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ANALYSIS OF THE FRACTIONAL COX-INGERSOLL-ROSS MODEL
BASED ON OPTIMAL STOPPING RULES

JAYA P. N. BISHWAL

Abstract. In this paper, based on optimal stopping rules, we study the inverse problem of
sequential inference of the unknown mean reversion parameters in the fractional Cox-Ingersoll-
Ross model which has been the main building block for interest rate and stochastic volatility
models. For forward problem, this type of observations are used in the pricing of American
options. We observe the process both continuously and discretely in time. Continuous ob-
servation has theoretical interest and discrete observations have practical interest. We have a
unified theory for the subcritical, critical and supercritical cases. We discuss several stopping
rules based on barrier, threshold and observed Fisher information. We also consider processes
with jumps and long-memory.

1. Introduction

There are close connections between some models in biology and finance. Feller (1951) reached
at the square-root process as the weak limit of Galton-Watson branching process with immi-
gration while studying a problem in genetics. Using the Feller’s square-root process, Cox et
al. (1985) studied the theory of term structure of interest rates and the model is now known
as the Cox-Ingersoll-Ross model. Overbeck and Ryden (1997) studied asymptotics of condi-
tional least squares estimators of Cox-Ingersoll-Ross process from discrete observations using an
auto-regressive type representation of the model with non-Gaussian error. Dehtiar et al. (2021)
studied strong consistency for the maximum likelihood method and an alternative method of
estimation of the drift parameters of the Cox-Ingersoll-Ross process based on continuous ob-
servations. Mishura and Yurchenko-Tytarenko (2018) studied hitting probability of fractional
Cox-Ingersoll-Ross model which involves long memory. Mackevicius (2015) used stochastic Ver-
hulst model as an alternative to CIR model for modeling interest rate as both processes have
similar behavior. Mackevicius (2011) studied weak approximation of CIR equation by discrete
random variables. Lenkasas and Mackevicius (2015) obtained a second order weak approxi-
mation of Heston model by discrete random variables. Lileika and Mackevicius (2020) studied
weak approximation of CKLS and CEV process (cf. Cox (1996)) by discrete random variables.
The Cox-Ingersoll-Ross (CIR) model is extensively used as a short rate mean reverting model
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in term structure of interest rates and a stochastic volatility process in the Heston model, see
Bishwal (2022). In view of this, it becomes necessary to estimate the unknown parameters
in the model from discrete data. See Bishwal (2008) for asymptotic results on approximate
likelihood asymptotics and approximate Bayes asymptotics for drift estimation of discretely
observed diffusions based on high frequency data.

Li and Linetsky (2014) studied time-changed Ornstein-Uhlenbeck processes and their ap-
plications in commodity derivative models. The Cox-Ingersoll-Ross model, also called the
square-root process, is used as a short rate mean reverting model in term structure of interest
rates and in membrane potential evolution in single neurons in the nervous system, both based
on high frequency discrete data. In view of this, it becomes necessary to estimate the unknown
parameters in the model. Ditlevsen and Samson (2014) studied the estimation in the partially
observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approxima-
tion method. The long time asymptotics of the maximum likelihood estimator (MLE) and the
Bayes estimators (BEs) of the drift parameter in the nonlinear nonhomogeneous Markov diffu-
sion processes was studied by Borkar and Bagchi (1982), Levanony, Shwarz and Zeitouni (1994)
and Kutoyants (1984b, 2003). Dietz (1989) asymptotic properties of MLE as the intensity of
noise ε → 0 or the observation time T → ∞ when the model satisfies the LAMN condition.
Dietz (1992) studied the properties of MLE in a concrete example of diffusion type process
which is an exponential memory nonhomogeneous process, a non-Markovian alternative to the
Ornstein-Uhlenbeck process as the observation time T → ∞. Kutoyants (1984a, 1994) also
studied the asymptotic properties of MLE as the diffusion coefficient ε → 0 (for fixed T ). For
a linear stochastic differential equation with time delay, Gushchin and Küchler (1998) showed
that the MLE shows eleven different behaviors for eleven parts of the parameter space. See
Bishwal (2008, 2022) for large time asymptotic results on approximate likelihood estimators and
approximate Bayes estimators of the unknown drift parameter of discretely observed diffusions
based on high frequency data. We estimate the drift parameter by the sequential maximum
likelihood (SML) method and study the asymptotic minimaxity of the resulting estimators.

For first order efficiency (in the sense of C.R. Rao) of estimators for stochastic processes, see
Hall and Heyde (1980). We prove the local asymptotic minimaxity of the SMLE in the Hajek-
Le Cam sense. Roughly speaking an estimator is said to be locally asymptotically minimax
if it attains the lower bound in Hajek-Le Cam minimax theorem (see Jeganathan (1982)), i.e.
if it attains the lower bound to the local asymptotic minimax risk of the normalized error an
estimator. The minimum requirement for Hajek’s minimax theorem is that the model should
satisfy the LAN (locally asymptotically normal) or LAMN (locally asymptotically mixed nor-
mal) condition. When these conditions are satisfied the lower bound is attained only if the
estimator is asymptotically centering (AC) (see Jeganathan (1982) for a definition). But there
are situations where either of the above two conditions may not be attained. Consider, for
example, the Ornstein-Uhlenbeck process with drift coefficient θXt. This process exhibits qual-
itatively different behaviour for different values of the parameter θ. For θ < 0, the model
satisfies the LAN condition and for θ > 0 the model satisfies the LAMN condition. The point
θ = 0 is critical. At θ = 0, it satisfies neither the LAN condition nor the LAMN condition,
but it satisfies the LABF (locally asymptotically Brownian functional) condition. The model
satisfies LAQ (locally asymptotically quadraticity) (see Le Cam and Yang (1990), Jeganathan
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(1995)) for all θ. Similar situations occur in its discrete time counterpart : the Gaussian autore-
gressive process of first order and other proceses like the Galton-Watson branching processes,
pure birth processes etc. (see Guschin (1995)). Greenwood and Shiryayev (1992) proved the
uniform local asymptotic minimaxity of the SMLE of the parameter in the first order Gauss-
ian autoregressive process by studying the uniform weak convergence of statistical experiments
using the convergence of the associated Hellinger processes. Under the LAQ condition, Ha-
jek’s minimax theorem is available, but the AC estimators do not attain the lower bound, i.e.,
they will not be locally asymptotically minimax. Recently Greenwood and Wefelmeyer (1993)
showed that local asymptotic minimax bound is attained by asymptotically centering estima-
tors even at critical points, which requires sequential sampling. Höpfner, R. (1993a) studied the
statistics of Markov processes with representation of log-likelihood ratio processes in filtered
local models. Höpfner, R. (1993b) studied asymptotic inference for Markov step processes su-
ing observation up to a random time. Li and Linetsky (2015) studied discretely monitored
first passage problems and barrier options using an eigenfunction expansion approach. Lipton
and Kaushansky (2020) studied the first hitting time density for a reducible diffusion process.
Löcherbach (2002b) studied LAN and LAMN for systems of interacting diffusions with branch-
ing and immigration. Alili et al. (2005) studied the representations of first hitting time density
of an Ornstein-Uhlenbeck process.

For the linear diffusion model where the drift coefficient is b(θ, t, x) = θa(t, x) and the dif-
fusion coefficient is σ(t, x) = 1, Novikov (1972) (see also Liptser and Shiryayev (1978)) proved
that the SMLE of θ is unbiased and exactly normally distributed for all values of the pa-
rameter in the parameter space Θ ⊂ R. Further, he showed that SMLE is optimal in the
mean square sense and is more efficient in the sense of having less mean square error than
the ordinary MLE based on fixed time observation, under the assumption that the mean du-
rations of observation time in both the sampling plans are the same. Tikhov (1978) proved
that for the case b(θ, t, x) = θa(t) and σ(t, x) = 1, the SMLE is optimal relative to the power
loss function Lα(|δ(x) − θ|) = |δ(x) − θ|α, α ≥ 1. Tikhov (1980) generalised this to the case
b(θ, t, x) = θb1(t, x) + b0(t, x). Sørensen (1983) gave a review of sequential maximum likelihood
estimation in linearly parametrized diffusion type processes. Sørensen (1986) (see also Küchler
and Sørensen (1997)) studied similar properties of SMLE for exponential families of stochastic
processes. Musiela (1977, 1979) studied sequential ML estimation in a linear diffusion model.
Le Breton and Musiela (1981) studied sequential estimation of parameters of continuous Gauss-
ian Markov processes. Le Breton and Musiela (1985) studied similar properties of SMLE in
linear homogeneous multidimensional SDE. Rozanskii (1989) extended the work of Novikov
(1972) to a linear homogeneous diffusion field. Melnikov and Novikov (1988) extended the
work of Novikov (1972) from linear diffusion model to a linear semimartingale model. Brown
and Hewitt (1975) studied the properties of sequential maximum likelihood estimator for dif-
fusion branching process using a different type of stopping rule. Löcherbach (2002a) studied
likelihood ratio processes for Markovian particle systems with killing and jumps.

We estimate the unknown parameter by means of observation of the process until the
observed Fisher information exceeds a predetermined level of precision. This idea of using
observed Fisher information to define a stopping rule dates back to Anscombe (1952) (see
also Grambsch (1983) and Ghosh et al. (1997). This type of stopping rule was used for
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autoregressive parameter estimation in Lai and Siegmund (1985), Dimitrinko and Konev
(1994), Dimitrinko et al. (1997), Malinovskii (1993), Pergamenshchikov (1991) among others.

2. Continuous Observation

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis on which is defined the Cox-Ingersoll-Ross process
{Xt} satisfying the Itô stochastic differential equation

dXt = (α− β Xt) dt+ 2σ
√
X t dWt, t ≥ 0, X0 = x0 (2.1)

where {Wt} is a standard Wiener process with the filtration {Ft}t≥0 and α, β, σ > 0 are the
unknown parameters to be estimated on the basis of continuous and discrete observations of
the process.

Let the continuous realization {Xt, 0 ≤ t ≤ T} be denoted by XT
0 . First we consider the

case where α = 0 and 2σ = 1, that is the diffusion branching process. Let P T
β be the measure

generated on the space (CT , BT ) of continuous functions on [0, T ] with the associated Borel
σ-algebra BT generated under the supremum norm by the process XT

0 and let P T
0 be the

standard Wiener measure. It is well known that when β is the true value of the parameter P T
β

is absolutely continuous with respect to P T
0 and the Radon-Nikodym derivative (likelihood) of

P T
β with respect to P T

0 based on XT
0 is given by

LT (β) :=
dP T

β

dP T
0

(XT
0 ) = exp

{
β

∫ T

0

dXt −
β2

2

∫ T

0

Xtdt

}
. (2.2)

Consider the score function, the derivative of the log-likelihood function lT (β), which is given
by

l′T (β) :=

∫ T

0

dXt − β
∫ T

0

Xtdt. (2.3)

A solution of the estimating equation l′T (β) = 0 provides the maximum likelihood estimate
(MLE)

β̂T :=
XT −X0∫ T

0
Xtdt

. (2.4)

Let us consider the distribution of the continuous energy process IT which is a sufficient statis-
tic for estimation of β, the other sufficient statistic being XT −X0. The asymptotic distribu-
tion of the IT process is closely related to the inverse Gaussian distribution with parameters
(T/2, T/2).

The maximum likelihood estimator of β in the diffusion branching process (2.1) is known to
have different limit distributions for the three cases β < 0 (subcritical), β = 0 (critical) and
β > 0 (supercritical). This paper is concerned with the two cases β = 0 and β > 0. It will be
useful to develop a unified approach to estimation which does not require the prior information
as to whether β = 0 or β > 0. We propose to use sequential approach to achieve this.

Overbeck (1998) studied large sample asymptotics for the maximum likelihood estimation
in diffusion branching process. Brown and Hewitt (1975) studied sequential estimation of the
diffusion branching process. They used a one barrier stopping rule.
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Define the stopping rule

τh := inf{t ≥ 0 :

∫ t

0

Xsds ≥ h} (2.5)

where h is the known precision. This stopping time is inspired by observed Fisher information.
Xτ and

∫ τ
0
Xsds are complete sufficient statistics for α and β.

Define the stopping rule
τ := inf{t ≥ 0 : Xt = C}. (2.6)

If one uses this stopping rule, Xτ is fixed and
∫ τ

0
Xsds is alone is a sufficient statistic. In fact

the form of the likelihood function will show that
∫ τ

0
Xsds is a complete sufficient statistic. The

distribution of the sufficient statistic is inverse Gaussian.
Both OU and CIR models have non-oscillatory natural boundaries. Hence the spectrum

is purely discrete. Hitting time densities for CIR and OU diffusions was studied in Linetsky
(2004) in terms of Sturm-Liouville eigenfunction expansions. See equation (40) in that paper.

Define the first hitting time as

τ := inf{t ≥ 0 : Xt = C} (2.7)

where C is the mean reversion level. The process is positive recurrent:

P (τ <∞) = 1, Ex(τ) <∞. (2.8)

For the O-U process, the density of the first hitting time is given by

fτ (t) =
|x− C|√

2πσ

(
κ

sinh(κt)

)
exp

(
κt

2
− κ(x− C)2e−κt

2σ2 sinh(κt)

)
(2.9)

where κ is the mean-reversion speed and C is the mean-reversion level. See Ricciardi and Sato
(1988). They also calculated moments of the distribution. See also Going-Jaeschke and Yor
(2003) who used Laplace transform of Bessel process.

The closed form solution is inverse Gaussian if x < 0 and C = 0 (first hitting time to 0):

fτ (t) =
2|x|√

2π
(e2t − 1)−3/2e2t exp

(
− x2

2(e2t − 1)

)
. (2.10)

Consider the random time ρt =
∫ t

0
Xsds and the associated process Yρt = Xt. The process Y

is a Brownian motion with drift β, acceleration 1 and Y0 = 0.

Define the stopping rule
τ := inf{t ≥ 0 : Yt = A}

which is the first passage time of Yt reaching a barrier A. The distribution of τ is inverse
Gaussian. Note that τ is a complete sufficient statistic for β and Aτ−1 − A−1 is a minimum
variance unbiased estimator (MVUE) for β.

The sequential MLE is given by

β̃τ :=
1

h

[∫ τ

0

XsdXs − (Xτ −X0)X̄τ

]
, (2.11)

α̃τ := −X̄τ β̃τ +
1

τ
(Xτ −X0). (2.12)

Threshold Based Estimator

We study discrete sequential estimator based on observations of first hitting time.
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Consider the general SDE

dXt = µ(Xt, θ)dt+ σ(Xt)dWt, X0 = x (2.13)

τh = inf{t ≥ 0 : Xt = A} = inf{t ≥ 0 : Mt = h} (2.14)

where Mt = sups≤tXs is the record process.
The truncated jump process is defined as

τ̂ ηh =
∑
x≤u<h

∆Tu I(∆Tu≥η). (2.15)

The contrast function is given by

Uh(θ) =
1

2

∫
[x,h)

µ2(u, θ)− µ2(u, θ0)

σ2(u)
dτu −

∫ h

x

(µ(u, θ)− µ(u, θ0)

σ2(u)
du. (2.16)

The log-likelihood is given by

logLτh(θ) =

∫ τh

0

µ(Xs, θ)− µ(Xs, θ0)

σ2(Xs)
dXs −

1

2

∫ τh

0

µ2(Xs, θ)− µ2(Xs, θ0)

σ2(Xs)
ds. (2.17)

Observe that

− logLτh(θ) = Uh(θ) + oP (∆). (2.18)

Uh(θ) converges in probability to

K(θ0, θ) =
1

2

∫ h

x

(µ(u, θ)− µ(u, θ0))2

σ2(u)µ(u, θ0)
du. (2.19)

the Kullback-Lieiber information.∫
[x,h)

φ(u)dτu →P

∫ h

x

φ(u)

µ(u, θ0)
du. (2.20)

Converting Lτh by Itô formula, we have

logLτh =

∫ h

x

(µ(u, θ)− µ(u, θ0)

σ2(u)
du

−1

2

∫ τA

0

[
(µ2(Xs, θ)− µ2(Xs, θ0)

σ2(Xs)
+ σ2(Xs)

∂

∂Xs

µ(Xs, θ)− µ(Xs, θ0)

σ2(Xs)

]
ds.

(2.21)

We know that for 0 ≤ t ≤ τh and x ≤ a ≤ h, (Mt ≥ h) = (τh ≤ t). Hence∫ τh

0

φ(Ms)ds =

∫
[x,h)

φ(u)dτu. (2.22)

Examples

1) For WD (Wiener process with drift) case, µ(u, θ) = θ,

θ̂h =
h− x
τh

. (2.23)

2) For the OU (Ornstein-Uhlenbeck) case, µ(u, θ) = θu,

θ̂h =

∫ h
x
udu∫

[x,h)
u2dτu

=
h2 − x2

2
∫

[x,h)
u2dτu

(2.24)
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3) For the CIR (Cox-Ingersoll-Ross) case, µ(u, θ) = a+ bu, a > 0, b > 0

b̂h =
log(h/x)

∫
[x,h)

udτu − τh(h− x)∫
[x,h)

u−1dτu
∫

[x,h)
udτu − τ 2

h

, (2.25)

âh =
(h− x)

∫
[x,h)

u−1dτu − τh log(h/x)∫
[x,h)

u−1dτu
∫

[x,h)
udτu − τ 2

h

. (2.26)

3. Discrete Observations

Discretization of stopping time is a delicate problem. Li and Linetsky (2013) studied discretiza-
tion of stopping time and optimality. Let 0 = t0 < t1 < · · · tn = T and ti = i∆, i = 1, 2 · · · , n
with h fixed. Let {Xt} be observed at times 0 = t0 < t1 < · · · tn = T with ti − ti−1 = T

n
=

∆, i = 1, 2 · · · , n.
Define the one barrier stopping time

γn,B := inf{n ≥ i ≥ 1 : Xti ≥ B} (3.1)

where B > 0. Define the sequential estimator as

β̂γn,B =
B − 1∑γ

i=1 Xti−1
(ti − ti−1)

− 1

B − 1
. (3.2)

The statistic
∑γ

i=1Xti−1
(ti − ti−1) is a complete sufficient statistic. Thus β̂γ is the minimum

variance unbiased estimator (MVUE).
Let Yt :=

√
X t. By Itô formula

dYt =

(
− 1

8Yt
− 1

2
Yt

)
dt+

1

2
dWt, t ≥ 0. (3.3)

This is a Bessel process. Using Itô formula, one can derive the SDE for Rt = 4/(σ2Y −2
t ) which

is given by
dRt = −α(Rt − β)Rtdt+ σR

3/2
t dWt. (3.4)

This process , known as 3/2 model, was proposed by Cox et al. (1985, p. 402, Equation 50) as
a model for the inflation rate in their three-factor inflation model.

We will approach the CIR model as a weak limit of branching processes. Let Zn = {Zn,k :

k = 0, 1, 2, . . .} be a sequence of simple branching processes whose offspring distributions have
means mn, variances σn ; and are uniformly square integrable in n.

Zn,[nt] =

Zn−1,[(n−1)t]∑
k=1

ξn−1,k + ζn (3.5)

where ξn−1,k is the number of offsprings of the kth individual belonging to the (n − 1)th
generation and ζn denotes the number of immigrants in the nth generation. Suppose that
{ξn−1,k}, k = 0, 1, 2, . . . , n = 1, 2, . . ., and {ζn}, n = 1, 2, . . . are two independent sequences of
independent and identically distributed (i.i.d.) random variables. The initial state Z0 is a
random variable which is independent of {ξn−1,k} and {ζn} has an arbitrary distribution. The
offspring and the immigration distributions are assumed to be unspecified with means mn and
λn and variances σn respectively.
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Define
Xn,t :=

1

n
Zn,[nt]. (3.6)

Then Xn → X weakly in the sense of convergence of the corresponding probability measures
on D[0,∞) if

1

n
Zn,0 → ν, n(mn − 1)→ β, σn → 2 as n→∞. (3.7)

By the Levy result for quadratic variation of Brownian motion

lim
n→∞

n∑
i=1

[Xti −Xti−1
]2 = 2

∫ t

0

Xsds a.s. (3.8)

β̂n,T =
XT −X0∑n

i=1[Xti −Xti−1
]2
→ βT =

XT −X0∫ T
0
Xtdt

a.s. (3.9)

β̂n,τ =
Xτ −X0∑n∧[nτ ]

i=1 [Xti −Xti−1
]2
→ βτ =

Xτ −X0∫ τ
0
Xtdt

a.s. (3.10)

Define the stopping rule

N := inf{n ≥ 1 :
n∑
i=1

(Xi − X̄n)2 ≥ h}. (3.11)

Define the sequential estimators

β̂N,h :=
1

∆
log

∑N
i=1(Xi − X̄N)(Xi−1 − X̄ ′N)∑N

i=1(Xi − X̄N)2
, α̂N,h :=

X̄N − eβ̂N,h∆X̄ ′N

eβ̂N,h∆ − 1
β̂N,h (3.12)

where

X̄N :=
N∑
i=1

Xi, X̄ ′N :=
N∑
i=1

Xi−1. (3.13)

Discretization of Continuous Stopping Time

The discrete stopping time is given by

Nh := inf{n ∈ N : n∆ ≥ τh}. (3.14)

We assume that P (τa <∞|X0 = x) = P (N <∞|X0 = x) = 1.
Now let us introduce the killed process as follows: Let Xk

t = Xt when Xt < h and Xt = C

(the coffin state) when Xt ≥ h. Let the discretization of Xk
t be Xk

i which is defined as: Xk
i = Xi

for i < NH and Xk
i = C for i ≥ Nh.

Observing the original discretized process Xi up to the stopping time N − 1 is equivalent to
observing the killed process Xk

i infinitely, since from the first visit to C no more information
is gained. In both cases, we can interpret each observed trajectory as a realization of a single
random variable.

The discrete sequential estimators are given by

b̂Nh,h = − 1

∆
log

(
Nh

∑Nh
i=1 XiX

−1
i−1 −

∑Nh
i=1Xi

∑Nh
i=1 X

−1
i−1

Nh
2 −

∑Nh
i=1Xi

∑Nh
i=1X

−1
i−1

)
, (3.15)

âNh,h =
1

Nh

Nh∑
i=1

Xi +
e−b̂Nh,h∆(XNh − x)

Nhb̂Nh,h(1− e−b̂Nh,h∆)
. (3.16)
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4. Sequential Estimation for Fractional Levy CIR Process

For direct pricing problem, random observation period and optimal stopping problem are related
to American options. Valuation of real options of American type under persistent shocks (color
noise) was studied in Bishwal (2017). We focus on the inverse problem.

Recall that in the singular case for zero innovation mean locally asymptotically Brownian
functional (LABF) condition holds while for nonzero innovation mean, local asymptotic nor-
mality (LAN) condition holds, see Bishwal (2018). Sequential estimation unifies the ergodic,
nonergodic and singular case and gives asymptotic normality in all three cases, see Bishwal
(2018). Sequential maximum likelihood estimation in semimartingales was studied in Bish-
wal (2006). Sequential estimation in Hilbert space valued stochastic differential equations was
studied in Bishwal (1999). Sequential maximum likelihood estimation for reflected Ornstein-
Uhlenbeck process was studied in Lee et al. (2012).

First consider the FLCIR model

dYt = a(b− Yt)dt+ σ
√
YtdV

H
t (4.1)

where V H
t is a fractional Levy (FL) process with Hurst parameter H > 1/2.

Fractional Levy Process (FLP) is defined as

V H
t = VH,t =

1

Γ(H + 1
2
)

∫
R
[(t− s)H−1/2

+ − (−s)H−1/2
+ ]dṼs, t ∈ R

where {Ṽt, t ∈ R} is a Levy process on R with E(Ṽ1) = 0, E(Ṽ 2
1 ) <∞.

Here are some properties of the fractional Levy process:
1) The covariance of the process is given by

cov(VH,t, VH,s) =
E(Ṽ 2

1 )

2Γ(2H + 1) sin(πH)
[|t|2H + |s|2H − |t− s|2H ].

2) VH is not a martingale. For a large class of Levy processes, VH is neither a semimartingale.
3)VH is Hölder continuous of any order β less than H − 1

2
.

4) VH has stationary increments.
5) VH is symmetric.
6) Ṽ is self-similar, but VH is not self-similar.
7) VH has infinite total variation on compacts.
Thus FLP is a generalization and a natural counterpart of FBM. Fractional stable motion

(FSM) is a special case of FLP. Fractional Poisson process (FPP) is a special case of FLP.
A fractional Poisson process {NH(t), t > 0} with Hurst parameter H ∈ (1/2, 1) is defined as

NH(t) =
1

Γ(H − 1
2
)

∫ t

0

u
1
2
−H
(∫ t

u

τH−
1
2 (τ − u)H−

3
2dτ

)
dq(u)

where q(u) = N(u)√
λ
−
√
λu and N(u) is a homogeneous Poisson process with intensity λ > 0.

The covariance of NH is given by

E(NH(t)NH(s)) =
R2
H

2
(t2H + s2H − |t− s|2H)
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where

R2
H := −Γ(2− 2H) cos(πH)

(2H − 1)πH
.

The process is self-similar in the wide sense, has wide sense stationary increments, has fat-
tailed non-Gaussian distribution, and exhibits long range dependence. The process converges
to fractional Brownian motion in distribution. The process is self-similar in the asymptotic
sense.

Then by Proposition 5.7 of Buchmann and Kluppelberg (2006), we have

Yt = f(Xt) (4.2)

where

dXt = a(b−Xt)dt+ dV H
t , X0 = f−1(Y0), t ∈ [0, T ] (4.3)

and f(x) = sgn(x)σ2x2/4.
Let b = 0, σ = 1 and a = θ1. Then Xt is described by the Ornstein-Uhlenbeck SDE

dXt = −θ1Xtdt+ dV H
t (θ2), X0 = f−1(Y0) (4.4)

where θ1 ∈ Θ1 = R and V (θ2) is a process with stationary independent increments with
V0(θ2) = 0 and Levy characteristics (b(θ2)t, ct, L(θ2)t) depending on a parameter θ2 from
an arbitrary set Θ2. We assume that the trajectories of V (θ2) are right continuous with left
limits. This model provides the natural analogue of the discrete time of AR(1) models with
i.i.d. innovations.

For θ = (θ1, θ2) ∈ Θ = Θ1×Θ2, let Pθ,t be the distribution of X when observed up to time t.
For θ ∈ Θ, let PΘ denote the distribution of the unique solution of the SDE on Ω = D(R+,R)

equipped with the coordinate process X = (Xt)t≥0 and the σ-algebra F = σ(Xt : t ≥ 0) where
D(R+,R) is the space of real valued functions on R+ which are right continuous with left limits.
Let (Ft)t≥0 denote the right continuous filtration generated by X.

Under Pθ, the process V H(θ1) defined by V H
t (θ1) = Xt+θ1

∫ t
0
Xsds has dependent stationary

increments and the driver Ṽt has the Levy characteristics (b(θ2)t, ct, L(θ2)t) relative to some
fixed continuous bounded truncation function h : R → R with compact support satisfying
g(x) = x in a neighborhood of zero, that is,

Eθ exp(izṼt(θ1)) = exp

(
t

[
izb(θ2)− 1

2
cz2 +

∫
(exp(izx)− 1− izg(x))L(θ2)(dx)

])
, z ∈ R,

(4.5)

where b(θ2) ∈ R, c > 0, and L(θ2) is a Levy measure on R satisfying L(θ2)({0}) = 0 and∫
(x2 ∧ 1)L(θ2)(dx) < ∞ ( See Jacod and Shiryayev (1987) II.4.19, III.2.26). Thus X is a

solution of the above SDE with respect to V (θ1). Assume for simplicity that c = 1.

Now fix τ, θ ∈ Θ such that Pτ 6= Pθ. Let m(τ2) = Eτ (Ṽ1(τ1)) and σ2(τ2) = Varτ Ṽ1(τ1).
Then

m(τ2) = b(τ2) +

∫
(x− g(x))L(τ2)(dx), σ2(τ2) = 1 +

∫
x2L(τ2)dx. (4.6)

We call (m(τ2)t, t, L(τ2)t) Levy characteristics of Ṽ (τ1) without truncation.
The basic regularity conditions are the following: We assume the conditions (A1) – (A4).
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(A1) The Levy measures L(τ2) and L(θ2) are mutually absolutely continuous and L(θ2) is
homogeneous and L2 differentiable, i.e.,∫

(f(τ2, θ2))1/2 − 1)2dL(θ2) <∞ where f(τ2, θ2) = dL(τ2)/dL(θ2).

There exists ḟ(θ2) ∈ L2(L(θ2)) such that∫
[f(θ2 + z)1/2 − 1− 1

2
zḟ(θ2)]2dL(θ2) = o(z2) as z → 0 and

∫
ḟ(θ2)dL(θ2) > 0.

The assumption (A1) implies that
∫
|(f(τ2, θ2)− 1)g|dL(θ2) <∞. Hence a(τ2, θ2) ∈ R. Note

also that a(τ2, θ2) = −a(τ2, θ2).Moreover, a(τ2, θ2) does not depend on the choice of the function
g.

Assume
b(τ2)− b(θ2) =

∫
(f(τ2, θ2)− 1)gdL(θ2).

Define the Kullback- Leibler information of Levy measures by

K(L(τ2, θ2)) :=

∫
(f(θ2, τ2)− 1− log f(θ2, τ2))dL(τ2).

(A2) K((L(τ2), L(θ2)) <∞.
(A3)

∫
(log f(τ2, θ2))2dL(τ2) <∞.

(A4)
∫
x2L(τ2)(dx) <∞.

The assumption (A4) is equivalent to EτV 2
t (τ1) <∞ for every t ≥ 0. Let m(τ2) = Eτ Ṽt(τ1).

Then m(τ2) = b(τ2) +
∫

(x− g(x))L(τ2)(dx) and σ2(τ2) = 1 +
∫
x2L(τ2)(dx).

Under (A1), Pτ,t and Pτ,t are mutually absolutely continuous and he log-likelihood ratio
ΛT (τ, θ) = log(dPτ,t/dPθ,t) admits the representation

ΛT (τ, θ) = −ΛT (θ, τ) =

∫ T

0

[(θ1 − τ1)Xs− + a(τ2, θ2)]dXc
s(τ) +

1

2

∫ T

0

[(θ1 − τ1)Xs + a(τ2, θ2)]2ds

+

∫
(1− f(θ2, τ2))d(µ− ν(τ2)) +

∫ T

0

∫
(f(θ2, τ2)− 1− log f(τ2, θ2))dµ (4.7)

where µ is the Poisson random measure on R+ × R associated with the jumps of X by
µ =

∑
t≥0 ε(t,∆Xt)I{∆Xt 6=0} with with ∆Xt = Xt −Xt−, ∆X0 = 0, ν(τ2, dt, dx) = dt ⊗ L(τ2)dx

and dν = ν(ω, dt, dx) is the compensator. Note that Xc(τ) is a standard Wiener process.
Further ∑

0<s≤t

I(|∆Xs|>1) =

∫ t

0

∫
|x|>1

xdµ. (4.8)

This gives

ΛT (τ, θ) = YT +
1

2

∫ T

0

[(θ1 − τ1)Xs + a(τ2, θ2)]2ds+K(L(τ2), L(θ2))T (4.9)

where

YT =

∫ T

0

[(θ1 − τ1)Xs− + a(τ2, θ2)]dXc
s(τ) +

∫ T

0

∫
log f(τ2, θ2)d(µ− ν(τ2)). (4.10)

We assume ∫
|x|dL(θ3, dx) <∞ and EθV (θ) =

∫
xdL(θ3) (4.11)

for every θ.
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The maximum likelihood estimator (MLE) based on the observations in [0, T ] is given by

θ̂1,T :=
T −X2

T +
∑

s≤T ∆X2
s

2
∫ T

0
X2
sds

.

Bishwal(2011) studied Berry-Esseen inequalities for the maximum likelihood estimator in
Ornstein-Uhlenbeck driven by Gamma process in the ergodic case. Here we study the sin-
gular case.

The MLE based on the observations in [0, T ] for the Vasicek model

dXt = (θ2 − θ1Xt)dt+ dV H
t (θ2), X0 = 0

are given by

θ̂1,T :=
TJ1,T +

∫ T
0
XsdsJ2,T

T
∫ T

0
X2
sds− (

∫ T
0
Xsds)2

,

θ̂2,T :=

∫ T
0
XsdsJ1,T +

∫ T
0
X2
sdsJ2,T

T
∫ T

0
X2
sds− (

∫ T
0
Xsds)2

,

where
J1,T := (

∑
s≤T

∆X2
s + T −X2

T )/2, J2,T := XT −
∑
s≤T

∆Xs. (4.12)

Suppose V H(θ) − Xc(θ) is a gamma process with parameter 1/θ3 under Pθ, with
Lebesgue density θ−t3 xt−1e−x/θ3I(0,∞)(x)/Γ(t), Levy measure L(θ) has the Lebesgue density
x−1e−x/θ3I(0,∞)(x), E(V (θ)) =

∫
xdL(θ3) = θ3,

∫
x2L(θ3, dx) = θ3 or a Poisson process with

intensity θ3, E(V (θ)) = 1/θ3. Then the MLE of θ3 is given by

θ̂3,T := T−1
∑
s≤T

∆Xs.

This estimator is regular and efficient.
Let νi(ds, dx) = ds ⊗ Li(dx), i = 1, 2. The density of Y depends on t and Kt(ν0, ν1) =

tK(L0, L1). where K(L0, L1) is the Kullback-Leibler distance between L0 and L1. Let the first
passage time be given by

τh := inf{s ≥ 0 :
1

2
〈M〉s + sK(L0, L1) > h}. (4.13)

Observation of the process X up to time τh corresponds to Fτh .
We have

Λt = Ñt +
1

2
〈M〉t +Kt(ν0, ν1), Ñτh = Mτh +

∫ τh

0

∫
log Y d(µ− ν0). (4.14)

The log-likelihood is given by

log
dP0

dP1

|Fτh = Λτh = Nh + h (4.15)

where Nh = Ñτh . The process N is a local square-integrable martingale under the filtration
Fτh = (Fτh∧t)t≥0.

Let

r1(h) :=
1

2
〈M〉h+Kh(ν0, ν1) = Kh(P0, P1), r2(h) := (〈M〉h+

∫ h

0

∫
(log Y )2dν0)1/2 = (V ar Λh)

1/2.
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Assume that
r1(h)

r2(h)
→∞.

Theorem 4.1 Assume
τh

r2
2(h)

→ γ in P0-probability,
h

r2
2(h)

→ δ, where γ, δ ∈ [0,∞) and

h

r2(h)
→∞. Then

L(r−1
2 (h)(Λτh − h)|P0)→ N (0, F̃ )

where

F̃ := 2δ + γ

[∫
(log Y )2dL0 − 2K(L0, L1)

]
.

Proof. We have

〈Ñ〉h = 2

[
1

2
〈M〉h + hK(L0, L1)

]
+ h

[∫
(log Y )2dL0 − 2K(L0, L1)

]
. (4.16)

Therefore,

〈N〉h = 〈Ñ〉τh = 2h+ τh

[∫
(log Y )2dL0 − 2K(L0, L1)

]
. (4.17)

This implies
〈N〉h
r2

2(h)
→P0 F̃ (4.18)

in P0-probability. Furthermore,
τh

r2
2(h)

∫
(log Y )2I{| log Y |>r2(h)ε}dL0 → 0 (4.19)

in P0-probability. The assertion now follows from (4.15) and CLT for martingales.

Define the stopping time

τh = inf{s ≥ 0 :

∫ s

0

X2
r dr > h}.

The stopping time is based on the observed Fisher information process exceeding a prescribed
level and the asymptotic is for level →∞ : τ(sh) = τh(s).

Asymptotic Dubins-Schwarz-Dambis (DDS) Theorem: σh is a deterministic time change such
that h 7→ σh(s) increases to infinity for every s and let t 7→ 1/δ2

h be continuous and strictly
increasing to infinity.

Case 1 (Ergodic/Subcritical case) : If θ1 > 0, let δ1,h = h−1/2. If θ1 > 0, choose δ2,h = h−1/2.
Assume

∫
x2dL(θ2) <∞ for every θ2. Then

h−1

∫ sh

0

X2
r dr → aH(θ)s Pθ − a.s. (4.20)

for every s ≥ 0 where

aH(θ) :=
(EθV1(θ1))2

θ4H
1

+
V arθ(V1(θ1))HΓ(2H)

θ2H
1

. (4.21)

This implies
h−1τh(s)→

s

aH(θ)
Pθ − a.s.
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for every s ≥ 0. By the functional limit theorems for martingales, the model is functionally
LAN with 〈M〉s = aH(θ)−1

∫
f ′(θ2)2dL(θ2)s.

Case 2 (Singular/Critical Case) : If θ1 = 0, let δ2,h = h−1/6. From the SLLN for Levy processes

h−1

∫ sh1/3

0

X2
r dr →

1

3
(EθV1(θ1))2s3 Pθ − a.s. (4.22)

for every s ≥ 0.

Hence
h−1/3τh(s)→ (3(EθV1(θ1))−2s)1/3 Pθ − a.s. (4.23)

for every s ≥ 0. The model is functionally LAN with 〈M〉s =

(3(EθV1(θ1))−2)1/3
∫
f ′(θ2)2dL(θ2)s1/3.

Case 3 (Nonergodic/Supercritical case) : If θ1 < 0, choose δ2,h = (log(1 + h))−1/2.

e2θ1h

∫ h

0

X2
r dr → U Pθ − a.s. (4.24)

where U is a random variable with U > 0 a.s., one obtains

h−1

∫ ςh(s)

0

X2
r dr → Us Pθ − a.s. (4.25)

for every s ≥ 0 where ςh(s) = ς(sh) and ς denotes the inverse function of h 7→ e−2θ1h−1. Hence
ς−1
h (τh(s))→ s/U Pθ-a.s. This implies −2θ1τh(s)− log(1 + h)→ log(s/U) Pθ-a.s. Hence

(log(1 + h))−1τh(s)→ −
1

2θ1

Pθ − a.s. (4.26)

The model is functionally LAN with 〈M〉s = − 1
θ1

∫
f ′(θ2)2dL(θ2). Further Eθ(τh) = O(h).

For every θ1 ∈ R (θ1 > 0, θ1 = 0, θ1 < 0), the model is functionally LAN. The SMLE is
asymptotically normal for every θ1 ∈ R.

Remark One should obtain the Berry-Esseen bound for the sequential maximum likelihood
estimator for the discretely sampled OU process using Shiryayev and Spokoiny (2000). The
rate is O(h−1/13) where h is the precision.

5. Sequential Estimation in Nonlinear Fractional Diffusions

State space transform (SST) of regular diffusions was first studied by Karlin and Taylor (1981,
Theorem 2.1, page 172). A standard tool in the theory of diffusions is the concept of scale
function (see Itô and McKean (1974) and Revuz and Yor (1991)) which turns one dimensional
diffusions into local martingales.

A function f is called a state space transform (SST) if it is continuous and strictly increasing:
the open interval I = f(R) is called the state space.

Let Xt be a stationary O-U process satisfying

dXt = −γXtdt+ dWt, t > 0, X0 =

∫ 0

−∞
eγsdWs (5.1)
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with γ > 0. Let Yt := f(Xt) where f is a monotone transform which satisfies

dYt = µ(Yt)dt+ σ(Yt)dWt. (5.2)

Buchmann and Kluppelberg (2006) answered what functions of µ and σ allow for the solution
Y to be stationary. Buchmann and Kluppelberg (2005) studied maxima of diffusions using the
state space transform.

Let (I, µ, σ) be proper and the friction coefficient (FC) γ > 0. The distribution of Yt has a
Lebesgue density p(·) where

p(·) =

√
γ√

πσ(·)2
exp

[
−1

γ

(
µ(·)
σ(·)

)2
]
. (5.3)

Using the SST f(x) = σx − α/β, x ∈ R, for β < 0, σ > 0 and α ∈ R and setting γ = −β, the
process f(Xt) is a Vasicek process satisfying

dVt = µ(Vt)dt+ σdWt (5.4)

where µ(x) = α + βx.
First consider the fCIR model

dXt = a(b−Xt)dt+ σ
√
XtdW

H
t . (5.5)

Then by Proposition 5.7 of Buchmann and Kluppelberg (2006), we have

Xt = f(Yt)

where

dYt = a(b− Yt)dt+ dWH
t , Y0 = f−1(X0), t ∈ [0, T ] (5.6)

and f(x) = sgn(x)σ2x2/4.

We use Proposition 5.7 of Buchmann and Kluppelberg (2006) to represent the following
nonlinear fractional diffusion as a SST of fOU process. Then we use fundamental semimartingale
representation of the fOU model to study sequential estimation.

From Theorem 3.4 in Buchman and Kluppelberg (2006), the fractional diffusion (5.5) above
can be represented as a monotone and differentiable functional of the fO-U process using
the state space transform (SST) representation. Hence Z̃ can be represented as a SST of
semimartingale in terms of Z.

Now we focus on the fundamental semimartingale behind the f-O-U model (5.6). Define

κH := 2HΓ(3/2−H)Γ(H + 1/2), kH(t, s) := κ−1
H (s(t− s))

1
2
−H ,

ηH :=
2HΓ(3− 2H)Γ(H + 1

2
)

Γ(3/2−H)
, vt ≡ vHt := η−1

H t2−2H , MH
t :=

∫ t

0

kH(t, s)dMH
s . (5.7)

For using Girsanov theorem for Brownian motion, since a Radon-Nikodym derivative process
is always a martingale, a central problem is how to construct an appropriate martingale which
generates the same filtration, up to sets of measure zero, as the non-semimartingale called the
fundamental martingale.
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Extending Norros et al. (1999) it can be shown thatMH
t is a martingale, called the funda-

mental martingale whose quadratic variation 〈MH〉t is vHt . Moreover, the natural filtration of
the martingaleMH coincides with the natural filtration of the FLP MH since

MH
t :=

∫ t

0

K(t, s)dMH
s (5.8)

holds for H ∈ (1/2, 1) where

KH(t, s) := H(2H − 1)

∫ t

s

rH−
1
2 (r − s)H−

3
2dr, 0 ≤ s ≤ t (5.9)

and for H = 1/2, the convention K1/2 ≡ 1 is used.
Define

Qt ≡ Q(t) :=
d

dvt

∫ t

0

kH(t, s)Ysds. (5.10)

It is easy to see that

Q(t) =
ηH

2(2− 2H)

{
t2H−1Z(t) +

∫ t

0

r2H−1dZ(s)

}
. (5.11)

Define the process Z = (Z(t), t ∈ [0, T ]) by

Zt ≡ Z(t) :=

∫ t

0

kH(t, s)dY (s). (5.12)

Extending Kleptsyna and Le Breton (2002), we have:
(i) Z is the fundamental semimartingale associated with the process Y .
(ii) Z is a (Ft) -semimartingale with the decomposition

Z(t) = (a− b
∫ t

0

Q(s)dvs) +MH
t . (5.13)

(iii) X admits the representation

Y (t) =

∫ t

0

KH(t, s)dZ(s). (5.14)

(iv) The natural filtration (Z(t)) of Z and (Y(t)) of Y coincide.

We focus on our observations now. Note that for equally spaced data (homoscedastic case)

vtk − vtk−1
= η−1

H

(
T

n

)2−2H

[k2−2H − (k − 1)2−2H ], k = 1, 2, · · · , n. (5.15)

For H = 0.5,

vtk − vtk−1
= η−1

H

(
T

n

)2−2H

[k2−2H − (k − 1)2−2H ] =
T

n
, k = 1, 2, . . . , n.
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We have

Q(t) =
d

dvt

∫ t

0

kH(t, s)Y (s)ds = κ−1
H

d

dvt

∫ t

0

s1/2−H(t− s)1/2−HY (s)ds

= κ−1
H ηHt

2H−1 d

dt

∫ t

0

s1/2−H(t− s)1/2−HY (s)ds

= κ−1
H ηHt

2H−1

∫ t

0

d

dt
s1/2−H(t− s)1/2−HY (s)ds

= κ−1
H ηHt

2H−1

∫ t

0

s1/2−H(t− s)−1/2−HY (s)ds. (5.16)

The process Q depends continuously on Y and therefore, the discrete observations of Y does
not allow one to obtain the discrete observations of Q. The process Qi can be approximated by

Q̃(n) = κ−1
H ηHn

2H−1

n−1∑
j=0

j1/2−H(n− j)−1/2−HY (j). (5.17)

It is easy to show that Q̃i(n)→ Qi(t) almost surely as n→∞, see Tudor and Viens (2007).
Define a new partition 0 ≤ r1 < r2 < r3 < · · · < rmk = tk, k = 1, 2, · · · , n. Define

Q̃(tk) = κ−1
H ηHt

2H−1
k

mk∑
j=1

r
1/2−H
j (rmk − rj)−1/2−Hui(rj)(rj − rj−1), k = 1, 2, · · · , n. (5.18)

It is easy to show that Q̃(tk)→ Q(t) almost surely as mk →∞ for each k = 1, 2, · · · , n.
We use this approximate observation in the calculation of our estimators. Thus with a = 0

and b = −θ our observations are

Y (t) ≈
∫ t

0

KH(t, s)dZ̃(s) where Z̃(t) = θ

∫ t

0

Q̃(s)dvs +MH
t . (5.19)

Now we consider the general case. Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis satisfying
the usual hypotheses on which we have a real valued fractional non-Markovian diffusion type
process {Xt, t ≥ 0} satisfying the fractional stochastic differential equation (fSDE)

dXt = f(θ, t,X)dt+ dWH
t , t ≥ 0,

X0 = ξ
(5.20)

where {Wt, t ≥ 0} is a fractional Wiener process, ξ is a F0-measurable random variable with
P{|ξ| <∞} = 1, θ ∈ Θ a compact subset of R is the unknown parameter to be estimated on the
basis of observation of the process {Xt, t ≥ 0}. The measurable function f(θ, t, x), t ≥ 0, θ ∈ Θ

and x ∈ C are assumed to be (for each fixed θ) nonanticipative, that is Bt-measurable for
each t ≥ 0. Here (C,B) is the space of continuous functions {xt, t ≥ 0} with x0 = ξ with the
associated Borel σ-algebra B and Bt = σ(Xs, s ≥ t) are σ-algebras in the measurable space
(C,B).

We are now ready to define the sequential sampling plan (τ, θτ ) as follows : The stopping
time τ is defined as

τ ≡ τh := inf

{
t ≥ 0 :

∫ t

0

f ′
2

(θs, s, Q)dvs ≥ h

}
(5.21)
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where h > 0 specifies the desired precision which is predetermined and θs is the MLE based on
the observation of X in the time interval [0, s]. Note that by Sudakov’s lemma, the likelihood
based on [0, τ ] is given by

Lτ (θ) =
dP τ

θ

dP τ
W

(Zτ
0 ) = exp

{∫ τ

0

f(θ, t, Q)dZt −
1

2

∫ τ

0

f 2(θ, t, Q)dvt

}
. (5.22)

(see Liptser and Shiryayev (1977, 1978) for the non-fractional case). The sequential maximum
likelihood estimate (SMLE) is defined as

θτ := arg max
θ∈Θ

Lτ (θ). (5.23)

We call the procedure here a two stage estimation procedure since we use an estimated stopping
time to define the sequential estimate. One can show that there exists a Fτ measurable SMLE
since Lτ (θ) is continuous in θ and Θ is compact. Hereafter we assume the existence of such a
measurable SMLE.

Let us introduce the time changed estimator processes: For each n ∈ N, we define the
retimed processes Zn

t := n−1/2Znt, Qn
t := n−1/2Qnt, and W n

t := n−1/2Wnt, t ≥ 0 and the
filtration {Fnt }t≥0 be generated by Zn, F tn = {Zn

s , s ≤ t} = σ{Zs, s ≤ nt}. The log-likelihood
process at stage n and time t between θ1 and θ is given by

Γ
n

θ1,θ,t
:=

∫ t

0

[f(θ1, s, Q
n
s )− f(θ, s,Qn

s )]dZn
s −

1

2

∫ t

0

[f(θ1, s, Q
n
s )− f(θ, s,Qn

s )]dvs. (5.24)

Prime denotes derivative with respect to θ throughout the paper. We assume the following
conditions in this section:

(A1)
∫ T

0

f 2(θ, t, x)dvt <∞, T <∞, x ∈ C[0, T ], θ ∈ R.

(A2) Pθ
(∫ ∞

0

f ′
2

(θ, t, Q)dvt =∞
)

= 1, θ ∈ R.

(A3)

|f(θ, t, x)− f(θ, t, y)| ≤ R1

∫ t

0

|xs − ys|ds+R2|xt − yt|,

f 2(θ, t, x) ≤ R1

∫ t

0

(1 + |xs|)ds+R2(1 + |xt|)

where xs, ys ∈ C[0, T ], θ ∈ R, R1 and R2 are constants.

(B1) (Identifiability condition) P τ
θ1
6= P τ

θ2
for θ1 6= θ2 in Θ.

(B2) lτ (θ) is twice continuously differentiable in a neighborhood Uθ of θ for every θ ∈ Θ.

(B3) lim
h→∞

1

h

∫ τ

0

f ′′(θ, t, Q)dMt = 0 in Pθ − probability.

There exist rn ↑ ∞ as n ↑ ∞ and ν > 0 such that

(C1)
1

r2
n

∫ ν

0

f ′′
2

(θ, s,Qn
s )dvs

Pnθ→ζν(θ) as n→∞ where P n
θ [ζν(θ) > 0] > 0.
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(C2)
1

r2
n

∫ ν

0

f ′(θ, s,Qn
s )dvs

Pnθ→ξν(θ) as n→∞ where P n
θ [ξν(θ) > 0] > 0.

(C3)
1

r2
n

∫ ν

0

f ′′(θ, s,Qn
s )dZn

s

Pnθ→0 as n→∞.

Lemma 5.1(a) Let Aθt := f(θ ± δ, t, Q)− f(θ, t, Q) for some δ > 0. Then under (A1) – (A3),
we have ∫ τ

0
(Aθt )

2dvt∫ τ
0

(Aθtt )2dvt
→ 1 a.s. [P τ

θ ] as h→∞.

Under the assumptions (A1) – (A3) and (B1) – (B3), we have
(b) There exists a root of the likelihood equation which is strongly consistent, i.e.,

lim
h→∞

θτ = θ a.s. [Pθ].

(c)
√
h(θτ − θ)

D[Pθ]→ N (0, 1) as h→∞ uniformly in θ ∈ Θ.

Proof. (a) We have Aθt = f(θ ± δ, t, Q) − f(θ, t, Q), Aθtt = f(θt ± δ, t, Q) − f(θt, t, Q). Thus
(Aθt )

2− (Aθtt )2 = [f(θ±δ, t, Q)−f(θ, t, Q)]2− [f(θt±δ, t, Q)−f(θt, t, Q)]2. Since θt is a strongly
consistent estimator of θ, θt → θ a.s. as t→∞. Since f is continuous, (Aθt )

2 − (Aθtt )2 → 0 a.s.
as t→∞. Further ∫ τ

0

(Aθtt )2dt→ c(θ) a.s. as h→∞ and δ → 0 (5.25)

where c(θ) is a positive constant and∫ τ

0

[(Aθt )
2 − (Aθtt )2]dvt → 0 a.s. as h→∞. (5.26)

Thus ∫ τ
0

[(Aθt )
2 − (Aθtt )2]dvt∫ τ

0
(Aθtt )2dvt

→ 0 a.s. [P τ
θ ] as h→∞. (5.27)

(b) Observe that, for δ > 0

lτ (θ ± δ)− lτ (θ) = log
dP τ

θ±δ

dP τ
θ

=

∫ τ

0

[f(θ ± δ, t, Q)− f(θ, t, Q)]dZt −
1

2

∫ τ

0

[f 2(θ ± δ, t, Q)− f 2(θ, t, Q)]dvt

=

∫ τ

0

[f(θ ± δ, t, Q)− f(θ, t, Q)]dMt −
1

2

∫ τ

0

[f(θ ± δ, t, Q)− f(θ, t, Q)]2dvt

=

∫ τ

0

AθtdMt −
1

2

∫ τ

0

(Aθt )
2dvt.

(5.28)

Let Kτ :=
∫ τ

0
(Aθt )

2dvt. Then

lτ (θ ± δ)− lτ (θ)
Kτ

=

∫ τ
0
AθtdMt∫ τ

0
(Aθt )

2dvt
− 1

2
=
W ∗(

∫ τ
0

(Aθt )
2dvt)∫ τ

0
(Aθt )

2dvt
− 1

2
=
W ∗(Kτ )

Kτ

− 1

2
(5.29)

by the Skorohod embedding of the martingale
∫ τ

0
AθtdMt where W ∗ is some other Brownian

motion which is independent of Kτ .
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Using the assumption (A2) and Lemma 5.1 (a), and the strong law of large numbers for
Brownian motion (see Liptser and Shiryayev (1978)) W ∗(Kτ )

Kτ
converges to zero a.s. as h→∞.

Hence,
lτ (θ ± δ)− lτ (θ)

Kτ

→ −1

2
a.s. [Pθ] as h→∞. (5.30)

Furthermore, Kτ > 0 a.s. [Pθ] by (B1). Therefore, for almost every w ∈ Ω, δ and θ, there
exist some H0 such that for h ≥ h0, we have lτ (θ ± δ) < lτ (θ). Since lτ (θ) is continuous on
the compact set [θ − δ, θ + δ], it has a local maximum and it is attained at a measurable θτ in
[θ − δ, θ + δ]. Since lτ (θ ± δ) < lτ (θ), θτ ∈ (θ − δ, θ + δ) for h > h0. Since lτ (θ) is differentiable
with respect to θ, it follows that l′τ (θτ ) = 0 for h ≥ h0 and θτ → θ a.s. as h→∞.

(c) In view of the assumption (B3), we can apply Taylor’s expansion, for l′τ (θ) around θτ and
write

0 = l′τ (θτ ) = l′τ (θ) + (θτ − θ)l ′′τ (θ + βτ (θτ − θ)) (5.31)

where |βτ | ≤ 1 a.s. for sufficiently large h. Since θτ → θ a.s. as h→∞ by (b) and since l′′τ (θ) is
continuous by (B3), it follows that l′′τ (θ+βτ (θτ −θ))− l ′′τ (θ)→ 0 in P τ

θ - probability as h→∞.
Hence l′τ (θ)+(θτ−θ)l ′′τ (θ)→ 0 in P τ

θ -probability as h→∞.We have l′τ (θ) =
∫ τ

0
f ′(θ, t, Q)dMt,

see Karandikar (1983). Hence using the central limit theorem for stochastic integrals (see
Basawa and Prakasa Rao (1980)) and Lemma 5.1(a), we obtain

l′τ (θ)√
h

D[Pθ]→ N (0, 1) as h→∞. (5.32)

Note that when θ is the true parameter

l′′τ (θ) =

∫ τ

0

f ′′(θ, t, Q)dZt −
∫ τ

0

[f(θ, t, Q)f ′′(θ, t, Q) + f ′
2

(θ, t, Q)]dvt

=

∫ τ

0

f ′′(θ, t, Q)dMt −
∫ τ

0

f ′
2

(θ, t, Q)dvt.
(5.33)

By Lemma 5.1(a) and (B3) it follows that

l′′τ (θ)

h
→ −1 in Pθ-probability as h→∞. (5.34)

Hence it follows that
√
h(θτ − θ)

D[Pθ]→ N (0, 1) as h→∞.

This completes the proof of the lemma.

Theorem 5.2 Under the assumptions (C1) – (C3) the sequence of filtered models
(Ωn,Fn, {Fnt }t≥0,

{P n
θ , θ ∈ Θ}) generated by Zn

t satisfy the functionally LAQ condition at θ with

∆t =

∫ t

0

f ′(θ, s,Qs)dZs and Γt =

∫ t

0

f ′
2

(θ, s,Qs)dvs.

Proof. For ν ≤ t,

Λn
θ+r−1

n un,θ,ν

=

∫ ν

0

[f(θ + r−1
n un, s, Q

n
s )− f(θ, s,Qn

s )]dZn
s −

1

2

∫ ν

0

[f(θ + r−1
n un, s, Q

n
s )− f(θ, s,Qn

s )]2dvs.

(5.35)
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By Taylor’s formula

f(θ + r−1
n un, s, Q

n
s )− f(θ, s,Qn

s ) = r−1
n unf

′(θ, s,Qn
s ) +

1

2
r−2
n u2

nf
′′(θ̄, s, Qn

s ) (5.36)

where
θ̄ := θ + q(s,Qn

s )r−1
n un, |q(·, ·)| < 1. (5.37)

Hence

Λn
θ+r−1

n un,θ,ν
= r−1

n un

∫ ν

0

f ′(θ, s,Qn
s )dZn

s +
1

2
r−2
n u2

n

∫ ν

0

f ′′(θ̄, s, Qn
s )dZn

s

−1

2
r−2
n u2

n

∫ ν

0

f ′
2

(θ, s,Qn
s )dvs −

1

8
r−4
n u4

n

∫ ν

0

f ′′
2

(θ̄, s, Qn
s )dvs

−1

8
r−3
n u3

n

∫ ν

0

f ′(θ, s,Qn
s )f ′′(θ̄, s, Qn

s )dvs

= r−1
n un

∫ ν

0

f ′(θ, s,Qn
s )dZn

s −
1

2
r−2
n u2

n

∫ ν

0

f ′
2

(θ, s,Qn
s )dvs + oPnθ (1)

(by assumption (C1) – (C3))

= un∆n
ν −

1

2
u2
nΓnν + oPnθ (1)

(5.38)

where
∆n
ν := r−2

n

∫ ν

0

f ′(θ, s,Qn
s )dZn

s and Γnν := r−2
n

∫ ν

0

f ′
2

(θ, s,Qn
s )dvs. (5.39)

Let
∆ν :=

∫ ν

0

f ′(θ, s,Qs)dZs and Γν :=

∫ ν

0

f ′
2

(θ, s,Qs)dvs. (5.40)

By the functional CLT for martingales and stability of weak convergence (see Jacod and
Shiryayev (1987)), we obtain

(∆n
ν ,Γ

n
ν )
D[Pnθ ]
→ (∆ν ,Γν) as n→∞. (5.41)

Here ∆ν and Γν are processes on a filtered probability space (Ω,F , {Ft}t≥0, P ) with Γν > 0 a.s.
and

EP exp(u∆ν −
1

2
u2Γν) = 1 for all ν ≥ 0. (5.42)

Thus the sequence of filtered models are functionally LAQ at θ.

We now state the Hajek’s local asymptotic minimax (LAM) theorem for SMLE processes.

Theorem 5.3 Let ω be a bounded, symmetric, bowl shaped loss function on the real line.
Let θnt be a sequence of MLE processes with respect to the filtered model (Ωn,Fn, {Fnt }t≥0,
{Pθ, θ ∈ Θ}). For each n ∈ N and t ≥ 0, let

τnh := inf{t ≥ 0 : r−2
n

∫ t

0

f ′
2

(θns , s, Q
n
s )dvs ≥ h}. (5.43)

Let conditions (C1) – (C3) be satisfied. Then

lim
v→∞

lim inf
n→∞

sup
|u|≤v

Eθ+r−1
n uω(θnτnh − (θ + r−1

n u)) ≥ Eω(W1/h). (5.44)

Proof. Since by Theorem 5.2 the sequence of filtered models generated by Zt
n is functionally

LAQ at θ with ∆t a continuous local martingale, Γt equal to the quadratic variation 〈∆〉t of
∆t, and Γt ↑ ∞ a.s. hence the theorem follows from Theorem 5.1.
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Note that the filtered model time-changed by τnh is functionally LAN i.e., for each bounded
sequence of numbers un and all h > 0

sup
g≤h

∣∣∣∣Λn
θ+r−1

n un,θ,τng
−
(
un∆n

τng
− 1

2
u2
ng

)∣∣∣∣ = oPθn0
(1) (5.45)

and

∆n
τn

D[Pnθ ]
→ W1 (5.46)

by Lemma 4.1 in Bishwal (2018). Hence by Theorem 5.1 we obtain the local asymptotic
minimax theorem.

Theorem 5.4 Under the conditions (B1) – (B3) and (C1) – (C3) the sequence of estimators
θnτnh are locally asymptotically minimax (LAM), i.e., they attain the lower bound in Theorem 5.3.

Proof : Here we have only to show that θnτnh are asymptotically centering (AC), that is

rn(θnτnh − θ)− h
−1∆n

τnh
= oPnθ (1) as n→∞. (5.47)

Note that

rn(θnτnh − θ) =
−r−1

n l′τnh (θ)

γ−2
n l′′τnh (θ + βτnh (θτnh − θ))

'
−r−1

n

∫ τnh
0
f ′(θ, s,Qn

s )dZn
s

r−2
n

∫ τnh
0
f ′′(θ, s,Qn

s )dZn
s − r−2

n

∫ τnh
0
f ′2(θ, s,Qn

s )dvs

(5.48)

by the arguments similar to the proof of Lemma 5.1(c). On the other hand,

h−1∆n
τnh

=
r−1
n

∫ τnh
0
f ′(θ, s,Qn

s )dZn
s

r−2
n

∫
0
f ′2(θns , s, Q

n
s )dvs

. (5.49)

From (5.48) and (5.49) using (C3) and Lemma 5.1(a), one observes that (5.47) holds.

Concluding Remarks
1. Alternatively one can observe m independent discretely observed trajectories of X and let

m→∞.
2. Density of τh: The density of the first passage time is obtained in Bibbona and Ditlevsen

(2013).
3. It would be interesting to study the properties of sequential Bayes estimators for nonlinear

fractional diffusion models. Sequential Bayes estimation for exponential type processes was
studied by Franz and Magiera (1990).
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