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RESULTS OF SEMIGROUP OF LINEAR EQUATIONS GENERATING
LIPSCHITZ PERTURBATIONS OF LINEAR EVOLUTION EQUATIONS

A. Y. AKINYELE1,∗, F. J. FAWEHINMI2, Y. SAKA-BALOGUN3 AND L. K. ALHASSAN1

Abstract. In this paper, results of ω-order preserving partial contraction mapping generating
Lipschitz perturbations of linear evolution equation was presented. A certain semilinear value
problem was studied where A is the infinitesimal generator of a C0-semigroup {T (t), t > 0} on
a Banach space X and f : [t0, T ]×X → X is continuous in t and satisfies a Lipschitz condition
in u. We assume A to be independent of t and was extended to the case where A depends on t

in a way that insure the existence of an evolution system U(t, s), 0 6 s 6 t 6 T , for the family
{A(t)}t∈[0,T ] and shows that the initial value problem have a mild solution.

1. Introduction

The solution of the inhomogeneous initial value problem, i.e., the problem with f 6≡ 0 can
be represented in terms of the solutions of homogeneous initial value problem via the formula
of variation of constants. A linear operator A is the infinitesimal generator of a uniformly
continuous semigroup if and only if A is a bounded linear operator, and perturbation theory
comprises methods for finding an approximate solution to a problem. In perturbation theory,
the solution is expressed as a power series in a small parameter ε. The first term is the known
solution to the solvable problem. Successive terms in the series at higher powers of ε usually
become smaller. Suppose X is a Banach space , Xn ⊆ X is a finite set, ω −OCPn the ω-order
preserving partial contraction mapping, Mm be a matrix, L(X) be a bounded linear opera-
tor on X, Pn a partial transformation semigroup, ρ(A) a resolvent set, σ(A) a spectrum of A
and A ∈ ω − OCPn is a generator of C0-semigroup. This paper consist of results of ω-order
preserving partial contraction mapping generating a Lipschitz perturbations of linear evolution
equations. Agmon et al. [1], estimated some boundary problems for solutions of elliptic partial
differential equation. Akinyele et al. [2], established some perturbation results of the infinitesi-
mal generator in the semigroup of the linear operator. Balakrishnan [3], introduced an operator
calculus for infinitesimal generators of semigroup. Banach [4], established and introduced the
concept of Banach spaces. Batty et al. [5], showed some asymptotic behavior of semigroup of
operators. Brezis and Gallouet [6], investigated nonlinear Schrodinger evolution equation. Chill
and Tomilov [7], deduced some resolvent approach to stability operator semigroup. Davies [8],
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introduced linear operators and their spectra. Engel and Nagel [9], presented one-parameter
semigroup for linear evolution equations. Omosowon et al. [10], proved some analytic results of
semigroup of linear operator with dynamic boundary conditions, and also in [11], Omosowon et
al., established dual Properties of ω-order Reversing Partial Contraction Mapping in Semigroup
of Linear Operator. Pazy [12], introduced asymptotic behavior of the solution of an abstract
evolution and some applications and also in [13], established a class of semi-linear equations
of evolution. Prüss [14], proves some semilinear evolution equations in Banach spaces. Rauf
and Akinyele [15], obtained ω-order preserving partial contraction mapping and established
its properties, also in [16], Rauf et al., introduced some results of stability and spectra prop-
erties on semigroup of linear operator. Vrabie [17], proved some results of C0-semigroup and
its applications. Yosida [18], established some results on differentiability and representation of
one-parameter semigroup of linear operators.

2. Preliminaries

Definition 2.1 (C0-Semigroup) [17]
A C0-Semigroup is a strongly continuous one parameter semigroup of bounded linear operator
on Banach space.
Definition 2.2 (ω-OCPn) [15]
A transformation α ∈ Pn is called ω-order preserving partial contraction mapping if
∀x, y ∈ Domα : x ≤ y =⇒ αx ≤ αy and at least one of its transformation must satisfy
αy = y such that T (t+ s) = T (t)T (s) whenever t, s > 0 and otherwise for T (0) = I.
Definition 2.3 (Perturbation) [2]
Let A : D(A) ⊆ X → X be the generator of a strongly continuous semigroup (T (t))t≥0 and
consider a second operator B : D(B) ⊆ X → X such that the sum A+B generates a strongly
continuous semigroup (S(t))t≥0. We say that A is perturbed by operator B or that B is a
perturbation of A.
Definition 2.4 ( Mild Solution) [12]
A continuous solution u of the integral equation

(2.1) u(t) = T (t− t0)u0 +
∫ t

t0

T (t− s)f(s, u(s))ds

will be called a mild solution of the initial value problem

(2.2)

{
du(t)
dt

+ Au(t) = f(t, u(t)), t > t0

u(t0) = u0

if the solution is a Lipschitz continuous function.
Example 1
2× 2 matrix [Mm(N ∪ {0})]
Suppose

A =

(
2 0

1 2

)
and let T (t) = etA, then

etA =

(
e2t eI

et e2t

)
.
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Example 2
3× 3 matrix [Mm(N ∪ {0})]
Suppose

A =

2 2 3

2 2 2

1 2 2


and let T (t) = etA, then

etA =

e2t e2t e3t

e2t e2t e2t

et e2t e2t

 .

Example 3
3× 3 matrix [Mm(C)], we have
for each λ > 0 such that λ ∈ ρ(A) where ρ(A) is a resolvent set on X.
Suppose we have

A =

2 2 3

2 2 2

1 2 2


and let T (t) = etAλ , then

etAλ =

e2tλ e2tλ e3tλ

e2tλ e2tλ e2tλ

etλ e2tλ e2tλ

 .

Theorem 2.1 Hille-Yoshida [15]
A linear operator A : D(A) ⊆ X → X is the infinitesimal generator for a C0-semigroup of
contraction if and only if

i. A is densely defined and closed,
ii. (0,+∞) ⊆ ρ(A) and for each λ > 0, we have

(2.3) ‖R(λ,A)‖L(X) ≤
1

λ
.

3. Main Results

This section present results of semigroup of linear operator by using ω-OCPn to generate
Lipschitz perturbations of linear evolution equations:

Theorem 3.1
Assume f : [t0, T ]×X → X is continuous in t on [t0, T ] and uniformly Lipschitz (with constant
L) on X. If A ∈ ω−OCPn is the infinitesimal generator of a C0-semigroup {T (t); t > 0} on X,
then for every u0 ∈ X the initial value problem (2.2) has a unique mild solution u ∈ C([t0, T ] :
X). Moreover, the mapping u0 → u is Lipschitz continuous from X into c([t0, T ] : X).
Proof:
For a given u0 ∈ X we define a mapping

F : C([t0, T ] : X)→ C([t0, T ] : X)
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by

(3.1) (Fu)(t) = T (t− t0)u0 +
∫ t

t0

T (t− s)f(s, u(s))ds t0 6 t 6 T.

Denoting by ‖u‖∞ the norm of u as an element of C([t0, T ] : X) it follows readily from the
definition of F that

(3.2) ‖(Fu)(t)− (Fv)(t)‖ 6ML(t− t0)‖u− v‖∞

where M is a bound of ‖T (t)‖ on [t0, T ] and A ∈ ω − OCPn in the generator of T (t). Using
(3.1), (3.2) and the induction on n, then it follows easily that

‖(F n
u )(t)− (F n

v )(t)‖ 6
(ML(t− t0)n)

n!
‖u− v‖∞

from which

(3.3) ‖F n
u − F n

v ‖ 6
(MLT )n

n!
‖u− v‖∞.

For n large enough (MLT )n/n! < 1 and by a well known extension of the condition principle
F has a unique fixed point u in C([t0, T ] : X). This fixed point is the desired solution of the
integral equation (2.1).

The uniqueness of u and the Lipschitz continuity of the map u0 → u are consequences of the
following argument. Let v be a mild solution of (2.1) on [t0, T ] with the initial value v0. Then,

‖u(t)− v(t)‖ 6 ‖T (t− t0)u0 − T (t− t0)v0‖+
∫ t

t0

‖T (t− s)(f(s, u(s)))− f(s, v(s))ds‖

6M‖u0 − v0‖+ML

∫ t

t0

‖u(s)− v(s)‖ds(3.4)

which implies, by Gronwall’s inequality, that

‖u(t)− v(t)‖ 6MeML(T−t0)‖u0 − v0‖

and therefore
‖u− v‖∞ 6MeML(T−t0)‖u0 − v0‖

which yields both the uniqueness of u and the Lipschitz continuity of the map u0 → u. Hence
the proof is completed.
Theorem 3.2
Suppose f : [0,∞) ×X → X be continuous in t for t > 0 and locally Lipschitz continuous in
u, uniformly in t on bounded intervals. If A is the infinitesimal generator of a C0-semigroup
{T (t); t > 0} on X, then for every A ∈ ω − OCPn and u0 ∈ X there is a tmax 6∞ such that
the initial value problem

(3.5)

{
du(t)
dt

+ Au(t) = f(t, u(t)), t > 0

u(0) = u0

has a unique mild solution u on [0, tmax). Moreover, if tmax <∞, then

lim
t→tmax

‖u(t)‖ =∞.

Proof:
We start by showing that for every t0 > 0, u0 ∈ X, the initial value problem (2.2) has, under
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assumptions of our theorem, a unique mild solution u on an interval [t0, t] whose length is
bounded below by

(3.6) δ(t0, ‖u0‖) = min

{
1,

‖u0‖
K(t0)L(K(t0), t0 + 1) +N(t0)

}
where L(c, t) is the local Lipschitz constant if and only if

(3.7) ‖f(t, u)− f(t, v)‖ 6 L(c, t′)‖u− v‖,

M(t0) = max{‖T (t)‖ : 0 6 t 6 t0 + 1},
K(t0) = 2‖u0‖M(t0)

and
N(t0) = max{‖f(t, 0)‖ : 0 6 t 6 t0 + 1}.

Indeed, let
t1 = t0 + δ(t0, ‖u0‖)

where δ(t0, ‖u0‖) is given by (3.6). The mapping F defined by (3.1) maps the ball of radius
K(t0) centered at O of C([t0, t1] : X) into itself. This follows from the estimate

‖(Fu)(t)‖ 6M(t0)‖u0‖+
∫ t

t0

‖T (t− s)‖(‖f(s, u(s))− f(s, 0)‖+ ‖f(s, 0)‖)ds

6M(t0)‖u0‖+M(t0)K(t0)L(K(t0), t0 + 1)(t− t0) +M(t0)N(t0)(t− t0)

6M(t0){‖u0‖+K(t0)L(K(t0), t0 + 1)(t− t0) +N(t0)(t− t0)}

6 2M(t0)‖u0‖ = K(t0)(3.8)

where the last inequality follows from the definition of t1. In this ball, F satisfies a uniform
Lipschitz condition with constant L = L(K(t0), t0+1) and thus as in the proof of Theorem 3.1
it possesses a unique fixed point u in the ball. This fixed point is the desired solution of (2.1)
on the interval [t0, t1].

From what we have just proved, it follows that if u is a mild solution of (3.5) on the interval
[0, τ ]. It can be extended to the interval [0, τ+δ] with δ > 0 by defining on [τ, τ+δ], u(t = w(t))

where w(t) is the solution of the integral equation

(3.9) w(t) = T (t− τ)u(τ) +
∫ t

τ

T (t− s)f(s, w(s))ds, τ 6 t 6 τ + δ.

Moreover, δ depends only on ‖u(τ)‖, K(τ) and N(τ). Let [0, tmax] be the maximum interval of
existence of the mild solution u of (3.5). If tmax <∞, then

lim
t→tmax

‖u(t)‖ =∞.

Since otherwise there is a sequence tn → tmax such that ‖u(tn)‖ 6 C for all n. This would
imply by what we have just proved for each tn, near enough to tmax, u defined on [0, tn] can be
extended to [0, tn + δ] where δ > 0 is independent of tn and hence u can be extended beyond
tmax contradicting the definition of tmax. To prove the uniqueness of the local mild solution u
of (3.5), we note that if v is a mild solution of (3.5), then on every closed interval [0, t0] on
which both u and v exists they coincide by the uniqueness argument given at the end of the
proof of Theorem 3.1. Therefore, both u and v have the same tmax and on [0, tmax), u = v, and
this achieves the proof.
Theorem 3.3
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Assume A : D(A) ⊆ X → X is the infinitesimal generator of a C0-semigroup {T (t), t > 0} on
X. Suppose f : [t0, T ]×X → X is continuously differentiable from [t0, T ]×X into X then the
mild solution of (2.2) with u0 ∈ D(A) is a classical solution of the initial value problem for all
A ∈ ω −OCPn.
Proof:
We note first that the continuous differentiability of f from [t0, T ] ×X into X implies that f
is continuous in t and Lipschitz continuous in u, uniformly in t on [t0, T ]. Therefore the initial
value problem (2.2) possesses a unique mild solution u on [t0, T ] by Theorem 3.1. Next we show
that this mild solution is continuously differentiable on [t0, T ]. To this end, we set

B(s) =

(
∂

∂u

)
f(s, u)

and

(3.10) g(t) = T (t− t0)f(t0, u(t0))− AT (t− t0)u0 +
∫ t

t0

T (t− s) ∂
∂s
f(s, u(s))ds,

for all A ∈ ω −OCPn.
From our assumptions, it follows that g ∈ C([t0, T ] : X) and that the function h(t, u) = B(t)u

is continuous in t from [t0, T ] into X and uniformly Lipschitz continuous in u since s → B(s)

is continuous from [t0, T ] into B(X). Let w be the solution of the integral equation:

(3.11) w(t) = g(t) +

∫ t

t0

T (t− s)B(s)w(s)d(s).

The existence and uniqueness of ω ∈ C([t0, T ] : X) follows that for every g ∈ ([t0, T ] : X),
the integral equation (3.11) has a unique solution w ∈ C([t0, T ] : X). Moreover, from our
assumptions we have

(3.12) f(s, u(s+ h))− f(s, u(s)) = B(s)(u(s+ h)− u(s)) + w1(s, h)

and

(3.13) f(s+ h, u(s+ h))− f(s, u(s+ h)) =

(
∂

∂s

)
f(s, u(s+ h))h+ w2(s, h)

where h−1‖w1(s, h)‖ → 0 as h → 0 uniformly on [t0, T ] for i = 1, 2. If wh(t) = h−1(u(t + h)−
u(t)− w(t)), then from the definition of u, (3.11), (3.12) and (3.13). We obtain

wh(t) =[h−1(T (t+ h− t0)u0 − T (t− t0)u0) + AT (t− t0)u0]

+
1

h

∫ t

t0

T (t− s)(w1(s, h) + w2(s, h))ds

+

∫ t

t0

T (t− s)
(
∂

∂s
f(s, u(s+ h))− ∂

∂s
f(s, u(s))

)
ds

+

[
1

h

∫ t0+h

t0

T (t+ h− s)f(s, u(s))d− T (t− t0)f(t0, u(t0))
]

+

∫ t

t0

T (t− s)B(s)wh(s)ds.(3.14)
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It is not difficult to see that the norm of each of the four first terms on the right-hand-side of
(3.14) tends to zero as h→ 0. Therefore we have

(3.15) ‖wh(t)‖ 6 ε(h) +M

∫ t

t0

‖wh(s)‖ds

where M = max{‖T (t − s)‖‖B(s)‖ : t0 6 s 6 T} and ε(h) → 0 as h → 0. From (3.15) it
follows by Gronwall’s inequality that

‖wh(t)‖ 6 ε(h)e(T−t0)M

and therefore

‖wh(t)‖ → 0 as h→ 0.

This implies that u(t) is differentiable on [t0, T ] and its derivative is w(t). Since w ∈ C([t0, T ] :
X), u is continuously differentiable on [t0, T ].

Finally, to show that u is the classical solution of (2.2) we note that from the continuous
differentiability of f it follows that s→ f(s, u(s)) is continuously differentiable on [t0, T ]. Then
it follows that

(3.16) v(t) = T (t− t0)u0 +
∫ t

t0

T (t− s)f(s, u(s))ds

is the classical solution of the initial value problem

(3.17)

{
dv(t)
dt

+ Av(t) = f(t, u(t))

v(t0) = u0

for all u ∈ X and A ∈ ω − OCPn. But by definition, u is a mild solution of (3.17) and it
follows that u = v on [t0, T ]. Thus u is a classical solution of the initial value problem (2.2).
Hence the proof is completed.

Theorem 3.4
Let A be the infinitesimal generator of a C0-semigroup {T (t); t 6 0} on a reflexive Banach
space X. If f : [t0, T ] × X → X is Lipschitz continuous in both variables, u0 ∈ D(A),
A ∈ ω − OCPn and u is the mild solution of the initial value problem (2.2), then u is the
strong solution of this initial value problem.

Proof:
Let ‖T (t)‖ 6M and ‖f(t, u(t))‖ 6 N for t0 6 t 6 T and let f satisfies

(3.18) ‖f(t1, x1)− f(t2, x2)‖ 6 C(|t1 − t2|+ ‖x1 − x2‖), t1, t2 ∈ [t0, T ].

For 0 < h < t− t0 we have

u(t+ h)− u(t =T (t+ h− t0)u0 − T (t− t0)u0

+

∫ t0+h

t0

T (t+ h− s)f(s, u(s))ds

+

∫ t

t0

T (t− s)[f(s+ h, u(s+ h))− f(s, u(s))]ds

https://doi.org/10.28919/ejma.2025.5.13
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and therefore,

‖u(t+ h)− u(t)‖ 6 hM‖Au0‖+ hMN +MC

∫ t

t0

(h+ ‖u(s+ h)− u(s)‖)ds

6 C1h+MC

∫ t

t0

‖u(s+ h)− u(s)‖ds

which by Gronwall’s inequality implies

(3.19) ‖u(t+ h)− u(t)‖ 6 C1e
TMCh

and u is Lipschitz continuous.
The Lipschitz continuity of u combined with the Lipschitz continuity of f implies that t →

f(t, u(t)) is Lipschitz continuous on [t0, T ]. We have that the initial value problem

(3.20)

{
dv
dt
+ Av = f(t, u(t))

v(t0) = u0

has unique strong solution v on [t0, T ] satisfying

v(t) = T (t− t0)u0 +
∫ t

t0

T (t− s)f(s, u(s))ds = u(t)

and so u is a strong solution of (2.2). Hence the proof is completed.

Conclusion
In this paper, it has been established that ω-order preserving partial contraction mapping
generates some results of Lipschitz perturbations of linear evolution equations.
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