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THE ITERATIVE TECHNIQUE FOR A FOURTH-ORDER THREE-POINT
NONLINEAR BVP WITH CHANGING SIGN GREEN’S FUNCTION

A. M. A. AHMED1,2

Abstract. In this paper, we discuss the existence of a monotonic positive solution for the
following fourth-order three points. Non-linear BVP:

u(4)(t) = λf(t, u(t)), t ∈ [0, 1],

u′(0) = u′′′(0) = u(1) = 0,

αu(0) + u′′(η) = 0

which has the sign-changing Green’s function, whereα ∈ [0, 2),f ∈ C([0, 1]× [0,+∞), [0,+∞))

and η ∈ [ 12 , 1). The point is that although the corresponding Green is changing the sign, by
applying iterative methods, We can still obtain the existence of a monotonic positive solution
under certain suitable conditions of f .

1. Introduction

In this article, we aim to study the existence of a monotonic positive solution for fourth-order
three-point Nonlinear BVP with changing sign Green’s function

u(4)(t) = λf(t, u(t)), t ∈ [0, 1],

u′(0) = u′′′(0) = u(1) = 0,

αu(0) + u′′(η) = 0

(1.1)

whereα ∈ [0, 2),f ∈ C([0, 1]× [0,+∞), [0,+∞)) and η ∈ [1
2
, 1). By using iterative methods, We

can still obtain the existence of a monotonic positive solution under certain suitable conditions
of f .

In recent decades, The differential equations come from various fields of a mathematical
applied and physics, for example, in the deflection of curved beams with constant or vary-
ing cross-sections, triple-layer beams, electromagnetic waves or gravity-driven currents, etc. [1].

In the recent years, existence of single or multiple positive solutions for some third-order
three-point (BVP) has attracted the attention of many authors. Please refer to [2-11] and
its references. When the corresponding Green’s function is non-negative, the paper can be
completed, This is the condition that is an important . A natural question is whether we can
get it? When the corresponding Green’s function performs sign conversion, there are some
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positive solutions for the third-order three-point BVP.

Recently, when the corresponding Green’s function is undergoing sign conversion, there has
been some work on the positive solution of the second and third-order BVP. For example,in
[18] the existence of at least one positive solution of the following second-order periodic BVP
with positive and negative transformation Green’s function studied by Zhong and An

u′′(t) + ρ2u = f(u), , 0 < t < T,

u(0) = u(T ),

u′(0) = u′(T ),

where η ∈ (17
24
, 1),Palamide and Smirlis [13 − 15] discussed the existence of at least one

positive solution. Their technique is a combination of GuoKrasnosel’sski fixed point theory
and the corresponding vector field characteristics. In 2012, Sun and Zhao [16], [17] obtained
single or multiple positive solutions with three-point positive and negative BVP by applying
the fixed point theory of Guo-Krasnosel’skii .

{
u′′′(t) = f(t, u(t)), t ∈ [0, 1],

u(0) = u(1) = u′′(η) = 0,

Motivated. Through the above work, this article will study BVP (1.1)Through an iterative
method. Throughout this article, we always assume α ∈ [0, 2) and η ∈ [1

2
, 1). Although the

corresponding Green function is changing its sign, under certain suitable conditions, we can
still obtain the existence of the monotonic positive solution of BVP (1.1) on f . Moreover, our
iterative scheme starts with a zero function, This means that iterative scheme is feasible.

(1)


u(4)(t) = λf(t, u(t)), t ∈ [0, 1],

u′(0) = u′′′(0) = u(1) = 0,

αu(0) + u′′(η) = 0

In this article, by applying an iterative approach, we always assume that α ∈ [0, 2) and
η ∈ [1

2
, 1).

Obviously,the BVP (9)is a special case of the BVP (1.1). Although the corresponding
Green’s function is changing the sign, under certain suitable conditions, for f , we still obtain
the existence of a monotonic positive solution of BVP (1.1). furthermore, our iterative scheme
starts with a zero function, which means iterating The program is feasible.

We first recall the following fixed point of Krasnoselskii’s type.
Theorem 1.1 Let E be a Banach space and K be a cone in E. Assume that Ω1 and Ω1

are bounded open subsets of E such that 0 ∈ Ω1 , Ω1 ⊂ Ω2 , and let A : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either
(1) ‖Au‖ ≤ ‖Au‖ foru ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or
(2) ‖Au‖ ≥ ‖Au‖for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2

* A. has a fixed point in K ∩ (Ω2 \ Ω1).
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2. Preliminaries

For the BVP

(2)


u(4)(t) = λf(t, u(t)), t ∈ [0, 1],

u′(0) = u′′′(0) = u(1) = 0,

αu(0) + u′′(η) = 0

we have the following lemma Lemma 2.1 The BVP (2) has only trivial solution.
Proof. It is simple to check. for any y ∈ C[0, 1], we consider the boundary value problems

(3)


u(4)(t) = λf(t, u(t)), t ∈ [0, 1],

u′(0) = u′′′(0) = u(1) = 0,

αu(0) + u′′(η) = 0

After a direct computation, one may obtain the expression of Green’s function G(t, s) of the
BVP (3) as following:

Proof. Integrating four times the linear problem gives us that

u′′′(t) = u′′′(0) +

∫ t

0

y(s)ds,

u′′(t) = u′′(0) + tu′′′(0) +

∫ t

0

(t− s)y(s)ds,

u′(t) = u′(0) + tu′′(0) +
t2

2
u′′′(0) +

1

2

∫ t

0

(t− s)2y(s)ds,

u(t) = u(0) + tu′(0) +
t2

2
u′′(0) +

t3

6
u′′′(0) +

1

6

∫ t

0

(t− s)3y(s)ds.

The conditions u′(0) = u′′′(0) = 0 implies that

u(t) = u(0) +
t2

2
u′′(0) +

1

6

∫ t

0

(t− s)3y(s)ds,

and the conditions u(1) = 0 this means

u(1) = u(0) +
1

2
u′′(0) +

1

6

∫ 1

0

(1− s)3y(s)ds = 0,

Next, αu(0) + u′′(η) = 0 is rewritten Such as

u′′(0) +

∫ η

0

(η − s)y(s)ds− α

2
u′′(0)− α

6

∫ 1

0

(1− s)3y(s)ds = 0,

whence

(4) u′′(0) =
α

3(2− α)

∫ 1

0

(1− s)3y(s)ds− 2

2− α

∫ η

0

(η − s)y(s)ds.

form The conditions u(1) = 0 we have

u(0) = −1

2
u′′(0)− 1

6

∫ 1

0

(1− s)3y(s)ds

If we substitute(1.3) with the expression from above and simplify, we get that

(5) u(0) =
1

2− α

∫ η

0

(η − s)y(s)ds− 1

3(2− α)

∫ 1

0

(1− s)3y(s)ds.

https://doi.org/10.28919/ejma.2025.5.16
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Finally, we obtain that

u(t) =
1

2− α

∫ η

0

(η − s)y(s)ds− 1

3(2− α)

∫ 1

0

(1− s)3y(s)ds

+
αt2

6(2− α)

∫ 1

0

(1− s)3y(s)ds− t2

2− α

∫ η

0

(η − s)y(s)ds

+
1

6

∫ t

0

(t− s)3y(s)ds.

As a result, we have that
For s ≥ η

G(t, s) =

{
−(2−αt2)(1−s)3

6(2−α) 0 ≤ t ≤ s,
(t−s)3

6
− (2−αt3)(1−s)3

6(2−α) s ≤ t ≤ 1

and s < η

G(t, s) =

{
6(1−t2)(η−s)−(2−αt2)(1−s)3

6(2−α) 0 ≤ t ≤ s,
(t−s)3

6
+ 6(1−t2)(η−s)−(2−αt2)(1−s)3

6(2−α) s ≤ t ≤ 1

�

Remark 2.1. It is not difficult to verify that G(t, s) has the following characteristics:

G(t, s) ≥ 0 for 0 ≤ s ≤ η and G(t, s) ≤ 0 for η ≤ s ≤ 1.

Moreover, if s ≥ η, then

maxG(t, s) : t ∈ [0, 1] = G(1, s) = 0,

minG(t, s) : t ∈ [0, 1] = G(0, s) =
−(1− s)3

3(2− α)
≥ −(1− η)3

3(2− α)

if s < η, then

maxG(t, s) : t ∈ [0, 1] = G(0, s) = (s3−3s2)+(3η−1)
3(2−α) ≤ (η3−3η2)+(3η−1)

3(2−α) ,

minG(t, s) : t ∈ [0, 1] = G(1, s) = 0

therefore,if we let δ = max |G(t, s)| : t, s ∈ [0, 1] then

δ = max

{
−(1− η)3

3(2− α)
,
(η3 − 3η2) + (3η − 1)

3(2− α)

}
<

η − s
(2− α)

Now, let Banach space E = C[0, 1] is equipped with the ‖u‖ = maxt∈[0,1] |u(t)|.

K = {y ∈ C[0, 1] : y(t)} is nonnegative and decreasing on [0, 1]. Then K is a cone in C[0, 1].

Note that this order relationship is inducesan in E by defining uv if and only if u− v ∈ K.
In the remainder of this paper, we always assume that f : C[0, 1] × [0,+∞) → [0,+∞) is
continuous and satisfies the following conditions:
(F1) For each u ∈ [0,+∞), the mapping t 7→ f(t, u) is decreasing;
(F2) For each t ∈ [0, 1], the mapping u 7→ f(t, u) is increasing.

(Au)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds, t ∈ [0, 1](6)
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Obviously, ifu is a fixed point of A in K, then u is a nonnegative and decreasing solution of the
BVP (1.1). Lemma 2.2 Let A : K → K. is completely continuous.

Proof. let u ∈ K . Then, for 0 ≤ t ≤ η, we have

(Au)(t) =

∫ t

0

[
(t− s)3

6
+

6(1− t2)(η − s)− (2− αt2)(1− s)3

6(2− α)

]
y(s)ds

+

∫ η

t

[
6(1− t2)(η − s)− (2− αt2)(1− s)3

6(2− α)

]
y(s)ds

+

∫ 1

η

−(2− αt2)(1− s)3

6(2− α)
y(s)ds

which together with (F1) and (F2) implies that

(Au)′(t) =

∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)
6(2− α)

y(s)ds

+
1

2

∫ t

0

(s2 − 2ts)y(s)ds+
t2

2

∫ η

t

y(s)ds

+

∫ 1

η

αt(1− s)3

3(2− α)
y(s)ds

≤ y(η)

[∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)
6(2− α)

+
1

2

∫ t

0

(s2 − 2ts) +
t2

2

∫ η

t

+

∫ 1

η

αt(1− s)3

3(2− α)

]
ds

≤ ty(η)

[
4ηt(2− α) + (α− 8η)

12(2− α)
− 5t2

6
+
tη

2

]
≤ bty(η)

[
4ηt(2− α) + (α− 8η)

12(2− α)
− η8

6

]
≤ 0

At the same time, η > 1
2
shows that

(Au)′′(t) =

∫ η

0

6t(2− α) + 2α(1− s)3 − 12(η − s)
6(2− α)

y(s)ds

−
∫ t

0

sy(s)ds+ t

∫ η

t

y(s)ds

+

∫ 1

η

α(1− s)3

3(2− α)
y(s)ds

≤ y(η)

[∫ η

0

6t(2− α) + 2α(1− s)3 − 12(η − s)
6(2− α)

−
∫ t

0

sds

+ t

∫ η

t

+

∫ 1

η

α(1− s)3

3(2− α)

]
ds

≤ y(η)

[
α(3t− 2η) + 6(η − t)

2(2− α)
− 2η2 + α

]
≤ y(η)

[
η(α− 2η)

2(2− α)
+ α

]
≤ 0 t ∈ (0, η)

https://doi.org/10.28919/ejma.2025.5.16
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For t ∈ [η, 1], we have

(Au)(t) =

∫ η

0

[
(t− s)3

6
− 6(1− t2)(η − s)− (2− αt2)(1− s)3

6(2− α)

]
y(s)ds

+

∫ t

η

[
(t− s)3

6
− (2− αt2)(1− s)3

6(2− α)

]
y(s)ds

+

∫ 1

t

[
−(2− αt2)(1− s)3

6(2− α)

]
y(s)ds

which together with (F1) and (F2) implies that

(Au)′(t) =

∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)
6(2− α)

ds

+
1

2

∫ η

0

(s2 − 2ts)y(s)ds+

∫ t

η

(t− s)2

2

+

∫ 1

η

2αt(1− s)3

6(2− α)
y(s)ds

≤ y(η)

[∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)
6(2− α)

+
1

2

∫ η

0

(s2 − 2ts) +

∫ t

η

(t− s)2

2
+

∫ 1

η

αt(1− s)3

6(2− α)

]
ds

= ty(η)

[
(α− 12η)

12(2− α)
+ tη − η2

2
+ 1 +

η3

6
− η
]

≤ ty(η)

[
(α− 12η)

12(2− α)
+
η3

6
+
η2

2
− η + 1

]
≤ 0 t ∈ (η, 1)

So,(Au)(t) is decreasing on [0, 1].At the same time,since (Au)(1) = 0, we know that (Au)(t) is
nonnegative on [0, 1]. This indicates that (Au)(t) ∈ K. Furthermore, although G(t, s) is not
continuous, it follows from known text book results, for example, see [12], that A : K → K is
completely continuous �

Theorem 2.3 Assume that f(t, 0) 6≡ 0 for t ∈ [0, 1] and there exist two positive constants
a and b such that the following conditions are satisfied:
(H1) f(0, a) ≤ 6(2− α)a,
(H2) b(u2 − u1) ≤ f(t, u2)− f(t, u1) ≥ 2b(u2 − u1), t ∈ [0, 1],

0 ≤ u1 ≤ u2 ≤ a.

If we construct a iterative sequence vn+1 = Avn and n = 0, 1, 2, · · ·, where v0(t) ≡ 0 for t ∈ [0, 1],
then vn∞n=1 converges to v† in E and v† is a decreasing positive solution of the BVP (1.1)

Proof. Let Ka = u ∈ K : ‖u‖ ≤ a. Then we may assert that A : Ka → Ka.

In fact, if u ∈ Ka, then it follows from (H1) that

0 ≤ (Au)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds

≤
∫ 1

0

|G(t, s)|f(0, a)ds

https://doi.org/10.28919/ejma.2025.5.16
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≤ 6(2− α)aδ

< a, t ∈ [0, 1],

which indicate that ‖Au‖ ≤ a

so A : Ka → Ka.

Now, we prove that vn∞n=1 converges to v† in E and v† is a decreasing positive solution of (1.1).
Indeed, in view of v0 ∈ Ka and A : Ka → Ka , we have vn ∈ Ka , n = 1, 2, · · · Since the
set vn∞n=0 is bounded and A is completely continuous, we know that the set vn∞n=1 is relatively
compact. In what follows, we prove that vn∞n=0 is monotone by induction. First, it is explicit
that v1 − v0 = v1 ∈ K, which indicates this v1v0 Subsequently, we suppose that vk−1vk. Then
vk − vk−1 is decreasing and 0 ≤ vk−1(t) ≤ vk(t) ≤ a,0 ≤ t ≤ 1. So, it follows from (H2) that for
0 ≤ t ≤ η

v′k+1(t)− v′k(t)

=
1

6(2− α)

∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)[f(s, vk(s))− f(s, vk−1(s))]ds

+
1

2

∫ η

0

(s2 − 2ts)[f(s, vk(s))− f(s, vk−1(s))]ds

+
1

2

∫ t

η

(t− s)2[f(s, vk(s))− f(s, vk−1(s))]ds

+
αt

3(2− α)

∫ 1

η

(1− s)3[f(s, vk(s))− f(s, vk−1(s))]ds

≤ b

6(2− α)

∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)[vk(s)− vk−1(s)]ds

+
b

2

∫ η

0

(s2 − 2ts)[vk(s)− vk−1(s)]ds

+
b

2

∫ t

η

(t− s)2[vk(s)− vk−1(s)]ds

+
αt

6(2− α)

∫ 1

η

(1− s)3[vk(s)− vk−1(s)]ds

≤ b[vk(η)− vk−1(η)]

× [
1

6(2− α)

∫ η

0

3t2(2− α) + 2αt(1− s)3 − 12t(η − s)

+
1

2

∫ η

0

(s2 − 2ts) +
1

2

∫ t

η

(t− s)2 +
αt

3(2− α)

∫ 1

η

(1− s)3]ds

= b[vk(η)− vk−1(η)]t

[
(α− 12η)

12(2− α)
+ tη − η2

2
+ 1 +

η3

6
− η
]

≤ b[vk(η)− vk−1(η)]t

[
(α− 12η)

12(2− α)
+
η3

6
+
η2

2
− η + 1

]
≤ 0 t ∈ (η, 1)

And therefore,

v′k+1(t)− v′k(t) ≤ 0, v′′k+1(t)− v′′k(t) ≤ 0 t ∈ [0, 1](7)

https://doi.org/10.28919/ejma.2025.5.16
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This together with

v′k+1(t)− v′k(t) =

∫ 1

0

G(1, s)[f(s, vk(s))− f(s, vk−1(s))]ds, t ∈ [0, 1].(8)

vk+1(t)−vk(t) ≥ 0, t ∈ [0, 1] Subsequently, given the above (1.7) and (1.8) that vk+1−vk ∈ K,
Which shows vk+1vk ∈ K.
Thus, we have shown that vk+1vk ∈ K , n = 0, 1, 2.... Since vn∞n=1 Relatively compact and mo-
notonous, there exists a v† ∈ Ka such that limn→∞ vn = v†, which together with the continuity
of A and the fact that vn+1 = Avn It means that v† = Av† . This indicate that v† is a decreasing
non-negative solution of (1.1).Moreover, in view of f(t, 0) 6≡ 0, t ∈ [0, 1], we know that zero
function is not a solution of (1.1), which indicates that v† is a positive solution of (1.1). �

3. An Example

Consider the boundary value problem:

(9)


u(4)(t) = 1

8
u2(t) + u(t) + (1− t), , t ∈ [0, 1],

u′(0) = u′′′(0) = u(1) = 0,

αu(0) + u′′(1
2
) = 0

If we let η = 1
2
,α = 1 and f(t, u) = 1

8
u2(t) + u(t) + (1− t), (t, u) ∈ [0, 1]× [0,+∞), Then all

the assumptions of Theorem 2.2 a = 2 and b = 1. It follows from Theorem 2.2 that (3.1) has a
decreasing positive solution v† . Moreover, the iterative scheme is v0(t) ≡ 0 for t ∈ [0, 1]

vn+1(t) =



∫ t
0

[
(t−s)3

6
+ 6(1−t2)(η−s)−(2−αt2)(1−s)3

6(2−α)

]
[1
8
u2n(s) + un(s) + (1− t)]ds

+
∫ η
t

[
6(1−t2)(η−s)−(2−αt2)(1−s)3

6(2−α)

]
[1
8
u2n(s) + un(s) + (1− t)]ds

+
∫ 1

η
−(2−αt2)(1−s)3

6(2−α) [1
8
u2n(s) + un(s) + (1− t)]ds

if t ∈ [0, 1
2
] n = 0, 1, 2, 3, 4, · · ·∫ η

0

[
(t−s)3

6
− 6(1−t2)(η−s)−(2−αt2)(1−s)3

6(2−α)

]
[1
8
u2n(s) + un(s) + (1− t)]ds

+
∫ t
η

[
(t−s)3

6
− (2−αt2)(1−s)3

6(2−α)

]
[1
8
u2n(s) + un(s) + (1− t)]ds

+
∫ 1

t

[
−(2−αt2)(1−s)3

6(2−α)

]
[1
8
u2n(s) + un(s) + (1− t)]ds

if t ∈ [1
2
, 1] n = 0, 1, 2, 3, · · ·

4. Conclusion

in this paper, when α ∈ [0, 2) and η ∈ [1
2
, 1), we have successfully constructed an animation

sequence whose limit is just the ideal monotonic positive solution of boundary value problem
(1.1).

In addition, a zero function started with the iterative scheme , which shows that the iterative
scheme is feasible.
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