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PROPERTIES OF PSEUDO-ORTHOGONAL CHEBYSHEV-LIKE
POLYNOMIALS

VITALICE OMONDI WAMNYOLO, MICHAEL OBIERO OYENGO, AND ISAAC OWINO OKOTH∗

Abstract. Chebyshev polynomials are one of the classes of rationally generated polynomials
that are orthogonal in the interval [−1, 1]. In this paper, we introduce a new class of Chebyshev-
like polynomials denoted by Rn(x) and satisfying the recurrence relation Rn(x) = 2xRn−1(x)−
Rn−2(x), with initial conditions R0(x) = 1 and R1(x) = 3x. We show that these polynomials
are rationally generated and prove connections to the classical Chebyshev polynomials of the
first and of the second kind. We then prove that they are pseudo-orthogonal in the interval
[−1, 1] and have all their zeros in this interval. Lastly, we give identities for resultants involving
these polynomials.

1. Introduction

Chebyshev polynomials have been studied extensively. Among them are the Chebyshev
polynomials of the first and of the second kind, commonly referred to as classical Chebyshev
polynomials, which are sequences of orthogonal polynomials related to sine and cosine functions.
In [8, eq.1.3a], Chebyshev polynomials of the first kind are defined recursively by

Tn+1(x) = 2xTn(x)− Tn−1(x)(1)

for n ≥ 2, with initial conditions T0(x) = 1 and T1(x) = x. On the other hand, the recurrence
relation for the Chebyshev polynomials of the second kind is

Un+1(x) = 2xUn(x)− Un−1(x)(2)

for n ≥ 2 and the initial conditions are U0(x) = 1 and U1(x) = 2x.
The Chebyshev polynomials of the first kind and of the second kind are respectively defined

by the rational generating functions
∞∑
n=0

Tn(x)t
n =

1− xt
1− 2xt+ t2

and
∞∑
n=0

Un(x)t
n =

1

1− 2xt+ t2
,(3)

see [8, p15] for details. From the generating functions (3), connections between the first and
second kind Chebyshev polynomials can be drawn, i.e.,

Un+1(x) = xUn(x) + Tn−1(x),
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and

Tn(x) =
1

2
Un(x)−

1

2
Un−2(x),(4)

[8]. The two polynomials are also related by the sum formula

Un(x) =

2
∑n

odd j Tj(x), for odd n,

2
∑n

even j Tj(x)− 1, for even n.
(5)

Explicit formula for Chebyshev polynomials of the first kind, and of the second kind are obtained
by solving the recurrence relations (1) and (2) respectively. The explicit formulas are

Tn(x) =
1

2

(
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

)
,

and

Un(x) =
1

2

(
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

√
x2 − 1

)
.

The derivatives of Chebyshev polynomials of the first kind, and of the second kind are respec-
tively given by;

d

dx
Tn(x) = nxUn−2(x) + nTn(x) = nUn−1(x),

and
d

dx
Un(x) =

(n+ 1)Tn+1(x)− xUn(x)
x2 − 1

.

We now introduce a new class of pseudo-orthogonal Chebyshev-like polynomials denoted by
Rn(x) and give their properties.

Definition 1.1. Let n ≥ 0 and define the (n+ 1)th term of a sequence of polynomials as

Rn(x) = 2xRn−1(x)−Rn−2(x),(6)

for n ≥ 0, with initial conditions R0(x) = 1 and R1(x) = 3x.

The first 11 polynomials of this sequence are given in Table 1.

n The corresponding term of the sequence
0 1
1 3x

2 −1 + 6x2

3 −5x+ 12x3

4 1− 16x2 + 24x4

5 7x− 44x3 + 48x5

6 −1 + 30x2 − 112x4 + 96x6

7 −9x+ 104x3 − 272x5 + 192x7

8 1− 48x2 + 320x4 − 640x6 + 384x8

9 11x− 200x3 + 912x5 − 1472x7 + 768x9

10 −1 + 70x2 − 720x4 + 2464x6 − 3328x8 + 1536x10

Table 1. The Rn(x) polynomials for 0 ≤ n ≤ 10.

The graph of the first five Rn(x) polynomials is given in Figure 1 for the range −1 ≤ x ≤ 1.
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Figure 1. Graph of the first five Rn(x) polynomials.

2. Generating function and explicit formula

By solving the recurrence relation (6) with the initial conditions R0(x) = 1 and R1(x) = 3x,
we obtain Lemma 2.1.

Lemma 2.1. The Chebyshev-like polynomials Rn(x) are defined by the rational generating
function:

∞∑
n=0

Rn(x)t
n =

1 + xt

1− 2xt+ t2
.(7)

We now draw the connection between the Rn(x) polynomials and the classical Chebyshev
polynomials of the first and of the second kind. These connections follow from the generating
functions (3) and (7).

Lemma 2.2. The Chebyshev-like polynomials Rn(x) are connected to the classical Chebyshev
polynomials by the following identities:

Rn(x) = Un(x) + xUn−1(x) =
3

2
Un(x) +

1

2
Un−2(x),(8)

and

Rn(x) = 2Un(x)− Tn(x) = 2xUn−1(x) + Tn(x).(9)

Proof. The first equality in (8) follows directly by comparing the rational generating function
(7) of the Rn(x) polynomials and the generating function of the Chebyshev polynomials of the
second kind Un(x) given in (3). That is,

Rn(x) = Un(x) + xUn−1(x).(10)

Now, from the recurrence relation (2), we have that

xUn−1(x) =
1

2
Un(x) +

1

2
Un−2(x).(11)

Now, using equation (10) and (11), we obtain

Rn(x) =
3

2
Un(x) +

1

2
Un−2(x).(12)
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From the relations (4) and (12), we can write

Rn(x) =
3

2
Un(x) +

1

2
Un(x)− Tn(x) = 2Un(x)− Tn(x).(13)

Lastly, from the generating function (3), we observe that

Tn(x) = Un(x)− xUn−1(x).(14)

Substituting equation (14) in equation (10), we obtain

Rn(x) = 2xUn−1(x) + Tn(x)

which proves (9). �

The following theorem gives the explicit formula of Rn(x) polynomials.

Theorem 2.3. Let n ≥ 1, then the Rn(x) polynomials are explicitly defined by

Rn(x) =
1

2

(
(x+

√
x2 − 1)n(2x+

√
x2 − 1)√

x2 − 1
− (x−

√
x2 − 1)n(2x−

√
x2 − 1)√

x2 − 1

)
.

The explicit formula can easily be obtained by solving the recurrence relation (6) using the
initial conditions R0(x) = 1 and R1(x) = 3x.

3. The fundamental recurrence formula and orthogonality of Rn(x)

polynomials

Favard [1] showed that any polynomial sequence which satisfies the three term recurrence
given by Pn(x) = (x− cn)Pn−1(x)− λnPn−2(x), n = 1, 2, 3 . . ., where P−1(x) = 0 and P0(x) =

−1, is orthogonal. The sequence of Rn(x) polynomials satisfies the recurrence relation relation
(6), which meets the conditions of the Favard’s Theorem. This implies that

Theorem 3.1. There exists a weight function w(x) for which the Chebyshev-like polynomials
Rn(x) are an orthogonal polynomial sequence in the interval [−1, 1].

Now, we give pseudo-orthogonality identities involving the Rn(x) polynomials. In [8], it was
showed that Chebyshev polynomials of the first kind, and of the second kind are orthogonal in
the interval [−1, 1] with respect to the weight functions 1√

1−x2 and
√
1− x2 respectively, and

are given by the identities;

∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

=


0, if n 6= m,

π, if n = m = 0,

π
2
, if n = m 6= 0,

(15)

and ∫ 1

−1
Un(x)Um(x)

√
1− x2dx =

0, if n 6= m,

π
2
, if n = m.

(16)

Theorem 3.2. The integrals of the Chebyshev-like polynomials Rn(x) with respect to the weight
function w1(x) =

√
1− x2 on the interval [−1, 1] is given by:

https://doi.org/10.28919/ejma.2025.5.7
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∫ 1

−1
Rn(x)Rm(x)w1(x)dx =



3π
8
, if n = m+ 2 or m = n+ 2,

π
2
, if n = m = 0,

9π
8
, if n = m = 1,

5π
4
, if n = m ≥ 2

0, else.

Proof. Since Rn(x) =
3
2
Un(x) +

1
2
Un−2(x), we have that∫ 1

−1
Rn(x)Rm(x)w1(x)dx =

9

4

∫ 1

−1
Un(x)Um(x)w1(x)dx+

3

4

∫ 1

−1
Un(x)Um−2(x)w1(x)dx

+
3

4

∫ 1

−1
Um(x)Un−2(x)w1(x)dx+

1

4

∫ 1

−1
Un−2(x)Um−2(x)w1(x)dx.(17)

When n 6= m, then by (16), the only non-zero contribution is when m = n + 2 or n = m + 2,
thus, ∫ 1

−1
Rn(x)Rm(x)w1(x)dx =

3π

8
.

On the other hand, when n = m = 0, and the fact that U−1(x) = 0, U0(x) = 1 and U−2(x) = −1,
equation (17) reduces to∫ 1

−1
Rn(x)Rm(x)w1(x)dx =

∫ 1

−1

√
1− x2dx =

π

2
.

Now when n = m = 1, equation (17) reduces to∫ 1

−1
Rn(x)Rm(x)w1(x)dx =

9

4

∫ 1

−1
U1(x)U1(x)w1(x)dx,

and by (16), we have ∫ 1

−1
Rn(x)Rm(x)w1(x)dx =

9π

8
.

Similarly, when n = m ≥ 2, and by applying (16), we have∫ 1

−1
Rn(x)Rm(x)w1(x)dx =

5π

4
.

If n 6= m (and n 6= m+ 2 or m 6= n+ 2), then by the identity (16), we have∫ 1

−1
Rn(x)Rm(x)w1(x)dx = 0.

�

Next, we prove the identities of Rn(x) polynomials with respect to the weight function
w2(x) =

1√
1−x2 in the interval [−1, 1].
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Theorem 3.3. The integrals of the Chebyshev-like polynomials Rn(x) with respect to the weight
function w2(x) =

1√
1−x2 on the interval [−1, 1] are given by:

∫ 1

−1
Rn(x)Rm(x)w2(x)dx =



π, if n = m = 0,
(8n+1)

2
π, if n = m > 1,

2(2n− 3)π, if n and m are both even, and m < n,

2(n− 1)π, if n and m are both odd, and m < n,

0, if n is odd and m is even.

Proof. Recall that Rn(x) = 2Un(x)− Tn(x), so that∫ 1

−1
Rn(x)Rm(x)w2(x)dx =

∫ 1

−1
4Un(x)Um(x)w2(x)dx−

∫ 1

−1
2Un(x)Tm(x)w2(x)dx

−
∫ 1

−1
2Um(x)Tn(x)w2(x)dx+

∫ 1

−1
Tn(x)Tm(x)w2(x)dx.(18)

First, when n = m = 0, with T0(x) = U0(x) = 1, the integral (18) evaluates to∫ 1

−1
Rn(x)Rm(x)w2(x)dx =

∫ 1

−1

1√
1− x2

dx = π.

Now, when n = m ≥ 1 and n is odd, substituting (5) into (18) gives

∫ 1

−1
Rn(x)Rm(x)w2(x)dx = 16

2n∑
l=2
l even

l∑
j=1
j odd

∫ 1

−1
Tj(x)Tl−j(x)w2(x)dx

− 8
n∑
j=1
j odd

∫ 1

−1
Tj(x)Tn(x)w2(x)dx+

∫ 1

−1
Tn(x)Tn(x)w2(x)dx.(19)

By applying (15), the only non-zero integrals in (19) are when j = l − j or l = 2j for the first
integral and when j = n for the second the integral of (19), so that∫ 1

−1
Rn(x)Rm(x)w2(x)dx = 16

2n∑
l=2
4|l

∫ 1

−1
Tl/2(x)Tl/2(x)w2(x)dx− 4π +

π

2
.

Since, there are n+1
2

numbers between 2 and 2n that are divisible by 4, then by (15), we obtain∫ 1

−1
Rn(x)Rm(x)w2(x)dx = 16

(
n+ 1

2

)
π

2
− 4π +

π

2
=

(8n+ 1)π

2
.

When n = m ≥ 1 and n is even, then substituting (5) into (18), we obtain upon simplification,∫ 1

−1
Rn(x)Rm(x)w2(x)dx = 16

2n∑
l=0
l even

l∑
j=0
j even

∫ 1

−1
TjTl−j(x)(x)w2(x)dx

− 8
n∑
j=0
j even

∫ 1

−1
Tj(x)T0(x)w2(x)dx− 8

n∑
k=0
k even

∫ 1

−1
Tk(x)T0(x)w2(x)dx

+ 4

∫ 1

−1
T0(x)T0(x)w2(x)dx− 8

n∑
j=0
j even

∫ 1

−1
Tj(x)Tn(x)w2(x)dx

https://doi.org/10.28919/ejma.2025.5.7
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+ 4

∫ 1

−1
T0(x)Tn(x)w2(x)dx+

∫ 1

−1
Tn(x)Tn(x)w2(x)dx.

This evaluates to;∫ 1

−1
Rn(x)Rm(x)w2(x)dx = 16π + 16

(
n

2

)
π

2
− 8π − 8π + 4π − 8

(π
2

)
+ 4(0) +

π

2

=
(8n+ 1)π

2
.

If n is odd and m is even (the case when n is even and m is odd is similar), then again by
substituting (5) into (18) and simplifying, we obtain∫ 1

−1
Rn(x)Rm(x)w2(x)dx = 16

n∑
j=1
j odd

m∑
k=0
k even

∫ 1

−1
Tj(x)Tk(x)w2(x)dx

− 8
n∑
j=1
j odd

∫ 1

−1
Tj(x)T0(x)w2(x)dx− 4

n∑
j=1
j odd

∫ 1

−1
Tj(x)Tm(x)w2(x)dx

− 4
m∑
k=0
k even

∫ 1

−1
Tk(x)Tn(x)w2(x)dx+ 2

∫ 1

−1
T0(x)Tn(x)w2(x)dx

+

∫ 1

−1
Tn(x)Tm(x)w2(x)dx.(20)

Since j is odd and k is even, n is odd and m is even, this implies that j 6= k, and n 6= m, thus
by identity (15), the integral (20) is equal to zero.

If n and m are both even, and m < n (and thus the maximum value of m is n− 2) then by
using (12), we have:∫ 1

−1
Rn(x)Rm(x)w2(x)dx =

9

4

∫ 1

−1
Un(x)Um(x)w2(x)dx+

3

4

∫ 1

−1
Un(x)Um−2(x)w2(x)dx

+
3

4

∫ 1

−1
Um(x)Un−2(x)w2(x)dx+

1

4

∫ 1

−1
Un−2(x)Um−2(x)w2(x)dx.

Now, using identity (5), we have that:∫ 1

−1
Un(x)Um(x)w2(x)dx = 4

2n−2∑
l=2
l even

l∑
j=2
j even

∫ 1

−1
Tj(x)Tl−j(x)w2(x)dx

− 2
n∑
j=2
j even

∫ 1

−1
Tj(x)T0(x)w2(x)dx− 2

n−2∑
k=2
k even

∫ 1

−1
Tk(x)T0(x)w2(x)dx

+

∫ 1

−1
T0(x)T0(x)w2(x)dx.

There are n− 1 even numbers between 1 and 2n− 2, of which (n− 2)/2 are divisible by 4. We
only get a contribution from the first integral on the right hand side of the equality sign when
j = l − j or l = 2j, that is, l must me a multiple of 4. Therefore by identity (15), we have∫ 1

−1
Un(x)Um(x)w2(x)dx = 4

(
n− 2

2

)
π

2
− 0− 0 + π = (n− 1)π.(21)

https://doi.org/10.28919/ejma.2025.5.7
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Similarly,∫ 1

−1
Un(x)Um−2(x)w2(x)dx = 4

2n−4∑
l=2
l even

l∑
j=2
j even

∫ 1

−1
Tj(x)Tl−j(x)w2(x)dx

− 2
n∑
j=2
j even

∫ 1

−1
Tj(x)T0(x)w2(x)dx− 2

n−4∑
k=2
k even

∫ 1

−1
Tk(x)T0(x)w2(x)dx

+

∫ 1

−1
T0(x)T0(x)w2(x)dx.

There are (n− 2) even numbers between 2 and 2n− 4 of which (n− 4)/2 are divisible by 4, so
we obtain ∫ 1

−1
Un(x)Um−2(x)w2(x)dx = 4

(
n− 4

2

)
π

2
− 0− 0 + π = (n− 3)π.(22)

By similar argument, we have that∫ 1

−1
Um(x)Un−2(x)w2(x)dx = (n− 1)π,(23)

and ∫ 1

−1
Un−2(x)Um−2(x)w2(x)dx = (n− 3)π.(24)

Substituting (21), (22), (23) and (24) in (17), we obtain

∫ 1

−1
Rn(x)Rm(x)w2(x)dx =

9

4
(n− 1)π +

3

4
(n− 3)π +

3

4
(n− 1)π +

1

4
(n− 3)π

= 2(2n− 3)π.

If n and m are odd, and m < n, then from the integral (18), we have

4

∫ 1

−1
Un(x)Um(x)w2(x)dx = 16

2n−2∑
l=2
l even

l∑
j=1
j odd

∫ 1

−1
Tj(x)Tl−j(x)w2(x)dx.

We only get a contribution if j = l − j or l = 2j, that is, l is divisible by 4. This is given as

4

∫ 1

−1
Un(x)Um(x)w2(x)dx = 16

(
n− 1

2

)
π

2
= 4(n− 1)π.(25)

Similarly,

2

∫ 1

−1
Un(x)Tm(x)w2(x)dx =

n∑
j=1
j odd

∫ 1

−1
Tj(x)Tn−2(x)w2(x)dx = 4

(
n− 1

2

)
π

2
= (n− 1)π.(26)

Also,

2

∫ 1

−1
Um(x)Tn(x)w2(x)dx = 4

n−2∑
j=1
j odd

∫ 1

−1
Tj(x)Tn(x)w2(x)dx = 4

(
n− 1

2

)
π

2
= (n− 1)π.(27)

Since m < n, the last integral in (18) is zero.

https://doi.org/10.28919/ejma.2025.5.7
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Substituting (25), (26) and (27) in (18), we obtain∫ 1

−1
Rn(x)Rm(x)w2(x)dx = 4(n− 1)π − (n− 1)π − (n− 1)π = 2(n− 1)π.

This completes the proof. �

4. Zeros and resultants of Rn(x) polynomials

In this section, we describe the properties of the zeros of the Rn(x) polynomials. These
include the geometry of the zeros and identities for resultants involving Rn(x) polynomials,
Tn(x) polynomials and Un(x) polynomials. First, we describe the geometry of the zeros.

From a well known theorem by Szego [10], the zeros of orthogonal polynomials are real and
distinct, and are located in the interior of the interval of orthogonality. A similar theorem
was given by Jordaan [5] in which he proved that a sequence of orthogonal polynomials with
degree n has exactly n real simple zeros in the interval of orthogonality, and that the zeros of
any two consecutive polynomials in the sequence also interlace with each other, i.e. if Pn(x)
and Pn+1(x) are consecutive orthogonal polynomials in a sequence, then the zeros of Pn(x)
and Pn+1(x) separate each other. Lucas [7] proved the interlacing property of the zeros of an
orthogonal polynomials with the zeros of its derivative. Further, he proved that the zeros of
the derivative of an orthogonal polynomial all lie within the convex hull of the zeros of the
polynomial.

We thus have the following theorem:

Theorem 4.1. The zeros of Rn(x) are real, simple, and lie in the interval of orthogonality
[-1,1]. The zeros of Rn(x) also interlace with the zeros of R′n(x), in the interval [-1,1].

Figure 2 illustrates the interlacing property of the R10(x) polynomial and R′10(x) polynomial.
From the graph of R10(x) polynomial in blue and the R′10(x) polynomial in red, it can be seen
that the zeros are in [−1, 1] and interlace in this interval.

−1 −0.5 0.5 1

−5

5

R10(x)

R′10(x)

x

Rn(x)

Figure 2. Graph of R10(x) and R′10(x) polynomial showing the interlacing prop-
erty of the polynomial with its derivative.

Definition 4.2 ( [4]). Let polynomials f(x) and g(x) of degrees m and n respectively be ex-
pressed as a product of monomials involving their roots as:

f(x) = am

m∏
k=1

(x− αk),

https://doi.org/10.28919/ejma.2025.5.7
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with am as the leading coefficient, and αk the zero of f(x), and

g(x) = bn

n∏
j=1

(x− βj),

with bn as the leading coefficient, and βj the zero of and g(x), then the resultant is given by

res(f(x), g(x)) = anm

m∏
k=1

g(αk) = bmn

n∏
j=1

f(βj)

or

res(f(x), g(x)) = anmb
m
n

m∏
k=1

n∏
j=1

(αk − βj).

In this section, we prove identities for resultants involving Rn(x) polynomials. The following
results, proved in [2–4,9, 11], are necessary in this study.

(i) Consider the polynomials f(x), g(x) and h(x) such that the degrees of f(x) and g(x)

are m and n respectively. Then,

res(f(x), g(x)) = (−1)mnres(g(x), f(x))(28)

and

res(f(x), g(x)h(x)) = res(f(x), g(x))res(f(x), h(x)).(29)

(ii) If a is a constant and f(x) is a polynomial of degree m, then

res(f(x), a) = res(a, f(x)) = am.(30)

(iii) Let f(x), g(x), q(x) and r(x) be polynomials such that f(x) = q(x)g(x) + r(x) and
degrees of f(x) and r(x) are m and δ respectively, then

res(g(x), f(x)) = bm−δn res(g(x), r(x))

where bn is the leading coefficient of g(x).
(iv) Let f(x) and g(x) be polynomials such that deg(q(x)f(x) + g(x)) = deg(g(x)) for some

polynomial q(x), then

res(f(x), q(x)f(x) + g(x)) = res(f(x), g(x)).(31)

(v) If m and n are odd integers, and Tn(x) is the Chebyshev polynomial of the first kind,
then

res(Tm(x), Tn(x)) = 0.

Generally, if gcd(m,n) is the greatest common divisor of m and n, then

res(Tm(x), Tn(x)) =

0, if nm is odd,

(−1)mn
2 2(m−1)(n−1)+gcd(m,n)−1, otherwise

and for the Chebyshev polynomial of the second kind,

res(Um(x), Un(x)) =

0, if gcd(m+ 1, n+ 1) 6= 1,

(−1)mn
2 2mn, otherwise.

(32)
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Since gcd(n, n+ 1) = 1, then by (32), we have

res(Un(x), Un−1(x)) = (−1)
n(n−1)

2 2n(n−1).(33)

By (31) and (33), we get

res(Un(x) + kUn−1(x), Un−1(x)) = (−1)
n(n−1)

2 2n(n−1)

where k is a real number.
The resultant of the classical Chebyshev polynomials is given as

res(Tn(x), Um(x)) =

2(m−1)(n−1)+gcd(m,n)−1, if n and m are both even,

0, otherwise.
(34)

The following fundamental theorem of resultants is also necessary.

Theorem 4.3 ( [11, Lemma 2.2]). The resultant of f(x) and g(x) is equal to zero if and only if
the two polynomials have a common root or a common divisor of positive degree.

We now give the identities of resultants involving the Rn(x) polynomials.

Theorem 4.4. Let n be a positive integer, then

res(Rn(x), Tn(x)) =

2n
2
, if n is even,

0, otherwise.

Proof. If n is odd, then both Rn(x) and Tn(x) are odd functions with a common divisor (note
that x = 0 is a zero for both Rn(x) and Tn(x)) and by fundamental theorem of resultants,

res(Rn(x), Tn(x)) = 0.

Now, when n even and using the identity Rn(x) = 2Un(x)− Tn(x), we have that

res(Rn(x), Tn(x)) = res(2Un(x)− Tn(x), Tn(x))(35)

Using (31), equation (35) becomes

res(Rn(x), Tn(x)) = res(2Un(x), Tn(x))

Using property (29) of the resultants, we obtain

res(Rn(x), Tn(x)) = res(2, Tn(x))res(Un(x), Tn(x)).(36)

By property (30), we have

res(2, Tn(x)) = 2n.(37)

To evaluate res(Un(x), Tn(x)), we use (34). Since the gcd(n, n) = n, then this implies that

res(Tn(x), Un(x)) = 2(n−1)(n−1)+n−1 = 2n(n−1).(38)

Using property (28) of the resultants, we get

res(Un(x), Tn(x)) = (−1)n2

res(Tn(x), Un(x)) = 2n(n−1),(39)

since (−1)n2
= 1, when n is even. Now, plugging (37) and (39) in (36), we obtain

res(Rn(x), Tn(x)) = 2n
2

.

This completes the proof. �
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We remark that

res(Rn(x), Tn(x)) = res(Tn(x), Rn(x))

for all n ≥ 1.

Theorem 4.5. Let n be natural number, then

res(Rn(x), Un−1(x)) = (−1)
n(n−1)

2 2n(n−1).

Proof. Recall that
Rn(x) = Un(x) + xUn−1(x),

so that
res(Rn(x), Un−1(x)) = res(xUn−1(x) + Un(x), Un−1(x)).

Now, using property (31), we get

res(Rn(x), Un−1(x)) = res(Un(x), Un−1(x)).

By property (33), we obtain

res(Rn(x), Un−1(x)) = (−1)
n(n−1)

2 2n(n−1).

�

Theorem 4.6. If n is a positive integer, then

res(Rn(x), Un(x)) =

2n(n−1), if n is even,

0, otherwise.

Proof. When n is odd, then Rn(x) and Un(x) are both odd functions with a common factor
x. The two polynomials therefore have a common zero, and by the fundamental theorem of
resultants, we have

res(Rn(x), Un(x)) = 0.

When n is even, we have from equation (13), that:

Rn(x) = 2Un(x)− Tn(x).

So,

res(Rn(x), Un(x)) = res(2Un(x)− Tn(x), Un(x)).

Using equation (31), we arrive at,

res(Rn(x), Un(x)) = res(−Tn(x), Un(x)).

By (29), we have

res(Rn(x), Un(x)) = res(−1, Un(x))res(Tn(x), Un(x)).(40)

Using (30), we obtain

res(−1, Un(x)) = (−1)n(41)

and from equation (38),

res(Tn(x), Un(x)) = 2n(n−1).(42)
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Substituting equations (41) and (42) into (40), we obtain

res(Rn(x), Un(x)) = (−1)n · 2n(n−1).

Since n is even, then (−1)n = 1. We therefore have,

res(Rn(x), Un(x)) = 2n(n−1),

when n is even. �

5. Conclusion and further work

In this paper, we have introduced a new class of Chebyshev-like polynomials which we denoted
byRn(x). We then used their generating functions, obtained in Section 2, to connect them to the
classical Chebyshev polynomials. In Section 3, we showed that the new class of Chebyshev-like
polynomials are orthogonal with respect to weight functions 1√

1−x2 and
√
1− x2. We have also

proved identities for the integrals of Rn(x) polynomials in relation to the classical Chebyshev
polynomials. Lastly, in Section 4, we showed that the zeros of Rn(x) interlace with the zeros
of its derivative, and lie in the interval [−1, 1]. Moreover, we have obtained expressions for the
resultants of Rn(x) polynomials in relation to the classical Chebyshev polynomials. It would
be interesting to investigate discriminants of this class of Chebyshev-like polynomials as well
as generalizations of this new class.
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