Eur. J. Math. Appl. (2025)5:13 URL: http://ejma.euap.org

© 2025 European Journal of Mathematics and Applications

RESULTS OF SEMIGROUP OF LINEAR EQUATIONS GENERATING LIPSCHITZ PERTURBATIONS OF LINEAR EVOLUTION EQUATIONS

A. Y. AKINYELE^{1,*}, F. J. FAWEHINMI², Y. SAKA-BALOGUN³ AND L. K. ALHASSAN¹

ABSTRACT. In this paper, results of ω -order preserving partial contraction mapping generating Lipschitz perturbations of linear evolution equation was presented. A certain semilinear value problem was studied where A is the infinitesimal generator of a C_0 -semigroup $\{T(t),\ t\geqslant 0\}$ on a Banach space X and $f:[t_0,T]\times X\to X$ is continuous in t and satisfies a Lipschitz condition in u. We assume A to be independent of t and was extended to the case where A depends on t in a way that insure the existence of an evolution system $U(t,s),\ 0\leqslant s\leqslant t\leqslant T$, for the family $\{A(t)\}_{t\in[0,T]}$ and shows that the initial value problem have a mild solution.

1. Introduction

The solution of the inhomogeneous initial value problem, i.e., the problem with $f \not\equiv 0$ can be represented in terms of the solutions of homogeneous initial value problem via the formula of variation of constants. A linear operator A is the infinitesimal generator of a uniformly continuous semigroup if and only if A is a bounded linear operator, and perturbation theory comprises methods for finding an approximate solution to a problem. In perturbation theory, the solution is expressed as a power series in a small parameter ε . The first term is the known solution to the solvable problem. Successive terms in the series at higher powers of ε usually become smaller. Suppose X is a Banach space, $X_n \subseteq X$ is a finite set, $\omega - OCP_n$ the ω -order preserving partial contraction mapping, M_m be a matrix, L(X) be a bounded linear operator on X, P_n a partial transformation semigroup, $\rho(A)$ a resolvent set, $\sigma(A)$ a spectrum of A and $A \in \omega - OCP_n$ is a generator of C_0 -semigroup. This paper consist of results of ω -order preserving partial contraction mapping generating a Lipschitz perturbations of linear evolution equations. Agmon et al. [1], estimated some boundary problems for solutions of elliptic partial differential equation. Akinyele et al. [2], established some perturbation results of the infinitesimal generator in the semigroup of the linear operator. Balakrishnan [3], introduced an operator calculus for infinitesimal generators of semigroup. Banach [4], established and introduced the concept of Banach spaces. Batty et al. [5], showed some asymptotic behavior of semigroup of operators. Brezis and Gallouet [6], investigated nonlinear Schrodinger evolution equation. Chill and Tomilov [7], deduced some resolvent approach to stability operator semigroup. Davies [8],

¹Department of Mathematics, University of Ilorin, Ilorin, Nigeria

²Department of Mathematics, Adeyemi Federal University of Education, Ondo, Nigeria

 $^{^3\}mathrm{Department}$ of Mathematical and Physical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria

 $E ext{-}mail\ addresses: akinyele.ay@unilorin.edu.ng, fawehinmif@aceondo.edu.ng, balogunld@abuad.edu.ng, limanalhassan@yahoo.com .}$

Key words and phrases. ω -OCP_n; perturbation; C₀-semigroup; Lipschitz continuity.

introduced linear operators and their spectra. Engel and Nagel [9], presented one-parameter semigroup for linear evolution equations. Omosowon et~al.~[10], proved some analytic results of semigroup of linear operator with dynamic boundary conditions, and also in [11], Omosowon et~al., established dual Properties of ω -order Reversing Partial Contraction Mapping in Semigroup of Linear Operator. Pazy [12], introduced asymptotic behavior of the solution of an abstract evolution and some applications and also in [13], established a class of semi-linear equations of evolution. Prüss [14], proves some semilinear evolution equations in Banach spaces. Rauf and Akinyele [15], obtained ω -order preserving partial contraction mapping and established its properties, also in [16], Rauf et~al., introduced some results of stability and spectra properties on semigroup of linear operator. Vrabie [17], proved some results of C_0 -semigroup and its applications. Yosida [18], established some results on differentiability and representation of one-parameter semigroup of linear operators.

2. Preliminaries

Definition 2.1 (C_0 -Semigroup) [17]

A C_0 -Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.

Definition 2.2 $(\omega \text{-}OCP_n)$ [15]

A transformation $\alpha \in P_n$ is called ω -order preserving partial contraction mapping if $\forall x, y \in \text{Dom}\alpha : x \leq y \implies \alpha x \leq \alpha y$ and at least one of its transformation must satisfy $\alpha y = y$ such that T(t+s) = T(t)T(s) whenever t, s > 0 and otherwise for T(0) = I.

Definition 2.3 (Perturbation) [2]

Let $A: D(A) \subseteq X \to X$ be the generator of a strongly continuous semigroup $(T(t))_{t\geq 0}$ and consider a second operator $B: D(B) \subseteq X \to X$ such that the sum A+B generates a strongly continuous semigroup $(S(t))_{t\geq 0}$. We say that A is perturbed by operator B or that B is a perturbation of A.

Definition 2.4 (Mild Solution) [12]

A continuous solution u of the integral equation

(2.1)
$$u(t) = T(t - t_0)u_0 + \int_{t_0}^t T(t - s)f(s, u(s))ds$$

will be called a mild solution of the initial value problem

(2.2)
$$\begin{cases} \frac{du(t)}{dt} + Au(t) = f(t, u(t)), \ t > t_0 \\ u(t_0) = u_0 \end{cases}$$

if the solution is a Lipschitz continuous function.

Example 1

 $2 \times 2 \text{ matrix } [M_m(\mathbb{N} \cup \{0\})]$

Suppose

$$A = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA}$, then

$$e^{tA} = \begin{pmatrix} e^{2t} & e^I \\ e^t & e^{2t} \end{pmatrix}.$$

Example 2

 3×3 matrix $[M_m(\mathbb{N} \cup \{0\})]$

Suppose

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA}$, then

$$e^{tA} = \begin{pmatrix} e^{2t} & e^{2t} & e^{3t} \\ e^{2t} & e^{2t} & e^{2t} \\ e^{t} & e^{2t} & e^{2t} \end{pmatrix}.$$

Example 3

 3×3 matrix $[M_m(\mathbb{C})]$, we have

for each $\lambda > 0$ such that $\lambda \in \rho(A)$ where $\rho(A)$ is a resolvent set on X.

Suppose we have

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA_{\lambda}}$, then

$$e^{tA_{\lambda}} = \begin{pmatrix} e^{2t\lambda} & e^{2t\lambda} & e^{3t\lambda} \\ e^{2t\lambda} & e^{2t\lambda} & e^{2t\lambda} \\ e^{t\lambda} & e^{2t\lambda} & e^{2t\lambda} \end{pmatrix}.$$

Theorem 2.1 Hille-Yoshida [15]

A linear operator $A:D(A)\subseteq X\to X$ is the infinitesimal generator for a C_0 -semigroup of contraction if and only if

- i. A is densely defined and closed,
- ii. $(0, +\infty) \subseteq \rho(A)$ and for each $\lambda > 0$, we have

3. Main Results

This section present results of semigroup of linear operator by using ω - OCP_n to generate Lipschitz perturbations of linear evolution equations:

Theorem 3.1

Assume $f:[t_0,T]\times X\to X$ is continuous in t on $[t_0,T]$ and uniformly Lipschitz (with constant L) on X. If $A\in\omega-OCP_n$ is the infinitesimal generator of a C_0 -semigroup $\{T(t);\ t\geqslant 0\}$ on X, then for every $u_0\in X$ the initial value problem (2.2) has a unique mild solution $u\in C([t_0,T]:X)$. Moreover, the mapping $u_0\to u$ is Lipschitz continuous from X into $c([t_0,T]:X)$.

Proof:

For a given $u_0 \in X$ we define a mapping

$$F: C([t_0, T]: X) \to C([t_0, T]: X)$$

by

(3.1)
$$(Fu)(t) = T(t - t_0)u_0 + \int_{t_0}^t T(t - s)f(s, u(s))ds \quad t_0 \leqslant t \leqslant T.$$

Denoting by $||u||_{\infty}$ the norm of u as an element of $C([t_0, T] : X)$ it follows readily from the definition of F that

(3.2)
$$||(Fu)(t) - (Fv)(t)|| \leq ML(t - t_0)||u - v||_{\infty}$$

where M is a bound of ||T(t)|| on $[t_0, T]$ and $A \in \omega - OCP_n$ in the generator of T(t). Using (3.1), (3.2) and the induction on n, then it follows easily that

$$\|(F_u^n)(t) - (F_v^n)(t)\| \le \frac{(ML(t-t_0)^n)}{n!} \|u-v\|_{\infty}$$

from which

(3.3)
$$||F_u^n - F_v^n|| \leqslant \frac{(MLT)^n}{n!} ||u - v||_{\infty}.$$

For n large enough $(MLT)^n/n! < 1$ and by a well known extension of the condition principle F has a unique fixed point u in $C([t_0, T] : X)$. This fixed point is the desired solution of the integral equation (2.1).

The uniqueness of u and the Lipschitz continuity of the map $u_0 \to u$ are consequences of the following argument. Let v be a mild solution of (2.1) on $[t_0, T]$ with the initial value v_0 . Then,

$$||u(t) - v(t)|| \leq ||T(t - t_0)u_0 - T(t - t_0)v_0|| + \int_{t_0}^t ||T(t - s)(f(s, u(s))) - f(s, v(s))ds||$$

$$\leq M||u_0 - v_0|| + ML \int_{t_0}^t ||u(s) - v(s)||ds$$
(3.4)

which implies, by Gronwall's inequality, that

$$||u(t) - v(t)|| \le Me^{ML(T-t_0)}||u_0 - v_0||$$

and therefore

$$||u - v||_{\infty} \le Me^{ML(T - t_0)} ||u_0 - v_0||$$

which yields both the uniqueness of u and the Lipschitz continuity of the map $u_0 \to u$. Hence the proof is completed.

Theorem 3.2

Suppose $f:[0,\infty)\times X\to X$ be continuous in t for $t\geqslant 0$ and locally Lipschitz continuous in u, uniformly in t on bounded intervals. If A is the infinitesimal generator of a C_0 -semigroup $\{T(t);\ t\geqslant 0\}$ on X, then for every $A\in\omega-OCP_n$ and $u_0\in X$ there is a $t_{max}\leqslant\infty$ such that the initial value problem

(3.5)
$$\begin{cases} \frac{du(t)}{dt} + Au(t) = f(t, u(t)), & t \geqslant 0 \\ u(0) = u_0 \end{cases}$$

has a unique mild solution u on $[0, t_{max})$. Moreover, if $t_{max} < \infty$, then

$$\lim_{t \to t_{max}} ||u(t)|| = \infty.$$

Proof:

We start by showing that for every $t_0 \ge 0$, $u_0 \in X$, the initial value problem (2.2) has, under

assumptions of our theorem, a unique mild solution u on an interval $[t_0, t]$ whose length is bounded below by

(3.6)
$$\delta(t_0, ||u_0||) = \min \left\{ 1, \frac{||u_0||}{K(t_0)L(K(t_0), t_0 + 1) + N(t_0)} \right\}$$

where L(c,t) is the local Lipschitz constant if and only if

(3.7)
$$||f(t,u) - f(t,v)|| \le L(c,t')||u - v||,$$

$$M(t_0) = \max\{||T(t)|| : 0 \le t \le t_0 + 1\},$$

$$K(t_0) = 2||u_0||M(t_0)$$

and

$$N(t_0) = \max\{\|f(t,0)\| : 0 \leqslant t \leqslant t_0 + 1\}.$$

Indeed, let

$$t_1 = t_0 + \delta(t_0, ||u_0||)$$

where $\delta(t_0, ||u_0||)$ is given by (3.6). The mapping F defined by (3.1) maps the ball of radius $K(t_0)$ centered at O of $C([t_0, t_1] : X)$ into itself. This follows from the estimate

$$||(Fu)(t)|| \leq M(t_0)||u_0|| + \int_{t_0}^t ||T(t-s)||(||f(s,u(s)) - f(s,0)|| + ||f(s,0)||)ds$$

$$\leq M(t_0)||u_0|| + M(t_0)K(t_0)L(K(t_0), t_0 + 1)(t - t_0) + M(t_0)N(t_0)(t - t_0)$$

$$\leq M(t_0)\{||u_0|| + K(t_0)L(K(t_0), t_0 + 1)(t - t_0) + N(t_0)(t - t_0)\}$$

$$\leq 2M(t_0)||u_0|| = K(t_0)$$
(3.8)

where the last inequality follows from the definition of t_1 . In this ball, F satisfies a uniform Lipschitz condition with constant $L = L(K(t_0), t_0 + 1)$ and thus as in the proof of Theorem 3.1 it possesses a unique fixed point u in the ball. This fixed point is the desired solution of (2.1) on the interval $[t_0, t_1]$.

From what we have just proved, it follows that if u is a mild solution of (3.5) on the interval $[0, \tau]$. It can be extended to the interval $[0, \tau + \delta]$ with $\delta > 0$ by defining on $[\tau, \tau + \delta]$, u(t = w(t)) where w(t) is the solution of the integral equation

(3.9)
$$w(t) = T(t-\tau)u(\tau) + \int_{\tau}^{t} T(t-s)f(s,w(s))ds, \quad \tau \leqslant t \leqslant \tau + \delta.$$

Moreover, δ depends only on $||u(\tau)||$, $K(\tau)$ and $N(\tau)$. Let $[0, t_{max}]$ be the maximum interval of existence of the mild solution u of (3.5). If $t_{max} < \infty$, then

$$\lim_{t \to t_{max}} ||u(t)|| = \infty.$$

Since otherwise there is a sequence $t_n \to t_{max}$ such that $||u(t_n)|| \leq C$ for all n. This would imply by what we have just proved for each t_n , near enough to t_{max} , u defined on $[0, t_n]$ can be extended to $[0, t_n + \delta]$ where $\delta > 0$ is independent of t_n and hence u can be extended beyond t_{max} contradicting the definition of t_{max} . To prove the uniqueness of the local mild solution u of (3.5), we note that if v is a mild solution of (3.5), then on every closed interval $[0, t_0]$ on which both u and v exists they coincide by the uniqueness argument given at the end of the proof of Theorem 3.1. Therefore, both u and v have the same t_{max} and on $[0, t_{max})$, u = v, and this achieves the proof.

Theorem 3.3

Assume $A: D(A) \subseteq X \to X$ is the infinitesimal generator of a C_0 -semigroup $\{T(t), t \ge 0\}$ on X. Suppose $f: [t_0, T] \times X \to X$ is continuously differentiable from $[t_0, T] \times X$ into X then the mild solution of (2.2) with $u_0 \in D(A)$ is a classical solution of the initial value problem for all $A \in \omega - OCP_n$.

Proof:

We note first that the continuous differentiability of f from $[t_0, T] \times X$ into X implies that f is continuous in t and Lipschitz continuous in u, uniformly in t on $[t_0, T]$. Therefore the initial value problem (2.2) possesses a unique mild solution u on $[t_0, T]$ by Theorem 3.1. Next we show that this mild solution is continuously differentiable on $[t_0, T]$. To this end, we set

$$B(s) = \left(\frac{\partial}{\partial u}\right) f(s, u)$$

and

(3.10)
$$g(t) = T(t - t_0)f(t_0, u(t_0)) - AT(t - t_0)u_0 + \int_{t_0}^t T(t - s)\frac{\partial}{\partial s}f(s, u(s))ds,$$

for all $A \in \omega - OCP_n$.

From our assumptions, it follows that $g \in C([t_0, T] : X)$ and that the function h(t, u) = B(t)u is continuous in t from $[t_0, T]$ into X and uniformly Lipschitz continuous in u since $s \to B(s)$ is continuous from $[t_0, T]$ into B(X). Let w be the solution of the integral equation:

(3.11)
$$w(t) = g(t) + \int_{t_0}^t T(t-s)B(s)w(s)d(s).$$

The existence and uniqueness of $\omega \in C([t_0, T] : X)$ follows that for every $g \in ([t_0, T] : X)$, the integral equation (3.11) has a unique solution $w \in C([t_0, T] : X)$. Moreover, from our assumptions we have

$$(3.12) f(s, u(s+h)) - f(s, u(s)) = B(s)(u(s+h) - u(s)) + w_1(s, h)$$

and

(3.13)
$$f(s+h, u(s+h)) - f(s, u(s+h)) = \left(\frac{\partial}{\partial s}\right) f(s, u(s+h))h + w_2(s, h)$$

where $h^{-1}||w_1(s,h)|| \to 0$ as $h \to 0$ uniformly on $[t_0,T]$ for i = 1, 2. If $w_h(t) = h^{-1}(u(t+h) - u(t) - w(t))$, then from the definition of u, (3.11), (3.12) and (3.13). We obtain

$$w_{h}(t) = [h^{-1}(T(t+h-t_{0})u_{0} - T(t-t_{0})u_{0}) + AT(t-t_{0})u_{0}]$$

$$+ \frac{1}{h} \int_{t_{0}}^{t} T(t-s)(w_{1}(s,h) + w_{2}(s,h))ds$$

$$+ \int_{t_{0}}^{t} T(t-s) \left(\frac{\partial}{\partial s} f(s,u(s+h)) - \frac{\partial}{\partial s} f(s,u(s))\right) ds$$

$$+ \left[\frac{1}{h} \int_{t_{0}}^{t_{0}+h} T(t+h-s)f(s,u(s))d - T(t-t_{0})f(t_{0},u(t_{0}))\right]$$

$$+ \int_{t_{0}}^{t} T(t-s)B(s)w_{h}(s)ds.$$
(3.14)

It is not difficult to see that the norm of each of the four first terms on the right-hand-side of (3.14) tends to zero as $h \to 0$. Therefore we have

(3.15)
$$||w_h(t)|| \le \varepsilon(h) + M \int_{t_0}^t ||w_h(s)|| ds$$

where $M = \max\{\|T(t-s)\|\|B(s)\|: t_0 \leq s \leq T\}$ and $\varepsilon(h) \to 0$ as $h \to 0$. From (3.15) it follows by Gronwall's inequality that

$$||w_h(t)|| \leq \varepsilon(h)e^{(T-t_0)M}$$

and therefore

$$||w_h(t)|| \to 0$$
 as $h \to 0$.

This implies that u(t) is differentiable on $[t_0, T]$ and its derivative is w(t). Since $w \in C([t_0, T] : X)$, u is continuously differentiable on $[t_0, T]$.

Finally, to show that u is the classical solution of (2.2) we note that from the continuous differentiability of f it follows that $s \to f(s, u(s))$ is continuously differentiable on $[t_0, T]$. Then it follows that

(3.16)
$$v(t) = T(t - t_0)u_0 + \int_{t_0}^t T(t - s)f(s, u(s))ds$$

is the classical solution of the initial value problem

(3.17)
$$\begin{cases} \frac{dv(t)}{dt} + Av(t) = f(t, u(t)) \\ v(t_0) = u_0 \end{cases}$$

for all $u \in X$ and $A \in \omega - OCP_n$. But by definition, u is a mild solution of (3.17) and it follows that u = v on $[t_0, T]$. Thus u is a classical solution of the initial value problem (2.2). Hence the proof is completed.

Theorem 3.4

Let A be the infinitesimal generator of a C_0 -semigroup $\{T(t); t \leq 0\}$ on a reflexive Banach space X. If $f: [t_0, T] \times X \to X$ is Lipschitz continuous in both variables, $u_0 \in D(A)$, $A \in \omega - OCP_n$ and u is the mild solution of the initial value problem (2.2), then u is the strong solution of this initial value problem.

Proof:

Let $||T(t)|| \leq M$ and $||f(t, u(t))|| \leq N$ for $t_0 \leq t \leq T$ and let f satisfies

$$(3.18) ||f(t_1, x_1) - f(t_2, x_2)|| \leq C(|t_1 - t_2| + ||x_1 - x_2||), t_1, t_2 \in [t_0, T].$$

For $0 < h < t - t_0$ we have

$$u(t+h) - u(t = T(t+h-t_0)u_0 - T(t-t_0)u_0$$

$$+ \int_{t_0}^{t_0+h} T(t+h-s)f(s, u(s))ds$$

$$+ \int_{t_0}^{t} T(t-s)[f(s+h, u(s+h)) - f(s, u(s))]ds$$

and therefore,

$$||u(t+h) - u(t)|| \le hM||Au_0|| + hMN + MC \int_{t_0}^t (h + ||u(s+h) - u(s)||) ds$$
$$\le C_1 h + MC \int_{t_0}^t ||u(s+h) - u(s)|| ds$$

which by Gronwall's inequality implies

$$||u(t+h) - u(t)|| \leqslant C_1 e^{TMC_h}$$

and u is Lipschitz continuous.

The Lipschitz continuity of u combined with the Lipschitz continuity of f implies that $t \to f(t, u(t))$ is Lipschitz continuous on $[t_0, T]$. We have that the initial value problem

(3.20)
$$\begin{cases} \frac{dv}{dt} + Av = f(t, u(t)) \\ v(t_0) = u_0 \end{cases}$$

has unique strong solution v on $[t_0, T]$ satisfying

$$v(t) = T(t - t_0)u_0 + \int_{t_0}^t T(t - s)f(s, u(s))ds = u(t)$$

and so u is a strong solution of (2.2). Hence the proof is completed.

Conclusion

In this paper, it has been established that ω -order preserving partial contraction mapping generates some results of Lipschitz perturbations of linear evolution equations.

Acknowledgment

The authors acknowledge the management of the university of Ilorin for providing us with a suitable research laboratory and library to enable us carried out this research.

REFERENCES

- [1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary problems for solutions of elliptic partial differential equations, Comm. Pure Appl. Math. 12 (1959), 623–727.
- [2] A.Y. Akinyele, O.Y. Saka-Balogun, O.A. Adeyemo, Perturbation of infinitesimal generator in semigroup of linear operator, South East Asian J. Math. Math. Sci. 15(3) (2019), 53–64.
- [3] A.V. Balakrishnan, An operator calculus for infinitesimal generators of semigroups, Trans. Amer. Math. Soc. 91 (1959), 330–353.
- [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.
- [5] C.J.K. Batty, R. Chill, Y. Tomilov, Strong stability of bounded evolution families and semigroups, J. Funct. Anal. 193 (2002), 116–139.
- [6] H. Brezis, T. Gallouet, Nonlinear Schrödinger evolution equation, Nonlinear Anal. TMA 4 (1980), 677–682.
- [7] R. Chill, Y. Tomilov, Stability operator semigroups, Banach Center Publ. 75, Polish Acad. Sci., Warsaw (2007), 71–73.
- [8] E.B. Davies, Linear Operators and Their Spectra, Cambridge Stud. Adv. Math., Cambridge Univ. Press, New York, 2007.
- [9] K. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer, New York, 2000.

- [10] J.B. Omosowon, A.Y. Akinyele, O.Y. Saka-Balogun, M.A. Ganiyu, Analytic results of semigroup of linear operator with dynamic boundary conditions, Asian J. Math. Appl. ama0561 (2020), 1–10.
- [11] J.B. Omosowon, A.Y. Akinyele, F.M. Jimoh, Dual properties of ω -order reversing partial contraction mapping in semigroup of linear operator, Asian J. Math. Appl. ama0566 (2021), 1–10.
- [12] A. Pazy, Asymptotic behavior of the solution of an abstract evolution equation and some applications, J. Differ. Equ. 4 (1968), 493–509.
- [13] A. Pazy, A class of semi-linear equations of evolution, Israel J. Math. 20 (1975), 23–36.
- [14] J. Prüss, On semilinear evolution equations in Banach spaces, J. Reine Angew. Math. 303 (1978), 144–158.
- [15] K. Rauf, A.Y. Akinyele, Properties of ω -order-preserving partial contraction mapping and its relation to C_0 -semigroup, Int. J. Math. Comput. Sci. 14(1) (2019), 61–68.
- [16] K. Rauf, A.Y. Akinyele, M.O. Etuk, R.O. Zubair, M.A. Aasa, Some results on stability and spectral properties of semigroup of linear operator, Adv. Pure Math. 9 (2019), 43–51.
- [17] I.I. Vrabie, C_0 -Semigroups and Applications, Math. Stud. 191, Elsevier, North-Holland, 2003.
- [18] K. Yosida, On the differentiability and representation of one-parameter semigroups of linear operators, J. Math. Soc. Japan 1 (1948), 15–21.