If L1 = 3
2
, L2 = 3

4
, δ = −1

2
, b = −2

3
, p0 = 1

3
, and a = −3

5
, we obtain:

g2.2(λ) =
3λ4

8
+

4λ

9
+

√
(3645λ4 − 664) (3645λ4 + 2216)

3240
.

Case (2.3): If L1 = −1
3
, L2 = −2

5
, δ = −3

4
, b = −1

2
p,0 = 3

2
, and a = 5

4
, we obtain:

g2.3(λ) =
λ4

30
+

3λ

2
+

√
(88λ4 − 675) (88λ4 − 1395)

240
.



Case (2.4): If L1 = −1
2
, L2 = −5

4
, δ = −1

5
, b = 4

3
, p0 = 1

2
, and a = 3

4
, we obtain:

g2.4(λ) =
3λ4

8
− 4λ

3
+

√
7 (45λ4 + 76) (315λ4 + 1492)

360
.

The illustration below displays the modulation gain spectra for the aforementioned sub-cases,
using the values specified in the legend.
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Figure 10. The standard-GVD domain instability modulating gained spectrum
for various values in Eq.(61).

6. Conclusion

This work addressed the nonlinear Schrödinger’s equation with a δ-potential, where δ repre-
sents a Dirac measure located at the origin. The present work presents the use of bifurcation
theory to examine the bifurcation and phase picture of the solutions. In addition, the modified
Cham approach has been used to get numerous traveling wave solutions, such as kink, periodic
multi-wave soliton, and coindal waves. The identified solutions have been visually shown to
enhance the readers’ comprehension of their physical properties. In addition, we have used the
linear stability analysis method to conduct an examination of instability modulation for sta-
tionary solutions. Our technique has been determined to be practical and adaptable to many
mathematical, physical, and engineering models. Compared to previous studies our results are
original. The graphics representations clarify the evaluation of the work. The phase portraits
of the planar system in two and three dimensions have been illustrated by Figure (1), which
implies that E0 is a saddle point and we can infer that the fixed point E0 is unstable. In Figure
(2), the fact E0 is a center because λ1 and λ2 are two purely imaginary numbers and stable
in the sense of Lyapunov, which implies that we have two unstable saddle fixed points. The
exact solutions to δ-Schrödinger’s equation by using the improved Cham method presenting
kink wave solution by Figure (3), periodic multi-wave solitons by Figure (4), kinky-periodic
lump wave by Figure (5), continual wave solutions by Figure (6), periodic singular solutions by
Figure (7), periodic multi-wave by Figure (8), and the instability modulation gain spectra in
the normal-GVD regime for the steady-state solutions by Figures (9), (10).
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