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VARIOUS NOTIONS OF SUBSPACE HYPERCYCLIC POWER
OPERATORS AND THEIR DIRECT SUMS IN OPERATOR SPACES

DAVID OTWISA WECHULI, BENARD OKELO∗, WILLY KANGOGO

Abstract. Subspace hypercyclic operators forms a very important class of operators in op-
erator spaces.A lot of their properties have been studied over along period of time, however,
complete characterization of this property has not been done. In fact, a lot of open questions
remain unanswered with regard to subspace hypercyclicity. Most of these studies have been
done in special cases of finite dimensional operator spaces. It is therefore interesting to address
these questions in general operator spaces. In this research therefore we extend an investigation
on subspace hypercyclicity by investigating different notions of the subspace hypercyclicity. In
particular, we consider subspace hypercyclic operators, their powers and direct sums and show
that operators under direct sum satisfies various subspace-hypercyclicity criteria and has a lot
of interesting properties.

1. Introduction

In the realm of functional analysis, there exists a profound interplay between invariant sub-
spaces and orbits of hypercyclic operators. A key concept in this domain is hypercyclicity,
which characterizes operators whose orbits densely cover the entire space [46]. The notion of
hypercyclicity traces back to Beauzamy who was inspired by the well established concept of
cyclicity in Functional analysis [10]. This study laid the groundwork by demonstrating that
translation operators have dense orbits in spaces of complete functions that uniformly converge
on the compact sets. Building upon Birkhoff’s work in [10], the findingsof Maclane [25] explored
entire functions further and established that {f, f ′, f ′′, f ′′′, ...} fills the entire H(C). The author
also established that differential operators D in a complex space C are dense in H(C). Kim
and Song [22] researched on numerically hypercyclic operators and established the link between
several operators satisfying general hypercyclicity criterion. Shkarin [45] extended this work
by creating operators whose square is not numerically hypercyclic but are numerically hyper-
cyclic on their own. They also confirmed the existence of numerically hypercyclic operators
on C2. Moreover, they further characterized certain diagonal operator S ∈ B(C4) and proved
that diagonal operators have two orbits that are not numerically hypercyclic, but the union
of these two orbits is dense in C. In the process of the investigation they further restricted
an operator on a finite dimensional invariant subspaces, hence providing the necessary and

Department of Pure and Applied mathematics,, Jaramogi Oginga Odinga University of Sci-
ence and Technology,, Box 210-40601, Bondo-Kenya

∗Corresponding author
E-mail address: davidotwisawechuli@yahoo.com, bnyaare@yahoo.com, kangogowll@yahoo.com.
Key words and phrases. Subspace hypercyclicity; Operator; Normed space; Direct sums.

1

https://doi.org/10.28919/ejma.2025.5.14
http://ejma.euap.org


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2025.5.14 2

sufficient conditions of weak and strong numerically hypercyclic operators. This was accom-
plished by establishing the relationship between the point spectrum and strong numerically
hypercyclic operators as well as the relationship between the spectrum and weak numerically
hypercyclic operators. Ansari [2] proved that if S is a hypercyclic operator and for any k ≥ 1,
then it follows that Sk is also hypercyclic. consequently HC(Sk) = HC(S). Saavendra and
Muller [41] established that if an operator is hypercyclic then so is its rotation. They proved
that Orb(S, x) = {Snx : n ∈ N} = X iff Orb(λnS, x) = {λnSnx : n ∈ N, λ ∈ S} = X, more
particulaly they proved that for any φ ∈ R then we have HC(S) = HC(eiφ). Bayart and
Costakis [5] studied operators which are rotated by complex numbers whose modular is unit
with polynimial phase and further demonstrated that when the phase grows at a geometric
rate to infinity, hypercyclicity fails. The aforementioned findings make it abundantly evident
that weakly and hypercyclic operators share many characteristics. These properties include,
for example, the spectrum being empty. De la Rosa [12] further examined existing examples
and proved that difference also exist. Chan [11] examined separable infinite dimensions H. The
investigation’s conclusion was that the strong operator topology has an orbit that fills the en-
tire complex Hilbert space. Furthermore, the operator norm topology has a dense linear span
in H. In addition the research established that a set of bounded linear operators B(H) did
posses non-hypercyclic operators [40]. Matache [27] proved that contractions can sometimes
be hypercyclic if multiplied by a scalar that is strictly greater than 1. The author further
researched on contractions and proved that if those operators have finite defect indices, then
they have hypercyclic scalar multiple. The interest to consider contraction was because the
well known fact that contractions have a bounded orbit hence non-hypercyclic. Further opera-
tors that are similar to contraction are not hypercyclic. Kitai [21] contributed significantly on
the study of hypercyclicity by formulating conditions for continuous linear operators to exhibit
hypercyclicity. This research was extended to invertible operators and the above results were
also admitted. Additionally the above property was investigated in ⊕∞Sk=1 on ⊕∞k=1H and it
was proved that SiX ∩ Z 6= ∅ and SiZ ∩ Y 6= ∅ holds for hereditarily hypercyclic operators.
Bes and Peris [9] in their investigations proved that S ⊕ S is hereditarily hypercyclic when S
satisfy hypercyclicity criterion. Their work provided insights into the behavior of hypercyclic
operators of the composite operator on the separable Frechet Space F. Herrero [18] addressed
the issue of the connection between a hypercyclic operator and its inverse and established that
S ⊕ S is hypercyclic if S satisfies the hypercyclicity criterion. Further in the research the
study established that if the power operator Sn is hypercyclic then Sn ⊕ Sn = (S ⊕ S)n is also
hypercyclic. Grosse-Erdmann and Bernal-Gonzale [15] investigated hypercyclicity properties
of almost-commuting sequence Sm operators on an F-space. They further strengthened their
work by proving that Sm ⊕ Sm is hypercyclic on X ×X. This result motivated them and they
investigated the hypercyclicity properties of almost commuting sequences of operators, more
particularly, they investigated hypercyclicity of operators in X with hereditary subsequences
and found out that Sm⊕ ....⊕Sm (M -fold) is densely hereditarily hypercyclic on XM . The work
of Rolewicz [40] investigated hypercyclicity properties of (λmS

m). Saavendra-Leon and Muller
in [41] established that if S ∈ B(X) and (λm) is a sequence of complex numbers and if (λmS

m)

satisfies conditions (C) and the supm|λm|dm < ∞ where d = dist(0, δε(S)), then (λmS
m) has
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a subspace hypercyclic subspace on a closed infinite dimensional space. It is generally recog-
nized that condition (C) is the weakest approach of testing for hypercyclicity. Manuel and
Charles [26] showed we have operator S that has dense orbits but S ⊕S does not have a dense
orbit. They demonstrated that if an operator S is M -hypercyclic then δ(S) intersects with the
unit circle, but elements of δ(S) do not. It should be noted that the notion ofM -hypercyclicity
is strictly infinite dimensional. Madore and Martinez-Avendano [24] work motivated Bamerni
and Kilicman [4] to research on diskcyclic vector subspaces. They proved that if T is diskcyclic
then the product of the B[0, 1] and the union of the numerical range of all iterations of T is
dense in Hilbert space. Furthermore, they proved that in some instances there exists diskcyclic
operators that have non-trivial closed invariant subspaces. Furthermore, they proved these
operators have dense linear subspace that are in particular infinite dimensional with nonzero
diskcyclic vectors. Bamerni and Kilicman [3] established the relationship between orthogonal
projections onto a closed subspace M of H. In their research they proved the hypercyclicity
of the product an orthogonal projection with the orbit of subspace hypercyclic operator and
established the link between the invariant subspace M⊥ under and an operator S and the
projection P . In the research on M⊥-hypercyclicity and orthogonal projection, they proved
that M⊥ ⊆ Orb(PS, x) ∩M⊥). Saavendra-Leon and Muller in [42] established conditions that
guarantee hypercyclicity for a sequence of operators and further proved that i-sequence of oper-
ators Sk⊕ ...⊕Sk is also hypercyclic. Grosse-Erdmann and Bernal-Gonzale [15] who developed
and proved the hypercyclicity criteria for a sequence of operators. They further proved that
Sk ⊕ Sk ⊕ .... is hypercyclic. Building on the above results, Moosapoor [35] developed the
concept of M -hypercyclicity for a sequence of operators and established the equivalence rela-
tionship between {Si}, and the invariance of Si ⊆ B(X) and M -hypercyclicity and also proved
that M -hypercyclic operator is M -hypercyclic. Bes and Peris in [9] researched on the notion
of herditarily hypercyclic operators and proved that of S is hereditarily hypercyclic then so is
S⊕S. They further proved that if S is hereditarily hypercyclic then so is Si and extended this
results and proved that Si⊕Si = (S⊕S)i is also hereditarily hypercyclic. They expanded their
investigations and established that if S is hypercyclic then S and Ski share the same hypercyclic
vector. Moosapoor [34] building on the above results introduced and investigated the notion of
hereditarily subspace-hypercyclic operators. In their research, they discovered sufficient require-
ments for an operator to be hereditary subspace-hypercyclic [50]. Furthermore Moosapoor [32]
went on to give the subspace-supercyclicity criterion. They researched on hereditary hyper-
cyclic operators and came up with the notion of hereditarily subspace-hypercyclic operators
with all the necessary and sufficient conditions an operator must satisfy for it be hereditarily
subspace-hypercyclic and the research established that hereditarily subspace-hypercyclic oper-
ators are subspace hypercyclic. Herrero [18] proved that S⊕S hypercyclic when T satisfy the
hypercyclicity criterion. This was only possible if the operator is hereditarily hypercyclic and
thus S⊕S. This notion was extended to two power operators and proved that if S ⊕ S and Sn

satisfies the hypercyclicity criterion than Sn⊕Sn = (S⊕S)n is hypercyclic. Bayart and Math-
eron in [6] researched on the weakly supercyclic operators. In their research they established
that weakly supercyclic hyponormal operators are generally a multiple of unitary operators
and hyponormal operators are not N -supercyclic. They further established the equivalence in
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bilateral weighted shifts where they proved that N -supercyclicity is equivalent to supercyclic-
ity. Nathan [37] introduced the concept of n-supercyclicity. During the investigation, they
demonstrated that on a Hilbert space H there exist bounded linear operators that have dense
orbits on Hilbert space that have n-dimensional subspaces. This research resulted in a new
set of operators known as n-supercyclic operators and create a set of conditions that opera-
tors must meet in order to be n-supercyclic. This criteria was extended to direct sum and
conclude that (⊕nk=1Sk) is n-supercyclic on ⊕nk=1Hk. This notion was extended to the direct
sum of infinite number of separable Hilbert spaces and proved that (⊕∞k=1Sk) is ∞-supercyclic
on (⊕∞k=1Hk). The author furthermore utilized the knowledge of spectral theory to establish
that an operator S is 2-supercyclic and proved that if S has a decomposition property then
S and S∗ are 2-supercyclic. The study of [14] create a subspace-supercyclicicity criteria and
provide some equivalent criterion. They provided examples of direct sum in backward shifts
resulting in subspace hyperclic operators. This notion motivated Bamerni and Kilicman [4]
who proved that the direct sum of two different unilateral backward weighted shifts B1 ⊕ B2

in the Hilbert space l2(N) is M1 ⊕M2-subspace hypercyclic. In [6], they established that if
S⊕S subspace hypercyclic then the two individual operators are subspce hypercyclic. Fur-
ther from there research they proved that the converse does not hold. In their investigation
they come up with following questions; Suppose S⊕S is M -hypercyclic, are both operators M -
hypercyclic?, additionally suppose that the two operators are M -hypercyclic does that imply
that S⊕S M -hypercyclic?, again suppose that S satisfiesM -hypercyclic criterion, does it mean
that S⊕S is also M -hypercyclic?, finally suppose S⊕S is M -hypercyclic, does S satisfy hyper-
cyclic criterion? The first two questions positively were answered while the last two were given
partial answers. Motivated by the work of Nathan [38] that is if S = S1, S2, ..., Sm is m-tuple
of operators that commute then S is hypercyclic and the work of [40] on scaled hypercyclic
operators, Yousefi and Sharifi [49] investigated subspace supercyclicity for a tuple of operators.
In their investigation, they established that S = λS1, S2, ..., Sm is subspace supercyclic. They
further developed a subspace-supercyclicity criterion for tuples of operators. They also estab-
lished that S(2)

d = (S = S1, S2, ..., Sm) ⊕ (S = S1, S2, ..., Sm) is M ⊕M subspace-hypercyclic.
The work of [5] introduced the concept of frequently hypercyclic operators and stated off by
giving examples of frequently hypercyclic operators. Such operators were the translation op-
erators. Jeneker [20] research on various methods that can be used to determine whether an
operator is hypercyclic or frequent hypercyclic. The author also analysed a wide range of op-
erators on F -space and established that if S is hypercyclic, then the set of hypercyclic vectors
is dense in Gδ and of interest was that if S is hypercyclic the S ⊕ S ⊕ ... ⊕ S is also hyper-
cyclic and finally proved that hypercyclicity does not necessarily imply frequent hypercyclicity.
Menet [29] extended the scope of research on frequently hypercyclic operators by researching
on the properties U -frequently hypercyclic operators and proved that the exists U -frequently
hypercyclic operators whose inverse is not dense. The author utilized the C-type operator
which operator with four parameters. Menet [28] investigated hypercyclicity properties of in-
vertible operators and particularly, invertible frequently hypercyclic operators. The research
answered a long standing question of Bayart and Grivaux in [7] which to establish hypercyclicity
properties if frequent invertible hypercyclic operator. Bayart and Ruzsa [8] established the link
between an invertible hypercyclic operator S and U -frequently hypercyclicity. Grosse-Erdmann
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in [16] researched on bilateral weghted shifts and proved that Tw hypercyclic under invertibil-
ity. Building on this concept of frequently hypercyclic operators Moosapoor in [33] introduced
and investigated the notion of M -frequently hypercyclic operators and proved that subspace-
frequently hypercyclic operators are M -hypercyclic. Further Sp where p ∈ N and S ⊕ S are
subspace hypercyclic provided that S is subspace-frequently hypercyclic. Heo, Kim and Kim
in [17] researched on q-frequently hypercyclic operators. In their research they developed and
proved the q-hypercyclicity criterion and also investigated properties of q-frequently hyper-
cyclic subspaces of bounded linear operator in F -spaces and also established that q-frequently
hypercyclicity subspaces also admits the infinite dimensional property. Moosapoor [32] using
hypercyclic bounded operators and scaled identity operators from Hilbert spaces constructed
an operator; S = A ⊕ λ1I ⊕ λ2I ⊕ ... ⊕ λnI which was subspace-hypercyclic. Tajmouti et al
in [47] come up with the notion of subspace-hypercycliciity of C0-semigroup and investigated
semigroups and in the process of the research they developed and proved the necessary and
sufficient conditions this semigroup satisfies for it to be subspace-hypercyclic. They partially
characterized the notion of supercyclic C0-semigroup, developed and proved supercyclicity cri-
terion and provided equivalent results for this criterion. El Berrag and Tojmouati [13] further
extended this knowledged proved that if (St ⊕ Ss) is M0 ⊕M1-supercyclic C0-semigroup, then
St and Ss are M1-supercyclic and M2 -supercyclic C0-semigroups respectively. Moosapoor [30]
established equivalence relationship between M -supercyclicity criterion and the notion of in-
variant subspaces while Moosapoor [33] established that hypercyclic operators have invariant
subspaces that are dense exception of zero of subspace-hypercyclic vectors. Further, during the
research process, it was determined s that all members are made up of M -hypercyclic vectors
for any operator from this family. Tajmouati et al in [48] studied the M -hypercyclicity con-
sidering substantially strong continuous cosine functions in a separable complex Banach space,
gave conditions the cosine function must satisfy for it to be M -hypercyclic, and established the
relationship between M -hypercyclicity of cosine operators and M -transitivity. In our research
it was interesting to investigate M -hypercyclicity of other trigonometric functions, develop the
M -hypercyclicity criteria and establish M -transitivity criteria. Building on the work of [40],
El Berrag in [13] characterized the concept of subspace-hypercyclicity of Cesaro operators and
developed subspace Cesaro-hypercyclic criterion and proved that it is subspace mixing. It is
worth noting that there is a link between and subspsce-hypercyclicity, subspace-transitivity and
subspace-mixing in direct sum of two operators. The above research findings were not expanded
to S1 ⊕ ...⊕ Sn. Furthermore, the study did not take into account the subspace-hypercyclicity
of the S1 ⊕ ... ⊕ Sn of different classes of operators that individually meet the hypercyclicity
condition. The study hypercyclic and supercyclic operators has been of great interest in the
recent time because they are common in familiar classes of operators. Using a disk, Nathan
in [38] proved that T ∗ is 2-supercyclic but not supercyclic when T = T1⊕T2 and if T = ⊕ni=1Ti is
T ∗ is n-supercyclic and provided sufficient conditions that guarantee N -supercyclicity. Ahmadi
in [1] research on conditions for supercyclicity. This played an important role in characterizing
supercyclic operators. The research further explored properties of adjoints of composition of op-
erators in Hardy spaces. In so doing Ahmadi [1] established that composition operators are not
supercyclic. This results was extended to adjoints of composition operators that are contrac-
tions in Hilbert spaces because ‖C∗ϕ‖ ≤ ‖Cϕ‖ ≤ 1. The finding was extended to holomorphic
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functions with fixed points on the Bergman space and Dirichlet space. Moosapoor [36] con-
cluded that S can be subspace-hypercyclic when δp(S∗) is empty or when δp(S∗) is non empty.
The findings established the fact that the emptyness of the spectrum does not necessarily imply
that the operator S is not M -hypercyclic. Salas [44] proved that there are bilateral weighted
shift operators whose adjoints are hypercyclic but S⊕S ∗ is not even cyclic. This implies that S
or S ∗ or both operators do not satisfy hypercyclic operators criterion. Of interest was to deter-
mine whether there are conditions if satisfied then the direct sum of an operator and its adjoint
is subspace-hypercyclic if the operator and its adjoint are individually subspace-hypercyclic. It
was proved that hypercyclic operators are not hypornormal, which indicates that hypercyclic
operators cannot be quasinormal and, more specifically, they cannot be normal. Nathan in [39]
did the characterization of hypornormal operators with hypercyclic adjoints. These conditions
were extended to hypornormal operators and it was proved that S∗ is hypercyclic. Nathan [39]
did not generalize the results by considering other operators that are not in this class of op-
erators. In our study, we will characterize different types of operators and evaluate whether
they or their adjoints are subspace-hypercyclic. If they are subspace-hypercyclic, we will inves-
tigate these operators if their adjoints are subspace-hypercyclic. Herrero in [18] investigated on
the link between hyperclicity and hyperinvariance and proved that if S is hyperinvariant, then
the restriction of S on M is also hypercyclic. The results above motivates us to characterize
other known operators restricted to certain subspaces and determine whether there adjoints
are subspace-hypercyclic. If any characterized adjoint of any operator is subspace hypercyclic,
then we will consider if the direct sum of such an operator and its adjoint is subspace hyper-
cyclic. Herrero in [18] proved restriction of S on M is also hypercyclic. Salas in [39] extended
hypercyclicity property to bilateral weight shifts of adjoints, showcasing the breadth of hyper-
cyclic phenomena. Nathan in [38] did the characterization of hypornormal operators whose
adjoints are hypercyclic. Hypornormal operators are not hypercyclic but it can be attained
by applying the concept of separated sequence to obtain dense orbits. The use of separated
sequence was necessary because orbits of hypornormal operators either strictly increase or de-
crease in norm or strictly decrease up-to a certain point and increase there after hence no dense
orbits. The above research did not address the topic of when an operator and its adjoint is
subspace-hypercyclic or subspace-supercyclic under direct sum. The question on the criterion
to be applied on direct sum of an operator and its adjoint for them to be subspace-hypercyclic
remains open. Bamerni and Kilicman in [3] provided sufficient conditions for bilateral shift to
be subsapce-hypercyclic. As a result, they proved that an operator S exists such that S and S∗

are both subspace-hypercyclic. This was achieved by constructing a positive weight sequence
xn that satisfies the following conditions; limk→∞Πmi−nk+1

j=mi
xi = 0 and limk→∞Πmi+nk

j=mi+1
1
xj

= 0

Moosapoor in [31] expanded their study to analytic Toeplitz operators and established such
operators cannot be multi-subspace-hypercyclic because the identity operator I obtained from
the that that T k = I cannot be multi subspace-hypercyclic.

2. Preliminaries

Certain preliminaries are given here since they are important for proofs in the results section.
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Definition 2.1. ( [23], Definition 2.18). Let X be a Banach space and let S : X → X be
bounded linear operator. We define the orbit of a vector x in X with respect to S by Orb(S,x)=
{Snx : n ∈ N}.

Definition 2.2. ( [19], Definition 2.19). A vector x in a Banach space X is said to be hy-
percyclic for an operator S in B(X) if the set Orb(S,x)= {Snx : n ∈ N} is norm dense in
the whole space. And is supercyclic if Orb(S, x) = {cSnx : n ∈ N, c ∈ C} =X That is to say
Orb(S, x) = {Snx : n ∈ N} = X

Definition 2.3. ( [43], Definition 2.1). A bounded linear operator T : X →X is said to be
subspace-hypercyclic for a subspace M of X if there exists a vector x∈X such that orb(T,x)∩M
is dense in M. Such a vector x is called a M-hypercyclic vector for T .

3. Main Results

We start off by introducing the notion of numerical subspace-hypercyclicity of operators.

Proposition 3.1. Let Ti be a set of operators in an operator space then operators under direct
sum are weakly numerically subspace-hypercyclic if f1 + ... + fm ∈ X∗1 ⊕ ... ⊕ X∗m such that
Orb(T1⊕...⊕Tm, x1+...+xm, f1+...+fm)∩M1⊕...⊕Mn is dense and compact inM1⊕...⊕Mm.

Proof. Let x1 + ... + xm be a weakly numerically subspace-hypercyclic vector of T1 ⊕ ... ⊕ Tm
with respect to M1 ⊕ ...⊕Mm. Let U1 ⊕ ...⊕ Um be a nonzero open set of M1 ⊕ ...⊕Mm and
f1⊕...⊕fm ∈M∗

1⊕...⊕M∗
m, then by definition we have;{(f1+...+fm)(T1⊕...⊕Tm)n(x1+...xm) :

n ∈ N} ∩M1 ⊕ ...⊕Mm is dense in M1 ⊕ ...⊕Mm. Thus x1 ⊕ ...⊕ xm is a weakly numerically
subspace hypercyclic vector of T1⊕ ...⊕ Tm with respect to M1⊕ ...⊕Mm. Thus, T1⊕ ...⊕ Tm
satisfies weakly numerically subspace-hypercyclicity. �

We now show that power bounded operators preserve numerical subspace-hypercyclicity prop-
erty in operator spaces. Thus, the direct sum of power bounded operators is also numerically
subspace-hypercyclic.

Lemma 3.2. Let T pi be numerically subspace-hypercyclic, then T
p

1 ⊕ ... ⊕ T pm is numerically
subspace-hypercyclic.

Proof. Suppose p ∈ N is such that T pi is numerically subspace-hypercyclic. Let x1 + ...+ xm be
a numerically subspace-hypercyclic vector of T p

1 ⊕ ...⊕ T pm with respect to M1 ⊕ ...⊕Mm. Let
f1 + ...+ fm ∈M∗

1 ⊕ ...⊕M∗
m and let U1 ⊕ ...⊕ Um be nonzero open subset of M1 ⊕ ...⊕Mm,

then we note that {n ∈ N : (f1 + ... + fm)(T
p

1 ⊕ ... ⊕ T pm)(x1 + ... + xm) ∈ U1 ⊕ ... ⊕ Um} ⊆
{n ∈ N : (f1 + ... + fm)(T1 ⊕ ... ⊕ Tm)(x1 + ... + xm) ∈ U1 ⊕ ... ⊕ Um}. Since {n ∈ N :

(f1 + ...+ fm)(T1⊕ ...⊕Tm)(x1 + ...+ xm) ∈ U1⊕ ...⊕Um} is numerically subspace-hypercyclic
then it follows that {n ∈ N : (f1 + ... + fm)(T

p

1 ⊕ ... ⊕ T pm)(x1 + ... + xm) ∈ U1 ⊕ ... ⊕ Um} is
numerically subspace-hypercyclic. Thus x1+ ...+xm is numerically subspace-hypercyclic vector
of T1 ⊕ ...⊕ Tm with respect to M1 ⊕ ...⊕Mm. �

Theorem 3.3. For strongly numerically subspace-hypercyclic operators there exists λ1, ..., λn ∈
δp(T1 ⊕ ... ⊕ Tn) and c1, ..., cn ∈ (R+1 ⊕ ... ⊕ R+n), then T1 ⊕ ... ⊕ Tn is numerically subspace-
hypercyclic if

∑
{(c1, ..., cn)(λki ) : k ∈ N} ∩ (M1 ⊕ ....⊕Mn is dense in M1 ⊕ ...⊕Mn.
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Proof. Let Mi be nonzero closed subspaces of X and M∗
i be nonzero closed subspaces of X∗.

Suppose that (λ1 + ... + λn) ∈ δp(T1 ⊕ ... ⊕ Tn) and (c1 + ... + cn) ∈ R1+ ⊕ ... ⊕ Rn+ and if
(c1 + ...+ cn) = 1 then there exists (x1 + ...+xn, f1 + ...+ fn ∈ (M1⊕ ...⊕Mn)× (M∗

1 ⊕ ...⊕M∗
n

such that (f1+ ...+fn)(T1⊕ ...⊕Tn)k, (x1+ ...+xn) = (c1)(λ
k
1)+ ...+(cn)(λkn) for all k ∈ Z. Thus

the Orb((T1 + ...+Tn), (x1 + ...+xn), (f1 + ...+fn))∩ (M1 + ...+Mn) is dense in (M1 + ...+Mn)

and thus (T1 + ...+ Tn) ∈ B(M1⊕ ...⊕Mn) is numerically subspace-hypercyclic. We note that
the operator similar to (T1⊕ ...⊕Tn) satisfy the same condition hence (T1⊕ ...⊕Tn) is strongly
numerically subspace-hypercyclic. �

In the next corollary we provide conditions for diagonal operators to be numerically subspace-
hypercyclic.

Corollary 3.4. For operators that are subspace-hypercyclic numerically, subspace-hypercyclic
in a stronger sense is guaranteed.

Proof. Suppose {(c1)(λk1) + ... + (cn)(λkn) : k ∈ Z} ∩M1 ⊕ ... ⊕Mn is dense in M1 ⊕ ... ⊕Mn,
then T1 ⊕ ... ⊕ Tn is strongly numerically subspace-hypercyclic. Thus T1 ⊕ ... ⊕ Tn is nu-
merically subspace-hypercyclic. Now assume that T1 ⊕ ... ⊕ Tn is numerically subspace-
hypercyclic, then there exists x1 ⊕ ... ⊕ xn ∈ M1 ⊕ ... ⊕ Mn for which the numerical
Orb((T1 ⊕ ...⊕ Tn), (x1 ⊕ ...⊕ xn) ∩M1 ⊕ ...⊕Mn = M1 ⊕ ... ⊕Mn. We note that Orb((T1 ⊕
...⊕ Tn), (x1 + ...+ xn) ∩M1 ⊕ ...⊕Mn = |x1|2 | λk1 | +...+ |xn|2 | λkn |: k ∈ Z ∩M1 ⊕ ...⊕Mn.
Thus by setting (ci) =| xi |2, we have, | c1 |2| λk1 | +...+ | cn |2| λkn |: k ∈ Z ∩M1 ⊕ ... ⊕Mn is
dense in M1 ⊕ ...⊕Mn �

We now introduce the notion of subspace multidiskcyclicity. The following result characterizes
the concept of subspace muiltidiskcyclity in Banach spaces.

Proposition 3.5. Let Ti, i = 1, 2, ..., n be subspace multidiskcyclic. Let Mi be nonzero closed
subspaces of X, then there exists xi ∈Mi such that the subspace disk orbit of x1 + ...+xn under
T1 ⊕ ...⊕ Tn is dense in M1 ⊕ ...⊕Mn.

Proof. Let M1 ⊕ ... ⊕Mn be a nonzero closed subset of the disk K under T1 ⊕ ... ⊕ Tn. Let
Dorb((T1⊕ ...⊕Tn), (x1 + ...+xn))∩ (M1⊕ ...⊕Mn) be nowhere dense for every (x1 + ...+xn) ∈
(M1 ⊕ ... ⊕Mn), then we have (x1 + ... + xn)k ∈ (M1 ⊕ ... ⊕Mn) such that (M1 ⊕ ... ⊕Mn)

is nowhere dense. Thus ∪mi=1,i 6=kDorb((T1 ⊕ ... ⊕ Tn), (x1 + ... + xn)i) ∩ (M1 ⊕ ... ⊕ Mn) is
dense in (M1 ⊕ ... ⊕ Mn). Thus (T1 ⊕ ... ⊕ Tn) is subspace multidiskcyclic with respect to
(M1 ⊕ ...⊕Mn). �

We now provide the link between subspace multidiskcyclicity and subspace diskcyclicity

Proposition 3.6. Let Ti be subspace multidiskcyclic with respect to nonzero closed subspace of
Mi of the disk K, then T1 ⊕ ...⊕ Tn is subspace diskcyclic.

Proof. Suppose n is a positive integer. Let M1⊕ ...⊕Mn = {(x1 + ...+xn)1, ..., (x1 + ...+xn)n}
be subspace diskcyclic with respect to T1 ⊕ ...⊕ Tn, then we have

∪ni=1DOrb{(T1 ⊕ ...⊕ Tn), (x1 + ...+ xn)i)} ∩ (M1 ⊕ ...⊕Mn)
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is dense in M1 ⊕ ...⊕Mn.
Suppose that n > 1 and (x1 + ...+ xn)1, ..., (x1 + ...+ xn)n ∈ (M1 ⊕ ...⊕Mn) with

intDOrb{(T1 ⊕ ...⊕ Tn), (x1 + ...+ xn)i} ∩ (M1 ⊕ ...⊕Mn) 6= ∅.

Then we have (x1 + ...+ xn)h ∈M1 ⊕ ...⊕Mn such that the intersection between

{intDOrb{(T1 ⊕ ...⊕ Tn), (x1 + ...+ xn)}

and

(M1 ⊕ ...⊕Mn) ∩ {intDOrb{(T1 ⊕ ...⊕ Tn), (x1 + ...+ xn)h} ∩ (M1 ⊕ ...⊕Mn)}

is not equal to the empty set. Thus,

{intDOrb{(T1 ⊕ ...⊕ Tn), (x1 + ...+ xn)} ∩ (M1 ⊕ ...⊕Mn)}

is equal to
{intDOrb{(T1 ⊕ ...⊕ Tn), (x1 + ...+ xn)h} ∩ (M1 ⊕ ...⊕Mn)}

. �

In the next result we show that MS-hypercyclicity where MS denotes multi-subspace.

Lemma 3.7. Let Ti ∈ B(X). If Ti are MS-hypercyclic with respect to Mi, then Tm1 ⊕ ...⊕ Tmn
is MS-hypercyclic with respect to M1 ⊕ ...⊕Mn for any m ∈ N and i = 1, 2, ..., n.

Proof. When m = 1 and Ti are MS-hypercyclic and consider {(x1 + ...+xn)1, ..., (x1 + ...+xn)}
in X1 ⊕ ...⊕Xn such that ∪ij=1Orb{(T1 ⊕ ...⊕ Tn), (x1 + ...+ xn)j} ∩ (M1 ⊕ ...⊕Mn) is dense
in M1 ⊕ ... ⊕Mn. Suppose (y1 + ... + yn)j,k = (T k1 + ... + T kn )(x1 + ... + xn)j where 1 ≤ j ≤ i

and 1 ≤ k ≤ m − 1. Now, since ∪ij=1Orb{(T1 ⊕ ... ⊕ Tn), (x1 + ... + xn)} ∩ (M1 ⊕ ... ⊕Mn) =

∪1≤j≤i,1≤k≤m−1Orb{(Tm1 ⊕ ...⊕ Tmn ), (y1 + ...+ yn)}j,k ∩ (M1 ⊕ ...⊕Mn). We note that

∪1≤j≤i,1≤k≤m−1(Orb(Tm1 ⊕ ...⊕ Tmn ), (y1 + ...+ yn)j,k ∩ (M1 ⊕ ...⊕Mn)

is equal to (M1 ⊕ ...⊕Mn). Hence, we have that

∪1≤j≤i(Orb(T1 ⊕ ...⊕ Tn), (x1 + ...+ xn)j ∩ (M1 ⊕ ...⊕Mn)

is equal to (M1 ⊕ ... ⊕Mn). Thus, (Tm1 ⊕ ... ⊕ Tmn ) is multi subspace-hypercyclic with respect
to M1 ⊕ ...⊕Mn. �

In the next result we established then link between subspace-hypercyclicity and MS-
hypercyclicity.

Theorem 3.8. Let T1⊕ ...⊕Ti ∈ B(X1⊕ ...⊕Xi) be M1⊕ ...⊕Mi-hypercyclic then Tm1 ⊕ ...⊕Tmi
is MS-hypercyclic for any m ∈ N.

Proof. If m = 1 then it follows by hypothesis. Now suppose that m ≥ 2, let x1 +

... + xi be an M1 ⊕ ... ⊕ Mi-hypercyclic vetor for T1 ⊕ ... ⊕ Ti, then it follows that:
Orb((T1 ⊕ ...⊕ Ti), (x1 + ...+ xi)) ∩ (M1 + ...+Mi) = M1 + ... + Mi. Now put x1 + ... + x1 −
i−times = x+ ...+x− i−times, x2+ ...+x2− i−times = (T1⊕ ...⊕Ti)(x+ ...+x), ..., xn+ ...+

xn− i− times = (Tm−11 ⊕ ...⊕Tm−1i )(x+ ...+x). Then = ∪mk=1Orb((T
m
1 ⊕ ...⊕Tmi ), (T k−11 ⊕ ...⊕

Tm−1i )(x+ ...+x) = (Orb((Tm1 ⊕ ...⊕Tmi ), (x+ ...+x))∪ (Orb((Tm1 ⊕ ...⊕Tmi ), (T1⊕ ...⊕Ti)(x+

...+x))∪ ...∪ (Orb((Tm1 ⊕ ...⊕Tmi ), (Tm−11 ⊕ ...⊕Tm−1i )(x+ ...+x)) = {(x+ ...+x), (T1⊕ ...⊕
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Ti)(x+ ...+x), ..., (Tm−11 ⊕ ...⊕Tm−1i )(x+ ...+x), (Tm+1
1 ⊕ ...⊕Tm+1

i )(x+ ...x), ...}∩M1⊕ ...⊕Mi.
= Orb((T1 ⊕ ...⊕ Ti), (x+ ...+ x)) ∩ (M1 ⊕ ...⊕Mi. Thus, the result follows. �

Lemma 3.9. If T1⊕ ...⊕Tn satisfies (M1⊕ ...⊕Mn)-hypercyclicity criterion, then T1, T2, ..., Tn
satisfies M1,M2, ...Mn-hypercyclicity criterion respectively hence T1, T2, ..., Tn are individually
hypercyclic.

Proof. Consider

(i). (T1 ⊕ ...⊕ Tn)nk(x
′
1, ..., x

′
n)→ (0, 0, ..., 0)∀(x′

1, ..., x
′
n) ∈ U1 ⊕ ...⊕ Un.

(ii). For all (y
′
1, y

′
2, ..., y

′
n) ∈ V1⊕ ...⊕Vn there exists a sequence (ak, bk, ...gk) ⊂M1⊕ ...⊕Mn

such that (ak, bk, ...gk)→ (0, 0, ..., 0).

and (T1⊕...⊕Tn)nk(ak, bk, ...gk)→ (y
′
1, y

′
2, ..., y

′
n). Since U1 and V1 are dense inM1, U2 and V2 are

dense in M2 and Un and Vn are dense in Mn, so it follows that T1, T2, ..., Tn are M1-hypercyclic,
M2-hypercyclic up to Mn-hypercyclic respectively. Thus T1, T2, ...Tn are individaully hyper-
cyclic. �

In the next theorem we establish that Ti i = 1, 2, ..., n satisfies the subspace hypercyclicity
criterion, under direct sum.

Theorem 3.10. Suppose T1, ..., Tn satisfies M1, ...,Mn-hypercyclicity criterion respectively,
then T1 ⊕ ...⊕ Tn satisfies M1 ⊕ ...⊕Mn-hypercyclicity criterion.

Proof. Now, let (y1, y2, ..., yn ∈ D2 ⊕ ... ⊕ D2 then y1 ∈ D2, y2 ∈ D2, ..., yn ∈ D2. such that
for some sequences xk → 0 and T nk

1 xk → y1, yk → 0 and T nk
2 yk → y2, ..., and zk → 0 and

T nk
n zk → yn Therefore, since (xk, yk, ..., zk)→ (0, 0, ..., 0) and

(1) (T1 ⊕ T2 ⊕ ...⊕ Tn)(xk, yk, ..., zk)→ (y1, y2, ..., yn)

Finally, since T nkM ⊆M , then

(2) (T1 ⊕ ...⊕ Tn)(M1 ⊕ ...⊕Mn) ⊆ (M1 ⊕ ...⊕Mn)

Thus, by Equation 1 and Equation 2, it follows that (T1
⊕

T2 ⊕ ...⊕ Tn) satisfies (M1 ⊕M2 ⊕
...⊕Mn)-hypercyclicity criterion and thus hypercyclic. �

In the next result, we establish the equivalence relationship between subspace-transitivity and
subspace-hypercyclicity.

Corollary 3.11. For the equivalent conditions:

(i). Ctn1 ⊕ Ctn2 ⊕ ...⊕ Ctnn is M1 ⊕M2 ⊕ ...⊕Mn-transitive.
(ii). ∃t > 0 : (Ctn1 ⊕ Ctn2 ⊕ ...⊕ Ctnn)−1(V1 ⊕ ...⊕ Vn) ∩ (U1 ⊕ ...⊕ Un) is not empty.
(iii). ∃t > 0 such that (Ctn1 ⊕ ...⊕ Ctnn)(M1 ⊕ ...⊕Mn) ⊆ (M1 ⊕ ...⊕Mn)

We have (Ctn1 ⊕ Ctn2 ⊕ ...⊕ Ctnn) being M-transitive, M-hypercyclic and hence hypercyclic.

Proof. Consider M1 ⊕ M2 ⊕ ... ⊕ Mn such that (V1 ⊕ ... ⊕ Vn) ∩ (D1 ⊕ ... ⊕ Dn) 6= ∅ and
(Dn+1⊕...⊕Dn+n)∩(U1⊕...⊕Un) 6= ∅. Let a = a1+a2+...+an ∈ (Dn+1⊕...⊕Dn+n)∩(U1⊕...⊕Un)

and b = b1 + b2 + ...+ bn ∈ (V1 ⊕ ...⊕ Vn) ∩ (D1 ⊕ ...⊕Dn) ,then there exists t > 0 : B(a, ε) ⊂
(U1 ⊕ ... ⊕ Un) and B(b, ε) ⊆ (V1 ⊕ ... ⊕ Vn). From b ∈ ⊕ni=1Di and a ∈ ⊕ni=1Dn+i, we have:
Ctn1 ⊕ ...⊕Ctnn → b1 + ...+ bn and there exists (xn)n = (xn1 +xn2 + ...+xnn)n ⊂M1⊕ ...⊕Mn

such that (xn1+xn2+...+xnn)→ 0 and (Ctn1⊕...⊕Ctnn)(xn1+xn2+...+xnn)→ a1+a2+...+an.
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Consequently, there exists N ∈ N such that ‖ xn1 + xn2 + ... + xnn ‖< ε, Thus, ‖ (Ctn1 ⊕ ... ⊕
Ctnn)(xn1 +xn2 + ...+xnn)−(a1 +a2 + ...+an) ‖< ε

n
+ ...+ ε

n
= ε. Thus, ‖ Ctn1−a1 ‖< ε

n
+ ...+ ‖

Ctnn−an ‖< ε
n
and ‖ (Ctn1⊕ ...⊕Ctnn)(xn1 + ...+xnn)− (b1 + ...+bn) ‖< ε

n
+ ...+ ε

n
= ε∀n ≥ N.

Therefore, ‖ (b1 + ... + bn) + (xn1 + ... + xnn) − (a1 + a2 + ... + an) ‖=‖ (xn1 + ... + xnn) ‖<
ε. This implies that (b1 + ... + bn) + (xn1 + ... + xnn) ∈ B(b, ε) ⊂ (V1 ⊕ ... ⊕ Vn). Thus,
(b1+...+bn)+(xn1+...+xnn) ⊂ (V1⊕...⊕Vn) On the other hand, ‖ (Ctn1⊕...⊕Ctnn)(b1+...+bn+

xn1+...+xnn)−(a1+a2+...+an) ‖=‖ Ctn1(b1)+Ctn1xn1−a1 ‖ +...+ ‖ Ctnn(bn)+Ctnnxnn−an ‖<
ε
n

+ ... + ε
n

= ε This implies that (Ctn1 ⊕ ... ⊕ Ctnn)(b1 + ... + bn + xn1 + ... + xnn) ∈ B(a, ε) ∈
(U1 ⊕ ... ⊕ Un) Thus, (Ctn1 ⊕ ... ⊕ Ctnn)(b1 + ... + bn + xn1 + ... + xnn) ∈ (U1 ⊕ ... ⊕ Un).
So, (b1 + ... + bn) + (xn1 + ... + xnn) ∈ (Ctn1 ⊕ ... ⊕ Ctnn)−1(U1 ⊕ ... ⊕ Un) and we obtain
(b1 + ... + bn) + (xn1 + ... + xnn) ∈ (Ctn1 ⊕ ... ⊕ Ctnn)−1(U1 ⊕ ... ⊕ Un) ∩ (V1 ⊕ ... ⊕ Vn) and
(Ctn1⊕...⊕Ctnn)−1(U1⊕...⊕Un)∩(V1⊕...⊕Vn) 6= ∅. By hypothesis (Ctn1⊕Ctn2⊕...⊕Ctnn)(M1⊕
... ⊕Mn) ⊆ (M1 ⊕ ... ⊕Mn), then (Ctn1 ⊕ Ctn2 ⊕ ... ⊕ Ctnn)t≥0 is M1 ⊕ ... ⊕Mn-transitive, let
(⊕ni=1Cti)t∈R be on X1 × ... × Xn and consider Ctn. Fix X01 × ... × X0n = {x1 + ... + xn ∈
X1 × ...×Xn/ limn→∞(Ctn1 ⊕ ...⊕ Ctnn)(x1 + ...+ xn) = 0}. �

Lemma 3.12. Every subspace-hypercyclic operator is hypercyclic with regard to direct sum.

Proof. For any nonempty set U1⊕ ...⊕Un ⊆ (M1⊕ ...⊕Mn) and V1⊕ ...⊕Vn ⊆ (M1⊕ ...⊕Mn),
both relatively open in (M1⊕ ...⊕Mn), consider x01+ ...+x0n ∈ (V1⊕ ...⊕Vn) and y01+ ...+yn ∈
(U01 ⊕ ... ⊕ Un). Since JS((T1 ⊕ ... ⊕ Tn),M1 ⊕ ... ⊕Mn, x1 + ... + xn) = M1 ⊕ ... ⊕Mn, there
exists n ≥ 1 and λ ∈ C\{0} such that λ(T1 ⊕ ...⊕ Tn)n(V1 ⊕ ...⊕ Vn) ∩ (U1 ⊕ ...⊕ Un) 6= ∅ and
(T1 ⊕ ...⊕ Tn)(M1 ⊕ ...⊕Mn) ⊆M1 ⊕ ...⊕Mn. �

Lemma 3.13. Let Ti ∈ B(X), suppose Ti are all invertible andMi are nonzero closed subspaces
of X. If for all x1 + ...+ xn ∈M1⊕ ...⊕Mn, JS(T−11 ⊕ ...⊕ T−1n ,M1⊕ ...⊕Mn, x1 + ...+ xn) =

M1⊕ ...⊕Mn, then (T1⊕ ...⊕ Tn)−1 is also subspace supercyclic with respect to M1⊕ ...⊕Mn.

Proof. By 10 T1⊕...⊕Tn is subspace-supercyclic forM1⊕...⊕Mn. By assumption JS(T−11 ⊕...⊕
T−1n ,M1⊕...⊕Mn, x1+...+xn) = M1⊕...⊕Mn. For any nonempty sets U1⊕...⊕Un ⊆M1⊕...⊕Mn

and V1⊕...⊕Vn ⊆M1⊕...⊕Mn both relatively open and which contains x01+...+x0n, y01+...+y0n
respectively, then we have n > 1 and λ ∈ C\{0} such that λ(T−11 ⊕ ...⊕ T−1n )n(V1 ⊕ ...⊕ Vn) ∩
(U1 ⊕ ... ⊕ Un) 6= ∅ and (T−11 ⊕ ... ⊕ T−1n )(M1 ⊕ ... ⊕Mn) ⊆ (M1 ⊕ ... ⊕Mn). Thus for every
y01+y02+ ...+y0n ∈M1⊕ ...⊕Mn; JS(T−11 ⊕ ...⊕T−1n ,M1⊕ ...⊕Mn, x1+ ...+xn) = M1⊕ ...⊕Mn

Hence, (T−11 ⊕ ...⊕ T−1n is also subspace-supercycic for (M1 ⊕ ...⊕Mn). �

The following proposition provides conditions for a vector to be 1-weakly subspace-hypercyclic.

Proposition 3.14. For operators, being 1-weakly subspace supercyclic implies they are cyclic.

Proof. Let x = x1+ ...+xn ∈M1⊕ ...⊕Mn. If x = x1+ ...+xn is 1-weakly subspace-hypercyclic,
then F.Orb((T1⊕...⊕Tn), (x1+...+xn))∩(M1⊕...⊕Mn) is dense inM1⊕...⊕Mn. Additionally,
by hypothesis, if x1 + ...+ xn is cyclic then the linear span. Thus, F.Orb((T1 ⊕ ...⊕ Tn), (x1 +

...+ xn)) ∩ (M1 ⊕ ...⊕Mn) has a dense linear span. Thus,

F.Orb((T1 ⊕ ...⊕ Tn), (x1 + ...+ xn)) ∩ (M1 ⊕ ...⊕Mn) = M1 ⊕ ...⊕Mn.

�
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4. Conclusion

Subspace hypercyclic operators forms a very important class of operators in operator spaces.A
lot of their properties have been studied over along period of time, however, complete character-
ization of this property has not been done. In fact, a lot of open questions remain unanswered
with regard to subspace hypercyclicity. Most of these studies have been done in special cases
of finite dimensional operator spaces. It is therefore interesting to address these questions in
general operator spaces. In this research therefore we extended an investigation on subspace
hypercyclicity by investigating different notions of the subspace hypercyclicity. In particular,
we considered subspace hypercyclic operators, their powers and direct sums and show that
operators under direct sum satisfies various subspace-hypercyclicity criteria and has a lot of in-
teresting properties. An open question that needs to be addressed states: Can one characterize
these notions of subspace hypercyclic operators in norm-attainable class?
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