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RESULTS OF SEMIGROUP OF LINEAR EQUATIONS GENERATING
LIPSCHITZ PERTURBATIONS OF LINEAR EVOLUTION EQUATIONS

A. Y. AKINYELE"*, F. J. FAWEHINMI?, Y. SAKA-BALOGUN?® AND L. K. ALHASSAN!

ABSTRACT. In this paper, results of w-order preserving partial contraction mapping generating
Lipschitz perturbations of linear evolution equation was presented. A certain semilinear value
problem was studied where A is the infinitesimal generator of a Cy-semigroup {T'(t), t > 0} on
a Banach space X and f : [to,T] x X — X is continuous in ¢ and satisfies a Lipschitz condition
in u. We assume A to be independent of ¢t and was extended to the case where A depends on ¢
in a way that insure the existence of an evolution system U (t,s), 0 < s < t < T, for the family

{A(t)}+ejo, ) and shows that the initial value problem have a mild solution.

1. INTRODUCTION

The solution of the inhomogeneous initial value problem, i.e., the problem with f # 0 can
be represented in terms of the solutions of homogeneous initial value problem via the formula
of variation of constants. A linear operator A is the infinitesimal generator of a uniformly
continuous semigroup if and only if A is a bounded linear operator, and perturbation theory
comprises methods for finding an approximate solution to a problem. In perturbation theory,
the solution is expressed as a power series in a small parameter . The first term is the known
solution to the solvable problem. Successive terms in the series at higher powers of ¢ usually
become smaller. Suppose X is a Banach space , X,, C X is a finite set, w — OC P, the w-order
preserving partial contraction mapping, M, be a matrix, L(X) be a bounded linear opera-
tor on X, P, a partial transformation semigroup, p(A) a resolvent set, o(A) a spectrum of A
and A € w — OCP, is a generator of Cy-semigroup. This paper consist of results of w-order
preserving partial contraction mapping generating a Lipschitz perturbations of linear evolution
equations. Agmon et al. [1], estimated some boundary problems for solutions of elliptic partial
differential equation. Akinyele et al. [2], established some perturbation results of the infinitesi-
mal generator in the semigroup of the linear operator. Balakrishnan [3], introduced an operator
calculus for infinitesimal generators of semigroup. Banach [4], established and introduced the
concept of Banach spaces. Batty et al. [5], showed some asymptotic behavior of semigroup of
operators. Brezis and Gallouet [6], investigated nonlinear Schrodinger evolution equation. Chill

and Tomilov [7], deduced some resolvent approach to stability operator semigroup. Davies [8],
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introduced linear operators and their spectra. Engel and Nagel [9], presented one-parameter
semigroup for linear evolution equations. Omosowon et al. [10], proved some analytic results of
semigroup of linear operator with dynamic boundary conditions, and also in [11], Omosowon et
al., established dual Properties of w-order Reversing Partial Contraction Mapping in Semigroup
of Linear Operator. Pazy [12], introduced asymptotic behavior of the solution of an abstract
evolution and some applications and also in [13], established a class of semi-linear equations
of evolution. Priiss [14], proves some semilinear evolution equations in Banach spaces. Rauf
and Akinyele [15], obtained w-order preserving partial contraction mapping and established
its properties, also in [16], Rauf et al., introduced some results of stability and spectra prop-
erties on semigroup of linear operator. Vrabie [17], proved some results of Cy-semigroup and
its applications. Yosida [18], established some results on differentiability and representation of

one-parameter semigroup of linear operators.

2. PRELIMINARIES

Definition 2.1 (Cy-Semigroup) [17]

A Cy-Semigroup is a strongly continuous one parameter semigroup of bounded linear operator
on Banach space.

Definition 2.2 (w-OCP,) [15]

A transformation a € P, is called w-order preserving partial contraction mapping if
Vr,y € Doma : x <y = axr < ay and at least one of its transformation must satisfy
ay =y such that T'(t + s) = T'(t)T'(s) whenever ¢, s > 0 and otherwise for 7°(0) = I.
Definition 2.3 (Perturbation) [2]

Let A: D(A) € X — X be the generator of a strongly continuous semigroup (7'(t));>o and
consider a second operator B : D(B) C X — X such that the sum A + B generates a strongly
continuous semigroup (S(t));>0. We say that A is perturbed by operator B or that B is a
perturbation of A.

Definition 2.4 ( Mild Solution) [12]

A continuous solution u of the integral equation
t

(2.1) u(t) =Tt —to)up + / T(t—s)f(s,u(s))ds
to

will be called a mild solution of the initial value problem

du(t) .

(2.2) Sa T Au(t) = f(tu®), t>to
u(to) = uo

if the solution is a Lipschitz continuous function.
Example 1

2 x 2 matrix [M,,(NU{0})]

Suppose

and let T(t) = e, then
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Example 2
3 x 3 matrix [M,,(NU{0})]
Suppose

and let T(t) = €', then

e et e
tA
= | o2t 2t o2
ol 2t Q2

Example 3

3 x 3 matrix [M,,(C)], we have

for each A > 0 such that A\ € p(A) where p(A) is a resolvent set on X.
Suppose we have

2 2 3
A=12 2 2
1 2 2
and let T(t) = e, then
E2EA o2t o3t
et — 2tA 2tA 2t

Theorem 2.1 Hille-Yoshida [15]
A linear operator A : D(A) C X — X is the infinitesimal generator for a Cy-semigroup of
contraction if and only if

i. A is densely defined and closed,
ii. (0,4+00) C p(A) and for each A > 0, we have

(2.3) 1R Allex) <

> =

3. MAIN RESULTS

This section present results of semigroup of linear operator by using w-OCP, to generate
Lipschitz perturbations of linear evolution equations:

Theorem 3.1

Assume f : [tg, T] x X — X is continuous in ¢ on [ty, T'| and uniformly Lipschitz (with constant
L)on X. If A € w—OCP, is the infinitesimal generator of a Cy-semigroup {7'(t); t > 0} on X,
then for every ug € X the initial value problem (2.2) has a unique mild solution u € C([ty, T :
X). Moreover, the mapping uy — w is Lipschitz continuous from X into ¢([te, 7] : X).

Proof:

For a given uy € X we define a mapping

F:Cto,T] : X) — C([to, T] : X)
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by

(3.1) (Fu)(t) =T(t —to)ug + /t T(t—s)f(s,u(s))ds to<t<T.

to
Denoting by |lul|s the norm of u as an element of C([ty, 7] : X) it follows readily from the
definition of I that

(3.2) [(Fu)(t) = (Fo) ()| < ML(t = to)[lu — vl

where M is a bound of ||T'(¢)|| on [ty,T] and A € w — OCP, in the generator of T'(t). Using
(3.1), (3.2) and the induction on n, then it follows easily that

1EDm - < LDy
from which
(3.3 17z - Ep < P

For n large enough (M LT)"/n! < 1 and by a well known extension of the condition principle
F has a unique fixed point u in C([to, 7] : X). This fixed point is the desired solution of the
integral equation (2.1).

The uniqueness of u and the Lipschitz continuity of the map ug — u are consequences of the
following argument. Let v be a mild solution of (2.1) on [ty, 7] with the initial value vy. Then,

[u(t) — @) < IT(t = to)uo — T(t — to)vol| + /t IT(t = s)(f(s,u(s))) — f(s,v(s))ds]|

(3.4) < Mjug — vol| + ML /tt lu(s) —v(s)||ds
0
which implies, by Gronwall’s inequality, that
lut) = v(t)[| < MM [lug — vy
and therefore
lu = v]loe < MeMHT=0)[ug — wo|

which yields both the uniqueness of u and the Lipschitz continuity of the map ug — u. Hence
the proof is completed.

Theorem 3.2

Suppose [ : [0,00) x X — X be continuous in ¢ for ¢ > 0 and locally Lipschitz continuous in
u, uniformly in ¢ on bounded intervals. If A is the infinitesimal generator of a Cy-semigroup
{T'(t); t > 0} on X, then for every A € w — OCP, and uy € X there is a t,,,, < oo such that
the initial value problem

. -
(3:5) { u(0) = g

has a unique mild solution u on [0, t4,). Moreover, if ¢,,,, < 0o, then

() = f(tult), t>0

lim lu(#)[| = oo

t—=tmax

Proof:
We start by showing that for every tq > 0, ug € X, the initial value problem (2.2) has, under
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assumptions of our theorem, a unique mild solution w on an interval [to,t] whose length is
bounded below by

: o] }
3.6 (2o, = 1,
(3:6) (to, ol mm{ K (to)L(K (ty), to + 1) + N(to)
where L(c,t) is the local Lipschitz constant if and only if
(3.7) 1f(t,w) = fE )| < Lie, ) lu = vl

M(ty) = max{||T(t)|| : 0 <t <ty + 1},
K(to) = 2l[uol| M (to)
and
N(ty) = max{||f(¢,0)]| : 0 <t <tp+ 1}
Indeed, let
t = to + 0(to, [|uoll)
where (%o, ||uo||) is given by (3.6). The mapping F' defined by (3.1) maps the ball of radius
K (to) centered at O of C([to,t1] : X) into itself. This follows from the estimate

[(Fu) (@) < M(to)luol +/t 1Tt = $)II([[f (s, uls)) = f(s,0)| + £ (s, 0)[])ds

< M (to)||luol| + M (to) K (to) LK (to), to + 1)(t — to) + M (to) N (to)(t — to)
< M (to){||luoll + K (to) L(K (to), to + 1)(t — to) + N(to)(t — to)}
(3.8) < 2M (to)[Juoll = K (to)

where the last inequality follows from the definition of ¢;. In this ball, F' satisfies a uniform
Lipschitz condition with constant L = L(K(ty),to+ 1) and thus as in the proof of Theorem 3.1
it possesses a unique fixed point u in the ball. This fixed point is the desired solution of (2.1)
on the interval [tg, t1].

From what we have just proved, it follows that if u is a mild solution of (3.5) on the interval
[0, 7]. It can be extended to the interval [0, 7+ 6] with § > 0 by defining on [7, 7+, u(t = w(t))

where w(t) is the solution of the integral equation
¢
(3.9) w(t) =Tt —1)u(r) + / T(t—s)f(s,w(s))ds, T<t<T+0.

Moreover, § depends only on ||u(7)||, K(7) and N(7). Let [0, ¢,,4.] be the maximum interval of
existence of the mild solution w of (3.5). If ¢,,4, < 00, then

Jimu(t)]| =

Since otherwise there is a sequence t, — e, such that |Ju(t,)|| < C for all n. This would
imply by what we have just proved for each t,, near enough to ¢4, u defined on [0, ¢,] can be
extended to [0, %, + d] where § > 0 is independent of ¢, and hence u can be extended beyond
tmaz contradicting the definition of ¢,,,.. To prove the uniqueness of the local mild solution u
of (3.5), we note that if v is a mild solution of (3.5), then on every closed interval [0,%y] on
which both v and v exists they coincide by the uniqueness argument given at the end of the
proof of Theorem 3.1. Therefore, both u and v have the same ¢,,,, and on [0, t,4:), u = v, and
this achieves the proof.

Theorem 3.3
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Assume A : D(A) C X — X is the infinitesimal generator of a Cp-semigroup {7'(t), ¢t > 0} on
X. Suppose f: [ty,T] x X — X is continuously differentiable from [to, 7] x X into X then the
mild solution of (2.2) with uy € D(A) is a classical solution of the initial value problem for all
Aew—O0CP,.

Proof:

We note first that the continuous differentiability of f from [ty,T] x X into X implies that f
is continuous in ¢ and Lipschitz continuous in u, uniformly in ¢ on [ty, T']. Therefore the initial
value problem (2.2) possesses a unique mild solution u on [tg, 7] by Theorem 3.1. Next we show

that this mild solution is continuously differentiable on [to, T']. To this end, we set

56) = (55 ) £(s.0

and

(3.10) g(t) =T(t —to)f(to,ult)) — AT(t — to)uo + /t T(t— S>8asf(8’ u(s))ds,

to

for all A € w — OCP,,.
From our assumptions, it follows that g € C([tg, T] : X) and that the function h(t,u) = B(t)u
is continuous in ¢ from [ty,T] into X and uniformly Lipschitz continuous in u since s — B(s)

is continuous from [ty, T'] into B(X). Let w be the solution of the integral equation:

(3.11) w(t) = g(t) +/ T(t — s)B(s)w(s)d(s).

to

The existence and uniqueness of w € C([ty,T] : X) follows that for every g € ([to,T] : X),
the integral equation (3.11) has a unique solution w € C([ty,T] : X). Moreover, from our

assumptions we have
(3.12) f(s,u(s+h)) — f(s,u(s)) = B(s)(u(s + h) —u(s)) +wi(s, h)
and
0
(3.13) f(s+ h,u(s+h))— f(s,u(s+ h)) = <%> f(s,u(s+ h))h 4+ wa(s, h)

where h™t|lwy (s, h)|| = 0 as b — 0 uniformly on [to, T] for i = 1,2. If wy(t) = h*(u(t + h) —
u(t) — w(t)), then from the definition of u, (3.11), (3.12) and (3.13). We obtain

wh(t) :[ T(t + h — tQ)UO T(t — to)Uo) + AT('[Z — to)UQ]

+ / (t — s)(wi(s, h) + wa(s, h))ds

1
h
+/ T(t—s) ( f(s,u(s+h)) — aasf(s,u(s))) ds

+

1 to+h
[E T(t+h—s)f(s,u(s))d—T(t—to)f(to, U(to))]

to

(3.14) + /tT t—s) wp(s)ds.
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It is not difficult to see that the norm of each of the four first terms on the right-hand-side of
(3.14) tends to zero as h — 0. Therefore we have

(3.15) lwn (O] < e(h) + M/t [[wn(s)]|ds

where M = max{||T(t — s)||[|B(s)|| : to < s < T} and €(h) — 0 as h — 0. From (3.15) it
follows by Gronwall’s inequality that

lwn ()] < e(h)el ™M

and therefore

|lwn(t)]| =0 as h—0.

This implies that u(t) is differentiable on [tg, T] and its derivative is w(t). Since w € C([to, T :
X), u is continuously differentiable on [ty, T'].

Finally, to show that u is the classical solution of (2.2) we note that from the continuous
differentiability of f it follows that s — f(s,u(s)) is continuously differentiable on [to, T|. Then
it follows that

(3.16) v(t) =Tt —to)up + / T(t—s)f(s,u(s))ds

to

is the classical solution of the initial value problem

{ W L Au(t) = f(t, ult))

U(to) = Ug

(3.17)

for all w € X and A € w — OCP,. But by definition, u is a mild solution of (3.17) and it
follows that w = v on [ty, T]. Thus u is a classical solution of the initial value problem (2.2).

Hence the proof is completed.

Theorem 3.4

Let A be the infinitesimal generator of a Cy-semigroup {7'(t); ¢t < 0} on a reflexive Banach
space X. If f : [to,7] x X — X is Lipschitz continuous in both variables, uy € D(A),
A € w— OCP, and u is the mild solution of the initial value problem (2.2), then w is the
strong solution of this initial value problem.

Proof:

Let ||T(t)|| < M and || f(t,u(t))|| < N for tg <t < T and let f satisfies

(3.18) [ f(t1,21) = fte, z)|| < C([ts — tof + |l — 22|), 1, t2 € [to, T].
For 0 < h <t —ty we have

u(t+h) —u(t =Tt +h—to)ug — T(t — to)uo

to+h
—I—/ T(t+h—s)f(s,u(s))ds

to

+/ T(t—s)[f(s+hu(s+h))— f(s,u(s))]ds

to
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and therefore,

t

|lu(t + h) —u(t)|| < hM||Augl| + RMN + MC/ (h+ ||lu(s+ h) —u(s)|)ds

to

t
< Cih + MC/ |lu(s + h) —u(s)||ds
to

which by Gronwall’s inequality implies
(3.19) |u(t + h) — u(t)]| < Cre™™Mn

and w is Lipschitz continuous.
The Lipschitz continuity of v combined with the Lipschitz continuity of f implies that t —
f(t,u(t)) is Lipschitz continuous on [ty, T']. We have that the initial value problem

Dy Av = f(t,u(?))

(3.20) ) =

has unique strong solution v on [to, 7] satisfying

t

v(t) =T(t — to)ug + / T(t—s)f(s,u(s))ds = u(t)

to

and so u is a strong solution of (2.2). Hence the proof is completed.

Conclusion
In this paper, it has been established that w-order preserving partial contraction mapping

generates some results of Lipschitz perturbations of linear evolution equations.
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