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FRACTIONAL INTEGRAL ESTIMATES OF HERMITE-HADAMARD TYPE
IN GLOBAL NONPOSITIVE CURVATURE SPACES

PETER OLAMIDE OLANIPEKUN

Abstract. We extend the notion of convexity of functions defined on global nonpositive cur-
vature spaces by introducing (geodesically) h-convex functions. Using Katugampola’s integral
operators, we establish Hermite-Hadamard-type estimates. From these results, we derive an
important corollary that provides a sharp estimate involving squared distance mappings be-
tween points in a global NPC space. This work contributes to analysis on spaces with curved
geometry.

1. Introduction

Convexity plays a central role in analysis, geometry, and optimisation. A fundamental in-
equality satisfied by convex function is the Hermite-Hadamard inequality which provides a
bound for the integral average of a convex function. Suppose that f : [a, b] ⊂ R → R, the
inequality states

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.(1)

Note that the inequalities above are reversed if f is concave. The Hermite-Hadamard in-
equality also characterises convex functions defined on an interval of R [5]. Inequality (1) was
first proved in the article [19] by Hermite, and since then it has garnered a lot of attention in
the literature, with notable improvements, extensions, generalisations, and refinements; see, for
instance, the monographs [17,27] and the references therein.

The problem of extending the Hermite-Hadamard inequality to more general geometric set-
tings, such as metric spaces and Riemannian manifolds, remains a question of significant in-
terest. Some authors have investigated extensions of inequality (1) to functions of multiple
variables. In particular, Dragomir [14] obtained some estimates involving triple integrals for
convex functions defined on a ball, deriving some interesting properties for a certain convex
mapping. He also established inequalities on a disk in R2 and derived results for mappings
naturally connected to these inequalities [15]. By introducing a precise definition of convex
functions on the coordinates, Dragomir also proved some sharp inequalities for functions de-
fined on rectangles, with some significant applications in convex analysis [16].

A converse of (1) for functions defined on simplices was proved in [26]; the authors established
that the Hermite-Hadamard inequality on simplices characterises convex functions under some
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conditions on the measure. In [6], a generalisation of (1) for convex functions defined on
simplices is proven by using a volume formula and its higher-dimensional generalisation; this
approach completely evades well-known tools from Choquet’s theory (see [31], [29] for more
details). In [28], Niculescu extended Choquet’s theorem to compact metric spaces with a global
nonpositive curvature, and by using a Jensen-type inequality, he obtained a generalisation
of (1) to spaces with curved geometry. In such spaces, geodesics play the role of segments.
By establishing a lemma which gives a unique minimal geodesic between two points on a
hemisphere, the author in [3] proved an Hermite-Hadamard type inequality for integrable convex
functions defined on hemispheres. There are a few studies of the Hermite-Hadamard inequality
on nonpositively curved (NPC) spaces [11,12,28]. NPC spaces are fundamental in several areas
of mathematics, especially geometry and topology.

Hadamard [18] pioneered the study of what is now known as NPC spaces, and Cartan in-
vestigated generalisations of such spaces in higher dimensions. Subsequently, the contributions
of Alexandrov and Busemann became foundational to the theory of metric spaces with upper
curvature bounds. [1,2,9,10]. The study of convexity in metric spaces, particularly those with
nonpositive curvature, is a rich area of research. Such spaces generalise classical Euclidean
convexity and provide a natural setting for extending inequalities like the Hermite-Hadamard
inequality. The notion of convexity in these spaces is tied to geodesic convexity, where the role
of line segments in Euclidean spaces is played by geodesics in NPC spaces.

A metric space (M,d) has nonpositive Alexandrov curvature if for any p ∈M and any geodesic
segment γ[x,y] ∈M between points x and y, the following inequality holds:

d2(p, γ[x,y](1/2)) ≤ 1

2
(d2(p, x) + d2(p, y))− 1

4
d2(x, y)

provided the points x and y are sufficiently close to p, and γ[x,y](1/2) is the middle between
x and y, that is, d(x, γ[x,y](1/2)) = d(y, γ[x,y](1/2)) = 1

2
d(x, y). The inequality above is well

known as the CN inequality of Bruhat and Tits [8]. Additionally, (M,d) is called a Hadamard
space if it is complete. Examples include simply connected complete Riemannian manifolds
with negative constant curvature, Bruhat-Tits buildings, Hilbert spaces, the upper half-plane
endowed with the Poincaré metric, see Section 1.6 in [37] and the book [7] for more examples.

In this paper, we extend the notion of convex functions defined on metric spaces with global
nonpositive curvature. Thereafter, we establish Hermite-Hadamard type inequalities for a gen-
eral class of convex functions via Katugampola’s fractional integral operators (which we shall
define in due course). The motivation for extending notions of convexity to NPC spaces arises
from various applications in geometry, optimisation, probability, statistics, evolutionary biology,
robotics, machine learning, data science and analysis on metric spaces [24].

2. Global NPC Spaces and Notions of Convexity

In this section, we recall some facts about global NPC spaces and convex functions on such
spaces, details can be found in [9, 11, 12, 20, 28]. We also introduce the concept of h-convexity
on global NPC spaces.

Definition 2.1. Let t1, t2 ∈ [0, 1], a curve γ is called geodesic if there exists ε > 0 such that the
length of γ, when restricted to [t1, t2], is the metric distance between γ(t1) and γ(t2) provided
that |t1 − t2| < ε.
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A metric space (M,d) is called a geodesic space, if for any two points x, y ∈ M , there exists
a shortest geodesic arc joining them. In other words, there is a continuous curve γ : [0, 1]→M

with endpoints x = γ(0) and y = γ(1) and the length of γ is precisely the distance between the
points x and y.

A geodesic space has a global nonpositive curvature in the sense of Busemann if for any two
shortest geodesics γ, γ̃ : [0, 1]→M with γ(0) = x = γ̃(0), the distance map t 7→ d(γ(t), γ̃(t)) is
convex. In other words, for every point x, y, z ∈M , we have the inequality

2d(γ[x,y](1/2), γ[x,z](1/2)) ≤ d(y, z)(2)

provided that x, y are sufficiently close to z. If equality holds in (2), then we say that (M,d) is
flat. The space (M,d) has negative curvature in the sense of Busemann if the inequality in (2)
is strict (this happens when the endpoint of neither geodesic is contained in the other one).

The space (M,d) is called a global NPC space if the following conditions are satisfied

1. each pair of points can be connected by a geodesic
2. for x0, x1 ∈M there exists a point y ∈M such that for all p ∈M

d2(p, y) ≤ 1

2
(d2(p, x0) + d2(p, x1))−

1

4
d2(x0, x1).(3)

Generally, the following comparison principle holds: let γ[p,x0], γ[x0,x1] and γ[p,x1] be three
geodesic segments connecting the points p, x0, x1 ∈ M , and let xt be an arbitrary point on
γ[x0,x1] which is a fraction of d(x0, x1), then

d(x0, xt) = td(x0, x1) and d(xt, x1) = (1− t)d(x0, x1)

with the following inequality

d2(p, xt) ≤ (1− t)d2(p, x0) + td2(p, x1)− t(1− t)d2(x0, x1) , t ∈ [0, 1].

Denote xt := (1− t)x0 + tx1. Clearly, x1/2 := γ[x0,x1](1/2) is the midpoint of the segment that
connects x0 and x1, and the mean value of a function on [0, 1] exists, thus we can introduce the
notion of convexity on global NPC spaces. We see at once that a function f : K ⊆ M → R
is convex if for all t ∈ [0, 1], we have f(xt) ≤ (1 − t)f(x0) + tf(x1). Global NPC spaces have
global nonpositive curvature in the sense of Busemann, they are also known as CAT(0) spaces.

Theorem 2.2. [23,25,33] Let (M,d) be a global NPC space. Let x0, x1, y0 and y1 be four points
in M . Let xt be the point which is a fraction of d(x0, x1). For any t ∈ [0, 1], the following holds

d2(xt, y0) + d2(x1−t, y1) ≤ d2(x0, y0) + d2(x1, y1) + 2t2d2(x0, x1)

+ t(d2(y0, y1)− d2(x0, x1))− t(d(y0, y1)− d(x0, x1))
2.(4)

Definition 2.3. A subset K ⊆ M is called convex if for each geodesic γ : [0, 1] → M joining
two arbitrary points in K, it holds that γ([0, 1]) ⊆ K.

Definition 2.4. A function f : K → R is convex if the function f ◦ γ : [0, 1] → R is convex
whenever γ : [0, 1]→ K is geodesic, that is, for all t ∈ [0, 1]

f(γ(t)) ≤ (1− t)f(x) + tf(y).(5)
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Note that inequality (5) follows from the convexity of f ◦ γ, that is,

f(γ(t)) = f(γ[(1− t) · 0 + t · 1]) ≤ (1− t)f ◦ γ(0) + tf ◦ γ(1) = (1− t)f(x) + tf(y).

In particular, the distance map d : M ×M → R is convex. In other words, given any two
geodesics γ, η : [0, 1]→M , we have the inequality

d(γ(t), η(t)) ≤ (1− t)d(γ(0), η(0)) + td(γ(1), η(1)).

This implies that every ball in a global NPC space is a convex set. Let k > 1, for every
y ∈ M , the map Gy(x) := dk(x, y) is strictly convex. That is, for every nonconstant geodesic
γ : [0, 1]→M and t ∈ (0, 1) we have the inequality Gy(γ(t)) < (1− t)Gy(γ(0)) + tGy(γ(1)).

If −f is convex then f is concave. The function f is said to be affine if f is both concave
and convex. There are several notions of convexity on metric spaces [22, 30, 35]. Let p > 0, a
function is said to be p-convex if fp is convex. If f(γ(t)) ≤ max{f(γ(0)), f(γ(1))}, then we
say that f is quasi convex. A function f : K → R is geodesically ϕ-convex if there is a function
ϕ : R × R → R such that f(γ(t)) ≤ f(x) + tϕ(f(y), f(x)) for all x, y ∈ K and t ∈ [0, 1]. For
example, let M = R × S1 and ϕ(x, y) := x3 − y3, the function f : K ⊂ M → R defined by
f(x, ·) = x3 is geodesically ϕ-convex but not convex. The notion of geodesically invex sets and
geodesically pre-invex functions can be similarly defined on Riemannian manifolds (see [4]).

The notion of h-convexity for functions defined on an interval of R was introduced by
Varos̆anec in [39]. It is known that the class of h-convex functions unifies existing classes
of convex functions such as s-convex functions, Godunova-Levin functions, and P -functions.
Motivated by the results in [12,39], we extend the notion of h-convex functions to global NPC
spaces.

Definition 2.5. Let K ⊆M be a convex subset of a global NPC space, and let h : R→ (0,∞).

A function f : K → R is geodesically h-convex if the function f ◦ γ : [0, 1] → R is h-convex
whenever γ : [0, 1]→ K is geodesic, that is, for all t ∈ [0, 1] we have

f(γ(t)) ≤ h(1− t)f(γ(0)) + h(t)f(γ(1)).

Remark 2.6. Observe that if h(t) ≥ t for all t ∈ [0, 1], then non-negative (geodesically) convex
functions are h-convex.

Let hk(x) = xk, x > 0. It is known that the function g(x) = xr where x > 0, is hk-convex
if r ∈ (−∞, 0] ∪ [1,∞) and k ≤ 1. Also, g is hk-convex if r ∈ (0, 1) and k ≤ r. If we define
f ◦ γ := g and restrict the domain of g to [0, 1], then f is geodesically hk-convex on K ⊆M if
g is hk-convex on [0, 1].

Theorem 2.7. [36] Let f : [a, b]→ R be an h-convex function, then

1

2h
(
1
2

)f (a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ [f(a) + f(b)]

∫ 1

0

h(t)dt.(6)

Theorem (2.7) is known as the Hermite-Hadamard inequality for h-convex functions. With
h(x) = x, the inequality (6) reduces to (1).

The following lemma shows some properties of geodesics and convex functions in a global
NPC space.
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Lemma 2.8. [12] Let (M,d) be a global NPC space, K ⊆ M a convex set and γ : [0, 1]→ K

a geodesic connecting γ(0) and γ(1). Then

(1) For t1, t2 ∈ [0, 1] the curve γ
∣∣
[t1,t2]

(λ) = γ((1 − λ)t1 + λt2) is the unique geodesic con-
necting γ(t1) with γ(t2).

(2) For any t0 ∈ [0, 1] the midpoint between γ(t0) and γ(1− t0) is given by γ(1/2).
(3) If f : K → R is convex, then

∫ 1

0
f(γ(u))du =

∫ 1

0
f(γ(1− t))dt.

With the help of the lemma above, Conde [12] proved the following Hermite-Hadamard
inequality for convex functions on global NPC space.

Theorem 2.9. Let (M,d) be a global NPC space, K ⊆ M a convex subset and f : K → R a
convex function. Then

f(γ(1/2)) ≤
∫ 1

0

f(γ(t))dt ≤ f(γ(0)) + f(γ(1))

2

for all geodesic γ : [0, 1]→ K.

3. Fractional Integral Inequalities for h-Geodesically Convex Functions

The results contained in this section are extensions and generalisations of the Hermite-
Hadamard inequality, and related results. Indeed, we obtain Hermite-Hadamard type inequal-
ities for the class of h-geodesically convex functions, which naturally generalises the class of
convex functions. Also, we employ Katugampola’s fractional integral operators which are gen-
eralisations of the well known Riemann-Liouville integral operators and the Hadamard integral
operators.

Definition 3.1. [32] Let α > 0 be such that n− 1 < α < n, n ∈ N. The left and right sided
Riemann-Liouvile fractional integrals of order α are given by

Jαa+f(x) :=
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt

and

Jαb−f(x) :=
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt

respectively, where a < x < b and Γ is the well known Euler’s gamma function defined by
Γ(x) :=

∫∞
0
tx−1e−tdt.

Definition 3.2. [34] The left and right sided Hadamard fractional integrals of order α > 0

are defined by

Hα
a+f(x) :=

1

Γ(α)

∫ x

a

(
ln
x

t

)α−1 f(t)

t
dt

and

Hα
b−f(x) :=

1

Γ(α)

∫ b

x

(
ln
t

x

)α−1
f(t)

t
dt

Definition 3.3. [21] Let c ∈ R and 1 ≤ p ≤ ∞. The space Xp
c (a, b) is the set of all complex-

valued Lebesgue measurable functions f equipped with norm

‖f‖Xp
c

=


(∫ b

a
|tcf(t)|p

t
dt
) 1
p

, 1 ≤ p <∞

esssupa≤t≤b|tcf(t)| , p =∞.
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The space Xp
c (a, b) is the classical Lp(a, b) space when c = 1

p
.

Definition 3.4. [13,21] Let [a, b] ⊂ R be a finite interval. The left and right side Katugampola
fractional integrals of order α > 0 of f ∈ Xp

c (a, b) are defined by

ρIαa+f(x) :=
ρ1−α

Γ(α)

∫ x

a

tρ−1

(xρ − tρ)1−α
f(t)dt

and
ρIαb−f(x) :=

ρ1−α

Γ(α)

∫ b

x

tρ−1

(tρ − xρ)1−α
f(t)dt

with a < x < b and ρ > 0, provided the integrals exists.

The fractional integral operators ρIαa+ and ρIαb− are well defined on Xp
c (a, b) for ρ ≥ c, as

shown in [21]. There is a relationship among the integral operators defined above. Let α > 0

and ρ > 0, then for x > a, it can be shown [21] that

lim
ρ→1

ρIαa+f(x) = Jαa+f(x) and lim
ρ→0

ρIαa+f(x) = Hα
a+f(x).

Similar identities hold for the right sided integrals.

Theorem 3.5. Let α > 0 and ρ > 0. Let (M,d) be a global NPC space, K ⊆ M a convex set
and f : K → [0,∞) a geodesic h-convex function with h ∈ Lq[0, 1], q > 1. Then the following
inequalities hold

f

(
γ
∣∣∣
[aρ,bρ]

(
1

2

))
≤ ραΓ(α + 1)

(bρ − aρ)α
h

(
1

2

)(
ρIαa+f (γ (bρ)) + ρIαb−f (γ (aρ))

)
≤ h

(
1

2

)
[f(γ(aρ)) + f(γ(bρ))]

[
α

(
q − 1

αq − 1

) q−1
q

‖h‖Lq [0,1] + ραΓ(α + 1) ρIα0+h(1)

]
(7)

where 0 ≤ a, b ≤ 1.

Proof. First, note that since f is geodesically h-convex, we have

f

(
γ

(
xρ + yρ

2

))
≤ h

(
1

2

)
[f(γ(xρ)) + f(γ(yρ))].

Using this fact, and the change of variables xρ = tρaρ + (1 − tρ)bρ and yρ = tρbρ + (1 − tρ)aρ,
we find for all t ∈ [0, 1] and 0 ≤ a ≤ x, y ≤ b ≤ 1 the estimate

f

(
γ
∣∣∣
[aρ,bρ]

(
1

2

))
= f

(
γ

(
xρ + yρ

2

))
≤ h

(
1

2

)
[f(γ(tρaρ + (1− tρ)bρ)) + f(γ(tρbρ + (1− tρ)aρ))].

Multiplying the latter by tαρ−1 and integrating over t ∈ [0, 1] yields

1

αρ
f

(
γ
∣∣∣
[aρ,bρ]

(
1

2

))
≤ h

(
1

2

)∫ b

a

(
bρ − xρ

bρ − aρ

)α−1
xρ−1

bρ − aρ
f(γ(xρ))dx

+ h

(
1

2

)∫ b

a

(
yρ − aρ

bρ − aρ

)α−1
yρ−1

bρ − aρ
f(γ(yρ))dy

=
ρα−1Γ(α)

(bρ − aρ)α
h

(
1

2

)(
ρIαa+f (γ (bρ)) + ρIαb−f (γ (aρ))

)

https://doi.org/10.28919/ejma.2025.5.9
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which proves the first inequality in (7). To prove the second inequality, we use the geodesic
h-convexity of f to obtain

f(γ(tρaρ + (1− tρ)bρ)) + f(γ(tρbρ + (1− tρ)aρ))

≤ h(tρ)f(γ(aρ)) + h(1− tρ)f(γ(bρ)) + h(tρ)f(γ(bρ)) + h(1− tρ)f(γ(aρ)).

Multiplying both sides by h
(
1
2

)
αρtαρ−1, and integrating over [0, 1] with respect to t yields

ραΓ(α + 1)

(bρ − aρ)α
h

(
1

2

)(
ρIαa+f (γ (bρ)) + ρIαb−f (γ (aρ))

)
≤ h

(
1

2

)
αρ[f(γ(aρ)) + f(γ(bρ))]

∫ 1

0

tαρ−1(h(tρ) + h(1− tρ))dt.(8)

For all t ∈ [0, 1] and q > 1, we use Hölder inequality to find∫ 1

0

tαρ−1h(tρ)dt ≤ 1

ρ

(
q − 1

αq − 1

) q−1
q

‖h‖Lq [0,1].(9)

On the other hand, we use the change of variable uρ = 1− tρ to find∫ 1

0

tαρ−1h(1− tρ)dt =

∫ 1

0

(1− uρ)α−1uρ−1h(uρ)du =
Γ(α)

ρ1−α
ρIα0+h(1).(10)

Noting that h is nonnegative by definition, we combine (10), (9) and (8) to prove the second
inequality in (7). This completes the proof.

�

Remark 3.6. Note that the change of variable u = tρ yields

Γ(α)Jα1−h(0) =
1

ρ

∫ 1

0

uα−1h(u)du =

∫ 1

0

tαρ−1h(tρ)dt
(9)
≤ 1

ρ

(
q − 1

αq − 1

) q−1
q

‖h‖Lq [0,1].

Thus we can remove the condition that h ∈ Lq[0, 1] and refine the estimate (7). We have the
following theorem.

Theorem 3.7. Let α > 0 and ρ > 0. Let (M,d) be a global NPC space, K ⊆ M a convex set
and f : K → R a geodesic h-convex function. Then the following inequalities hold

f

(
γ
∣∣∣
[aρ,bρ]

(
1

2

))
≤ ραΓ(α + 1)

(bρ − aρ)α
h

(
1

2

)(
ρIαa+f (γ (bρ)) + ρIαb−f (γ (aρ))

)
≤ h

(
1

2

)
[f(γ(aρ)) + f(γ(bρ))]Γ(α + 1)

[
ρJα1−h(0) + ρα ρIα0+h(1)

]
(11)

where 0 ≤ a, b ≤ 1.

Theorem 3.8. Let α > 0 and ρ > 0. Let (M,d) be a global NPC space, K ⊆ M a convex set
and f : K → R a geodesic h-convex function. Then the following inequalities hold

f

(
γ

(
1

2

))
≤ ραΓ(α + 1)

(bρ − aρ)α
h

(
1

2

)(
ρIαa+f(γ(bρ)) + ρIαc−f(γ(sρ))

)
≤ f(γ(0)) + f(γ(1))

(bρ − aρ)α
ραΓ(α + 1)h

(
1

2

)(
ρIαa+h(bρ) + ρIαc−h(sρ)

)
(12)

where c := (1− aρ)
1
ρ , s := (1− bρ)

1
ρ and 0 ≤ a, b ≤ 1.
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Proof. Since f is geodesically h-convex, we have

f (γ (1/2)) ≤ h (1/2) (f(γ(xρ)) + f(γ(1− xρ))).(13)

Setting xρ = tρaρ + (1 − tρ)bρ where t ∈ [0, 1], multiplying both sides of (13) by tαρ−1 and
integrating over [0, 1] gives

f(γ(1/2))

αρ
≤ h(1/2)

∫ 1

0

tαρ−1
(
f(γ(tρaρ + (1− tρ)bρ)) + f(γ((1− bρ) + tρ(bρ − aρ)))

)
dt

= h(1/2)

∫ b

a

(
bρ − xρ

bρ − aρ

)α−1
xρ−1

bρ − aρ
f(γ(xρ))dx

+ h(1/2)

∫ (1−aρ)
1
ρ

(1−bρ)
1
ρ

(
uρ − (1− bρ)
bρ − aρ

)α−1
uρ−1

bρ − aρ
f(γ(uρ))du

=
h(1/2)

(bρ − aρ)α
Γ(α)ρα−1

(
ρIαa+f(γ(bρ)) + ρIαc−f(γ(sρ))

)
.(14)

The first inequality in (12) follows from (14). Next is to prove the second inequality in (12).
Since f is geodesically h convex, we have

f(γ(tρaρ + (1− tρ)bρ)) + f(γ((1− bρ) + tρ(bρ − aρ)))

= f(γ(xρ)) + f(γ(1− xρ))

≤ [h(xρ) + h(1− xρ)][f(γ(0)) + f(γ(1))]

= [h(tρaρ + (1− tρ)bρ) + h((1− bρ) + tρ(bρ − aρ))][f(γ(0)) + f(γ(1))].(15)

Multiplying both sides of (15) by tαρ−1 and integrating over [0, 1], we have

Γ(α)ρα−1

(bρ − aρ)α
(
ρIαa+f(γ(bρ)) + ρIαc−f(γ(sρ))

)
≤ f(γ(0)) + f(γ(1))

(bρ − aρ)α
Γ(α)ρα−1

(
ρIαa+h(bρ) + ρIαc−h(sρ)

)(16)

The second inequality in (12) follows from (16). This completes the proof. �

Let k ≥ 1, recall from Definition 2.4 that the function Gy(x) := dk(x, y) is convex. Let
h : [0, 1]→ (0,∞) be a map satisfying h(t) ≥ t for all t ∈ [0, 1], then

Gy(γ(t)) ≤ (1− t)Gy(γ(0)) + tGy(γ(1)) ≤ h(1− t)Gy(γ(0)) + h(t)Gy(γ(1))

so that Gy is geodesically h-convex. In particular, the function gy(t) = dk(y, γ[x1,x2](t)) is
h-convex. Consequently, by Theorem 3.8, we have

dk(y, γ[x1,x2](1/2)) ≤ ραΓ(α + 1)

(bρ − aρ)α
h

(
1

2

)(
ρIαa+d

k(y, γ[x1,x2](b
ρ)) + ρIαc−d

k(y, γ[x1,x2](s
ρ))
)

≤ dk(y, x1) + dk(y, x2)

(bρ − aρ)α
ραΓ(α + 1)h

(
1

2

)(
ρIαa+h(bρ) + ρIαc−h(sρ)

)
where c := (1 − aρ)

1
ρ , s := (1 − bρ)

1
ρ and 0 ≤ a, b ≤ 1. By assuming that h(t) ≥ t for all

t ∈ [0, 1], we use the h-convexity of g : [0, 1] → R, g(t) = d2(γ(t), γ̃(t)) (where γ and γ̃ are
geodesics) to obtain the following corollary, for k = 2.

Corollary 3.9. Let α > 0 and ρ > 0. Let (M,d) be a global NPC space, and let γ := γ[x1,x2]
and γ̃ := γ̃[y1,y2] be two geodesics connecting the points x1, x2 ∈ M and y1, y2 ∈ M respectively.
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Suppose that h : [0, 1] → (0,∞) is a function satisfying h(t) ≥ t, for all t ∈ [0, 1]. Then the
following inequalities hold

d2(γ̃(1/2), γ(1/2)) ≤ ραΓ(α + 1)

(bρ − aρ)α
h

(
1

2

)(
ρIαa+d

2(γ̃(bρ), γ(bρ)) + ρIαc−d
2(γ̃(sρ), γ(sρ))

)
≤ d2(y1, x1) + d2(y2, x2)

(bρ − aρ)α
E(h)− C(α, ρ)[d(y1, y2)d(x1, x2)]

2

≤ d2(y1, x1) + d2(y2, x2)

(bρ − aρ)α
E(h)

where c := (1− aρ)
1
ρ , s := (1− bρ)

1
ρ , 0 ≤ a, b ≤ 1, C(α, ρ) ≥ 0,

C(α, ρ) :=
(aρα + bρ)(2(α + 2)− 4bρ)− 2a2ρα(α + 1)

αρ(α + 1)(α + 2)

and

E(h) := ραΓ(α + 1)h

(
1

2

)(
ρIαa+h(bρ) + ρIαc−h(sρ)

)
.

Proof. We use Corollary 2.5 in [38] (a geodesic comparison result) to write the estimate

d2(γ̃[y1,y2](u
ρ), γ[x1,x2](u

ρ)) ≤ h(1− uρ)d2(y1, x1) + h(uρ)d2(y2, x2)

− uρ(1− uρ)[d(y1, y2)− d(x1, x2)]
2

≤ h(1− uρ)d2(y1, x1) + h(uρ)d2(y2, x2)

where u ∈ [0, 1] and ρ > 0. Hence, we deduce that

d2(γ̃[y1,y2](u
ρ), γ[x1,x2](u

ρ)) + d2(γ̃[y1,y2](1− uρ), γ[x1,x2](1− uρ))

≤ [h(uρ) + h(1− uρ)]d2(y1, x1) + [h(uρ) + h(1− uρ)]d2(y2, x2)

− 2uρ(1− uρ)[d(y1, y2)− d(x1, x2)]
2

≤ [h(uρ) + h(1− uρ)]
[
d2(y1, x1) + d2(y2, x2)

]
.(17)

Set uρ = tρaρ + (1− tρ)bρ in the estimates in (17), so that uρ is the line segment connecting
aρ and bρ. Next, multiply the resulting estimates by h(1/2)tαρ−1 and integrate on [0, 1] with
respect to t, via Katugampola’s fractional integral operators. Finally, apply Theorem 3.8. Note
that the constant C(α, ρ) is computed as follows.

Since 0 ≤ uρ ≤ 1, we have 2uρ(1− uρ) ≥ 0. Hence

0 ≤ C(α, ρ) =

∫ 1

0

[2(tρaρ + (1− tρ)bρ)− 2(tρaρ + (1− tρ)bρ)2]tαρ−1dt

= −2(bρ − aρ)
ρ(α + 1)

+
2bρ

αρ

− 2a2ρα(α + 1) + 2b2ρ[(α + 1)(α + 2)− 2α(α + 2) + α(α + 1)]

αρ(α + 1)(α + 2)

+
4aρbρ[α(α + 2)− α(α + 1)]

αρ(α + 1)(α + 2)

= −2(bρ − aρ)α(α + 2)− 2bρ(α + 1)(α + 2)

αρ(α + 1)(α + 2)
− 2a2ρα(α + 1) + 4b2ρ + 4aρbρα

αρ(α + 1)(α + 2)

=
(aρα + bρ)(2(α + 2)− 4bρ)− 2a2ρα(α + 1)

αρ(α + 1)(α + 2)
.
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This concludes the proof. �
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