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MULTIPLE POSITIVE SOLUTIONS OF DISCRETE THIRD-ORDER
THREE-POINT BVP WITH SIGN-CHANGING GREEN’S FUNCTION

ALHUSSEIN MA AHMED1,2,∗, MUTASIM ABDALMONIM ALSIDDIG3, TARTEEL ABDALGADER4,
KHALID AHMED ABBAKAR5, BADRADEEN A. A. ADAM4, AND HAROUN M. M. SULIMAN6

Abstract. In this article, by using the Leggett-Williams fixed point theorem we research the
multiple Positive Solutions for the following third-order three-point boundary value problem
(BVP): {

∆3u(t− 1) = a(t)f(t, u(t)), t ∈ [1, T − 2]Z,

u(T ) = ∆2u(0) = ∆u(T − 1)−∆2u(η) = 0

where T > 6 is an integer and f : [1, T−2]Z× [0,+∞)→ [0,+∞) is continuous .a : [0, T−2]Z →
(0,∞), and η satisfies the condition:
F0 η ∈ [T−1

2 , T − 2]. if T is an odd number or η ∈ [T−2
2 , T − 2]. if T is an even number

The emphasis is mainly that although the cor- responding Green’s function is sign-changing,
we still obtain the existence of at least 2n − 1 positive solutions for arbitrary positive integer
m under suitable conditions on f .

1. Introduction

The problems of multi-point border values of differential equations have a broad application
In computational physics, economics, and modern biological fields [1].Gupta [2] studied the
ability to solve the problem of three-point marginal value in a differential equation in 1992.

Soon afterwards, there arose many results on multi-point nonlinear boundary value problems
At 1999, Ma [7] studied a positive solution to a second-tier differential three-point problem
of border value.Subsequently, several conclusions were examined regarding the existence of
positive solutions to multi-point border value problems. With the development of the com-
puting science and the computer simulation, multi-point boundary value problems should be
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discretized, so we need to study corresponding difference equation.

In 1998, by using Krasnoselskii’s fixed point theorem, Agarwal and Henderson [24] studied
the discrete problem {

∆3u(t− 1) = λa(t)f(t, u(t)), t ∈ [2, T ]Z,

u(0) = u(1) = u(T + 1) = 0

They obtained the existence of positive solutions in two cases for λ = 1 and λ 6= 1. Later, there
were many interesting results on the positive solutions to the discrete boundary value problems,
see, for instance, [23 − 26] and the references therein. It is noted that Green’s functions are
positive in most of these results.However,when the Green’s function is sign-changing, could we
also obtain the existence of positive solutions to these kinds of problems?
In 2015, by using the Guo-Krasnoselskii fixed point theorem, Wang and Gao [25] studied the
existence of positive solutions to the discrete third-order three-point boundary value problem{

∆3u(t− 1) = λa(t)f(t, u(t)), t ∈ [0, T − 1]Z,

u(0) = ∆u(T ) = ∆2u(η) = 0

In this paper we study the following third-order three-point BVP :

(1)

{
∆3u(t− 1) = a(t)f(t, u(t)), t ∈ [1, T − 2]Z,

u(T ) = ∆2u(0) = ∆u(T − 1)−∆2u(η) = 0

where T > 6 is an integer, a : [1, T − 2]Z → (0,+∞) and f : [1, T − 2]Z× [0,+∞)→ [0,+∞) is
continuous. Difference equations appear in many mathematical models in diverse fields, such as
economy, biology, physics, and finance; see [1-3]. In recent years, the existence and multiplicity
of positive solutions of discrete boundary value problems have received much attention from
many authors and a great deal of work has been done by using classical methods such as fixed
point theory [4-8], lower and upper solutionsmethods [9], critical point theory [10-12], etc.
Theorem 1.1 (Leggett-Williams fixed point theorem) Let A : K̄c → K̄c be completely con-
tinuous and β be a nonnegative continuous concave functional on K such that β(u) ≤ ‖u‖ for
all u ∈ K̄c assume that there exist 0 < d < a < b ≤ c such that
(i){u ∈ K(β, a, b) : β(u) > a} 6= θ and β(Au) > 0 for u ∈ K(β, a, b)

(ii)‖Au‖ < d for ‖u‖ ≤ d

(iii)β(Au) > a for u ∈ K(β, a, c), with ‖Au‖ > b

Then A has at least three fixed points u1, u2, u3 in K̄c satisfying.

‖u1‖ < d, β(u2) > a, ‖u3‖ > d, β(u3) < a

2. Preliminaries

First, let us consider the following linear problem:

(2)

{
∆3u(t− 1) = y(t), t ∈ [1, T − 2]Z,

u(T ) = ∆2u(0) = ∆u(T − 1)−∆2u(η) = 0.

We will convert (2.1) to the equivalent summation equation. To get it, let us define the Green’s
function G(t, s) as follows.
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If s > η, then

G(t, s) =

{
(T+s−2t)(T−s−1)

2
, s > t− 2,

(T+s−2t)(T−s−1)
2

+ (t−s−1)(t−s)
2

, s ≤ t− 2.
(3)

If s ≤ η, then

G(t, s) =

{
(T−s)(T+s+2t)+(4t−3T )

2
, s > t− 2,

(T−s)(T+s+2t)+(4t−3T )
2

+ (t−s−1)(t−s)
2

, s ≤ t− 2.
(4)

Now, we get the following lemma
Lemma 2.1 The problem (2.1) has a unique solution

u(t) =
T−2∑
s=1

G(t, s)y(s),(5)

where G(t, s) is defined as (2.2) and (2.3).

Proof. By summing from s = 1 to s = t− 1 at both sides of (2.1), we get

∆2u(t− 1) =
t−1∑
s=1

y(s).

Repeating the above process, we obtain

∆u(t− 1) = ∆u(0) +
t−2∑
s=1

(t− s− 1)y(s).

Summing from s = 1 tos = t at both sides of the above equation, we have

u(t) = u(0) + t∆2u(0) +
t−2∑
s=1

(t− s)(t− s− 1)

2
y(s).

By using the boundary condition u(T ) = ∆2u(0) = ∆u(T − 1)−∆2u(η) = 0, we get{
∆u(0) +

∑T−2
s=1 (T − s− 1)y(s)−

∑η
s=1 y(s) = 0.

Furthermore, we get{
∆u(0) = −

∑T−2
s=1 (T − s− 1)y(s) +

∑η
s=1 y(s).

Then we have

u(t) =
T−2∑
s=1

(T − s− 1)(T + s− 2t)

2
y(s)− (T − t)

η∑
s=1

y(s)

+
t−2∑
s=1

(t− s)(t− s− 1)

2
y(s),

which implies (2.2) holds. �

Obviously, ifu is a fixed point of A in K, then u is a nonnegative and decreasing solution of
the BVP (1.1).
Lemma 2.2 It is not difficult to verify that G(t, s) has the following characteristics:
(i) If s ∈ [1, η], then G(t, s) is non increasing with respect to t ∈ [0, T ]. If s ∈ [η + 1, T − 2] is
nondecreasing with respect to t ∈ [0, T ].
(ii) G(t, s) changes its sign on [0, T ] × [1, T − 2] . In details, if (t, s) ∈ [0, T ] × [0, η] , then
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G(t, s) ≥ 0. If (t, s) ∈ [0, T ]× [η + 1, T − 2] , then G(t, s) ≤ 0.
(iii) If s ≥ η, then maxt∈[0,T ]G(t, s) = G(T, s) = 0 such that

G(t, s) ≥ 0 for 1 ≤ s ≤ η and G(t, s) ≤ 0 for η ≤ s ≤ T − 2.

Moreover, if s ≥ η, then
maxG(t, s) : t ∈ [0, T ] = G(T, s) = 0,

minG(t, s) : t ∈ [0, T ] = G(0, s) = −(T − s)(T − s− 1)

2
≥ −(T − η)(T − η − 1)

2

if s < η, then

maxG(t, s) : t ∈ [0, T ] = G(0, s) =
(T − s− 1)(T + s)

2
≤ (T − η − 1)(T + η)

2
,

minG(t, s) : t ∈ [0, T ] = G(T, s) = 0

Now, let
E = {u : [0, T ]z → R|u(T ) = ∆2u(0) = ∆u(T )−∆2u(η) = 0}

Then E is a Banach space under the norm ‖u‖ = maxt∈[0,T ]z |u(t)| .
let

K0 = {y ∈ E : y(t) ≥ 0,∆y(t) ≥ 0, t ∈ [0, T ]zand ∆2y(t− 1) > 0, t ∈ [η + 1, T ]z}.

u(t) is nonnegative and decreasing Then K0 is a cone in E.
Lemma 2.3 Assume y ∈ E,y(t) ≥ 0 for t ∈ [0, T + 1]z and ∆y(t) ≥ 0 for t ∈ [0, T ]z. Then u is
the unique solution of the BVP (2.1) belongs to K0, where u(t) is defined as (2.4).

Moreover, u(t) is concave on [η + 1, T + 1]z.

Proof. The following proof will be divided into two cases.
Case I. For 0 ≤ t− 2 < η, we have

u(t) =
t−2∑
s=1

(t− T )(T + t)

2
y(s)

+

η∑
s=t−1

(T − s− 1)(T − 2t+ s)

2
y(s)

−
T−2∑
s=η+1

(T − s)(T − s− 1)

2
y(s)

∆u(t) = u(t+ 1)− u(t)

=
t−2∑
s=1

2t+ 1

2
y(s) + y(t− 1)−

η∑
s=1

(T − s− 1)y(s)

≥ y(η)

[
t−2∑
s=1

2t+ 1

2
−

η∑
s=1

(T − s− 1)

]
≥ y(η) [(2t+ 1)(t− 2)− 2ηT + η(η + 1) + 2η] ≥ 0

and

∆2u(t− 1) =
t−2∑
s=1

y(s) ≥ 0
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Second, if η < t− 2 ≤ T − 2, then

u(t) =

η∑
s=1

(t− T )(T + t)

2
y(s)

+
t−2∑

s=η+1

(t− T )(T + t− 2s− 1)

2
y(s)

−
T−2∑
s=t−1

(T − s)(T − s− 1)

2
y(s)

∆u(t) = u(t+ 1)− u(t)

=
t−2∑
s=1

2t+ 1

2
y(s) +

t−2∑
s=η+1

(t− s)y(s) + y(t− 1)

≥ y(η)

[
t−2∑
s=1

2t+ 1

2
y(s) +

t−2∑
s=η+1

(t− s)y(s)

]
≥ y(η) [(3t+ 2)(t− 2)] ≥ 0

∆2u(t− 1) =
t−2∑
s=1

y(s)−
t−2∑

s=η+1

sy(s) ≤ 0

consequently for t ∈ [0, T ]z

∆u(t) ≥ 0

which mean that u(t) is increasing ago ∆u(T ) = 0,for t ∈ [0, T + 1]z we have u(t) ≥ 0 and
u ∈ K0. for t ∈ [η + 1, T ]z , ∆2u(t− 1) ≥ 0 we get that u(t) is concave on [η + 1, T + 1]z .

�

Lemma 2.4 Suppose that y ∈ E, y(t) ≥ 0 for t ∈ [0, T + 1]z, ∆y(t) ≥ 0 for t ∈ [0, T ]z and u
is the solution of (2.1). Then u satisfies

min
t∈[θ,T+1−θ]

u(t) ≥ u(θ) ≥ θ − η − 1

T − η
‖u‖ = θ∗‖u‖

where θ∗ =
θ − η − 1

T − η
and θ ∈ [T + 1, η + 2]

Proof. From Lemma (2.2), we teach that u is the concave on t ∈ [η + 2, T + 1]z . thus this

u(t) ≥ u(T + 1)− u(η + 1)

T − η
≤ u(t)− u(η + 1)

t− η − 1
, t ∈ [η + 1, T + 1]z

Finally,by direct account, we get

u(t) ≥ (t− η − 1)

T − η
u(T + 1) =

(t− η − 1)

T − η
‖u‖

min
t∈[θ,T+1−θ]

u(t) = u(θ) ≥ θ − η − 1

T − η
‖u‖ = θ∗‖u‖.

�
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3. Main results

In this section, we conclude the existence of a positive solution of (1.1). To get it, we assume
that:
(F1) f : [1, T −2]z× [0,+∞)→ [0,∞) is continuous and mapping u 7→ f(t, u) is nondecreasing
for each t ∈ [1, T − 2]z;
(F2) a : [1, T − 2]z → (0,+∞) is increasing function.
K =

{
u ∈ K0 : u(0),mint∈[µ,T−µ]z u(t) ≥ µ∗‖u‖

}
,

consequently, K is a cone in E define an operator A : K → E such as

Au(t) =
T−2∑
s=1

G(t, s)a(s)f(s, u(s))(6)

Lemma 3.1 A : K → K is perfectly continuous.

Proof. It is obvious that A : K → E is completely continuous since the Banach space E is finite
dimensional. Now, let us prove that A : K → K, that is to say, for any u ∈ K, Au ∈ K.
Let u ∈ K. Then u ∈ K0, which implies that

∆u(t) ≥ 0

and u is increasing on t.
Therefore, by (F1), f(t, u(t)) is a increasing function of t.
Let y(t) := a(t)f(t, u(t)). Then, from (F1) and (F2), we obtain that y(t) ≥ 0 and y is also a
increasing function of t. Thus, y ∈ K0. moreover, by (3.1), we know that

∆3(Au)(t− 1) = y(t), t ∈ [1, T − 2]z,

u(0) = ∆2u(0) = ∆u(T )−∆2u(η) = 0.(7)

(Au)(0) = ∆2(Au)(0) = 0 ∆(Au)(T )−∆2(Au)(η) = 0.(8)

Therefore, Au satisfies problem (2.1). Now, similar to the proof of Lemma 2.3, and using the
fact y ∈ K0 , we obtain that Au ∈ K0 and Au is concave on [η + 1, T + 1]z . Furthermore, by
Lemma 2.4 and the fact Au ∈ K0 , we know that

min
t∈[µ,T−µ]

(Au)(t) ≥ µ∗‖Au‖

Therefore, Au ∈ K and A : K → K is completely continuous set.
From(3.1)and Lemma3.1,we know that if u is afixed point of A inK,then u is a positive solution
of (1.1). Let

B =
T−2∑
s=1

(T − η − 1)(T + η)

2
a(s), D =

T−µ∑
s=µ

G(T − µ, s)a(s)

�

Theorem 3.2 Assume that there exist numbers d,a and c with
0 < d < a < a

µ∗
≤ c such that (H1)f(t, u) < d

B
, for(t, u) ∈ [1, T − 2]z × [0, d],

(H2)f(t, u) > a
D
, for(t, u) ∈ [µ, T − µ]z × [a, a

µ∗
]

https://doi.org/10.28919/ejma.2025.5.10
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(H3)f(t, u) < c
B
, for(t, u) ∈ [1, T − 2]z × [0, c],

then boundary value problem (1.1) has at least three positive solutions u,v and w satisfying

‖u‖ < d, min
t∈[µ,T−µ]

v(t) > a, ‖w‖ > d, min
[µ,T−µ]

w(t) < a

Proof. for u ∈ K.we define
β(u) = min

[µ,T−µ]
u(t).

It is simple to check that β is a nonnegative continuous concave functional onK with β(u) ≤ ‖u‖
for u ∈ k and that A : k → k is completely continuous.

We confirm first that if there exists a positive number r such that f(t, u) < r
B
for t ∈ [1, T−2]

u ∈ [0, r] then A : k̄r → k̄r in effect,if u ∈ k̄r then

‖Au‖ = max
t∈[0,T ]z

∣∣∣∣∣
T−2∑
s=1

G(t, s)a(s)f(s, u(s))

∣∣∣∣∣
≤ max

t∈[0,T ]z

T−2∑
s=1

|G(t, s)| a(s)f(s, u(s))

≤ (T − η − 1)(T + η)

2

T−2∑
s=1

a(s)f(s, u(s))

<
(T − η − 1)(T + η)

2

T−2∑
s=1

r

B
a(s)

= r = ‖u‖.

that is,Au ∈ Kr .
Subsequently,we have shown that if (H1) and (H3) hold, then A : K̄d → Kd and A : K̄c → Kc.
Next, we assure that

{
u ∈ K(β, a, a

µ∗
) : β(u) > a

}
6= 0 and β(Au) > a for all u ∈ K(β, a, a

µ∗
).

In fact, the constant function
a
µ∗+a

2
belongs to{

u ∈ K(β, a, a
µ∗

) : β(u) > a
}
. Then,for u ∈ K(β, a, a

µ∗
) , we have

a < β(u) = min
t∈[0,µ]

u(t) ≤ u(t) ≤ ‖u‖ ≤ a

µ∗
(9)

for all t ∈ [0, µ]. Also,
we know that G(t, s) ≥ 0for t− 2 < s ≤ η. for any u ∈ K and t ∈ [0, µ], we have

T−µ−1∑
s=1

G(t, s)a(s)f(s, u(s)) +

η∑
s=µ+1

G(t, s)a(s)f(s, u(s))

+
T−2∑
s=η+1

G(t, s)a(s)f(s, u(s))

≥
T−µ−1∑
s=1

(t− T )(T + t)

2
a(s)f(s, u(s))−

T−2∑
s=µ+1

(T − s)(T − s− 1)

2
a(s)f(s, u(s))

≥ a(η)f(η, u(η))

[
T−µ−1∑
s=1

(t− T )(T + t)

2
−

T−2∑
s=µ+1

(T − s)(T − s− 1)

2

]
≥ a(η)f(η, u(η)) [(2− (T − µ))(T − µ− 1)] ≥ 0

https://doi.org/10.28919/ejma.2025.5.10
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This indicates that ‖Au‖ ≥ ‖u‖, u ∈ K∩∂Ω2. Therefore,Ahas a fixed point u ∈ K∩(Ω̄2 Ω1)from
Theorem 1.1,which is a positive and increasing solution of the boundary value problem (1.1)

with r ≤ ‖u‖ ≤ R. Moreover, we know the obtained solution u is concave on [η + 1, T + 1]z
from the proof of Lemma 2.2. Secondly, we deal with the case r > R. Let
which together with (H2) and (1.4) implies

β(Au) = min
t∈[µ,T−µ]

T−2∑
s=1

G(t, s)a(s)f(s, u(s))

≥ min
t∈[µ,T−µ]

T−µ∑
s=µ

G(t, s)a(s)f(s, u(s))

>
a

D
min

t∈[µ,T−µ]

T−µ∑
s=µ

G(t, s) = a

for u ∈ K(β, a, a
µ∗

).
Finally, we verify that if u ∈ k(β, a, c) and ‖Au‖ > a

µ∗
, then β(Au) > a. To see this, we suppose

that u ∈ K(β, a, c) and ‖Au‖ > a
µ∗
. Then it follows from Au ∈ K that

β(Au) = min
t∈[µ,T−µ]

Au(t) ≤ µ∗‖u‖ > a.

To sum up, all the hypotheses of the fixed point theorem are satisfied. Therefore, A has at
least three fixed points; that is, (1.2) has at least three positive solutions u,v and w satisfying

‖u‖ < d, min
t∈[µ,T−µ]

v(t) > a, ‖w‖ > d, min
[µ,T−µ]

w(t) < a

�

Theorem 3.3 Let n be an arbitrary positive integer. Assume that there exist numbers
di(1 ≤ i ≤ n) and aj(1 ≤ j ≤ n − 1) with 0 < d1 < a1 <

a1
µ∗
< d2 < a2 <

a2
µ∗
< · · · < dn−1 <

an−1 <
an−1

µ∗
< dn such that

f(t, u) <
di
B
, t ∈ [1, T − 2], u ∈ [0, di], 1 ≤ i ≤ n,(10)

f(t, u) >
aj
D
, t ∈ [µ, T − µ], u ∈ [aj, ajµ

∗], 1 ≤ j ≤ n− 1,(11)

Then (1.2) has at least 2n− 1 positive solutions in Kdn .

Proof. We use induction on n. First, for n = 1, we know from (3.5) that A : K̄d1 → Kd1 .
Then it follows from Schauder fixed point theorem that (1.2) has at least one positive solution
in Kd1 . Next, we assume that this conclusion holds for n = h. To show that this conclusion
also holds for n = h + 1, we suppose that there exist number 0 < d1 < a1 <

a1
µ∗
< d2 < a2 <

a2
µ∗
< · · · < dh < ah <

ah
µ∗
< dh+1

f(t, u) <
di
B
, t ∈ [1, T − 2], u ∈ [0, di], 1 ≤ i ≤ h+ 1,(12)

f(t, u) >
aj
D
, t ∈ [µ, T − µ], u ∈ [aj, ajµ

∗], 1 ≤ j ≤ h,(13)

https://doi.org/10.28919/ejma.2025.5.10
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By assumption, (1.2) has at least 2h−1 positive solutions ui(i = 1, 2, ..., 2h−1) in Kdh . At the
same time, it follows from Theorem 3.1, (2.9) and (2.10) that (1.2) has at least three positive
solutions u,v and w in kdh+1

such that

‖u‖ < dh, min
t∈[µ,T−µ]

v(t) > ah, ‖w‖ > dh, min
[µ,T−µ]

w(t) < ah

�
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