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BOOTSTRAP CONFIDENCE INTERVAL FOR FRACTIONAL DIFFUSIONS
AND AMERICAN OPTIONS

JAYA P.N. BISHWAL

Abstract. The paper obtains bootstrap confidence interval for the drift parameter in frac-
tional diffusion processes. It also obtains bootstrap stochastic gradient descent algorithm for
American option. It connects maximum likelihood estimation with pricing American options.

1. Introduction and Preliminaries

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis. Let {WH
t }t≥0 be a persistent (Hurst parameter

H > 0.5) fractional Brownian motion with the filtration {Ft}t≥0. Recall that a fractional
Brownian motion (fBM) has the covariance

C̃H(s, t) =
1

2

[
s2H + t2H − |s− t|2H

]
, s, t > 0. (1.1)

For H > 0.5 the process has long range dependence or long memory. For H 6= 0.5, the process
is neither a Markov process nor a semimartingale. For H = 0.5, the process reduces to standard
Brownian motion.

Recently Ichiba et al. [17, 18] studied generalized fractional Brownian motion (GFBM). A
generalized fractional Brownian motion is a Gaussian self-similar process whose increments are
not necessarily stationary. It appears in the scaling limit of a shot-noise process with a power
law shape function and non-stationary noises with a power law variance function. They studied
semimartingale properties of the mixed process made up of an independent Brownian motion
and a GFBM for the persistent Hurst parameter.

Define

κH := 2HΓ(3/2−H)Γ(H + 1/2), kH(t, s) := κ−1
H (s(t− s)) 1

2
−H

λH :=
2HΓ(3−2H)Γ(H+ 1

2
)

Γ(3/2−H)
, vt ≡ vHt := λ−1

H t2−2H , MH
t :=

∫ t
0
kH(t, s)dWH

s .
(1.2)

Davydov (1970) obtained an AR(1) approximation of the fractional Brownian motion:

yj = ρyj−1 + vj, (1− L)H−1/2vj = εj, ρ = 1, y0 = 0, j = 1, 2. . . . , n (1.3)
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where L is the lag operator, εj ∼ i.i.d. (0, σ2) with E(ε4j) < ∞, whereas {vj} is a stationary
long-memory process generated by

vj = (1− L)H−1/2εj =
∞∑
k=0

Γ(k +H − 1/2)

Γ(H − 1/2)Γ(k + 1)
εj−k. (1.4)

Davydov (1970) proved that

λ
1/2
H

σnH
y[nt] →D WH

t as n→∞. (1.5)

On the stochastic basis the fractional Ornstein-Uhlenbeck process Xt is defined and satisfying
the Itô stochastic differential equation

dXt = θXtdt+ dWH
t , t ≥ 0, X0 = ξ (1.6)

where {WH
t } is a fractional Brownian motion with H > 1/2 with the filtration {Ft}t≥0 and

θ < 0 is the unknown parameter.
We have the following martingale approximation to the nonsemimartingale fBm: From Norros

et al. [21] it is well known thatMH
t is a Gaussian martingale, called the fundamental martingale

whose variance function 〈MH〉t is vHt . The natural filtration of the martingale MH coincides
with the natural filtration of the fBm WH since

WH
t :=

∫ t

0

KH(t, s)dMH
s (1.7)

holds for H ∈ (1/2, 1) where KH(t, s) := H(2H − 1)
∫ t
s
rh−

1
2 (r − s)H− 3

2 , 0 ≤ s ≤ t and for
H = 1/2, the convention K1/2 ≡ 1 is used. Observe that the increments ofMH

t are independent
of WH

t and
Cov(MH

t ,M
H
t ) = λ

−1/2
H (s ∧ t)2−2H , Cov(WH

t ,M
H
t ) = λ

1/2
H , (1.8)

MH
t =D bH

∫ t

0

u1/2−HdWu, bH =
√

2− 2HλH . (1.9)

Define

Gt :=
d

dvt

∫ t

0

kH(t, s)Xsds. (1.10)

It is easy to see that

Gt =
λH

2(2− 2H)

{
t2H−1Zt +

∫ t

0

r2H−1dZs

}
. (1.11)

Define the process Z = (Zt, t ∈ [0, T ]) by Zt :=
∫ t

0
kH(t, s)dXs. The process X admits the

representation

Xt =

∫ t

0

KH(t, s)dZs. (1.12)

The natural filtration generated by the fundamental semimartingale process

Zt = θ

∫ t

0

Gsdvs +MH
t (1.13)

and the process X coincide, see Kleptsyna and Le Breton [19]. The available information for
X and Z are strictly equivalent.

Let the realization {Xt, 0 ≤ t ≤ T} or equivalently {Zt, 0 ≤ t ≤ T} be denoted by ZT
0 . Let

P T
θ be the measure generated on the space (CT , BT ) of continuous functions on [0, T ] with the

associated Borel σ-algebra BT generated under the supremum norm by the process XT
0 and
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P T
0 be the standard Wiener measure. Applying fractional Girsanov formula, when θ is the true

value of the parameter, P T
θ is absolutely continuous with respect to P T

0 and the Radon-Nikodym
derivative (likelihood) of P T

θ with respect to P T
0 based on ZT

0 is given by

LT (θ) :=
dP T

θ

dP T
0

(ZT
0 ) = exp

{
θ

∫ T

0

GtdZt −
θ2

2

∫ T

0

G2
tdvt

}
. (1.14)

Consider the score function, the derivative of the log-likelihood function, which is given by

lT (θ) :=

∫ T

0

GtdZt − θ
∫ T

0

G2
tdvt. (1.15)

2. Drift Estimation

Now consider the fractional SDE

dXt = f(θ,Xt, t)dt+ dWH
t , t ∈ [0, T ] (2.1)

where WH is the fractional Brownian motion with Hurst parameter H > 0.5.

Then by Proposition 5.7 of Buchmann and Kluppelberg [8], we have Xt = g(Yt) where

dYt = θYtdt+ dWH
t , Y0 = g−1(X0), t ∈ [0, T ] (2.2)

and g is the state space transform (SST).
Let Z̃ is the fundamental semimartingale associated with the process X. Let the collec-

tion of continuous time martingales {G(θ, t),Gt, t ≥ 0}θ∈R where for each (θ, t), G(θ, t) =∫ t
0
f(θ, Z̃s, s)dWs is an Itô integral whose corresponding increasing process is 〈G(θ, t)〉t =∫ t

0
f 2(θ, Z̃s, s)ds.

Recall that by Girsanov theorem, the likelihood function of θ based on the observations
{Xs, 0 ≤ s ≤ t} is given by

Lt(θ) = exp

{∫ t

0

f(θ,Xs, s)dXs −H(2H − 1)

∫ t

0

f 2(θ,Xs, s)

(∫ s

0

(s− r)2H−2dr

)
ds

}
. (2.3)

Let
lt(θ) = logLt(θ). (2.4)

The maximum likelihood estimator (MLE) is defined as

θt := arg sup
θ∈R

lt(θ), i.e., lt(θt) = sup
θ∈R

lt(θ).

Let the pivot be defined by

It =

∫ t

0

f 2
θ (θ0, Xs, s)ds. (2.5)

Strong consistency and asymptotic normality of the MLE in the standard Brownian diffusion
was studied in Levanony et al. [20]. See also Bishwal [4, 5].

Due to the fundamental semimartingale representation Z̃ of fractional diffusions along with
state-space transform, main tools are Taylor expansion of the derivative of the log-likelihood
Ut(θ) along with martingale SLLN and martingale CLT and delta method (see Bishwal [6] for
details), we obtain the strong consistency and asymptotic normality of the MLE for the frac-
tional diffusion:

https://doi.org/10.28919/ejma.2025.5.5
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Theorem 2.1

a) θt → θ0 a.s. as t→∞,

b) I
1/2
t (θt − θ0)→D N (0, 1) as t→∞.

Redefine the MLE as

θt = lim inf
n→∞

arg max
|θ|≤n

lt(θ), i.e., lt(θt) = sup
θ∈R

lt(θ).

An Ft-adapted MLE exists. We derive the evolution equation for the trajectories of the MLE
using the fractional Itô formula. Assume that our candidate for the MLE is a continuous
Dirichlet process of the form

dθt = at dt+ bt dXt, t ≥ t0. (2.6)

The first derivative (with respect to θ) of the log-likelihood denoted as Ut(θ) is a continuous
Dirichlet process. Also Ut(·) ∈ C2 for all t ≥ 0 a.s. and together with its derivatives is jointly
(θ, t) continuous. Hence by fractional Itô formula

dUt(θt) = fθ(θt, Xt, t)[dXt − f(θt, Xt, t)dt] +Rt(θt)dθt
+H(2H − 1)Qt(θt)b

2
tdt+ fθθ(θt, Xt, t)btdt, t ≥ t0

(2.7)

where Rt(θ) and Qt(θ) are the second derivative and the third derivative of the log-likelihood
w.r.t. θ respectively. Assuming that Rt(θt) < 0 for all t ≥ t0, the MLE which solves Ut(θ) =

0 ∀t > 0, is a solution of the equation

dθt = −R−1
t (θt){fθ(θt, Xt, t)[dXt − f(θt, Xt, t)dt]

+[H(2H − 1)Qt(θt)b
2
t + fθθ(θt, Xt, t)bt]dt}, t ≥ t0

(2.8)

which after equating with (2.6) yields the MLE equation

dθt = −R−1
t (θt){fθ(θt, Xt, t)[dXt − f(θt, Xt, t)dt]

+[H(2H − 1)Qt(θt)R
−2
t (θt)f

2
θ (θt, Xt, t)

−R−1
t (θt)fθ(θt, Xt, t)fθθ(θt, Xt, t)]dt}

(2.9)

with initial conditions: |θt0| <∞, Ut(θt0) = 0, Rt(θt0) < 0.

Newton-type Algorithm: Newton type algorithms are approximation of the MLE evolution
equation (2.9). However, (2.9) is not suitable for recursive estimation, it is valid for large t,
and moreover, it requires the knowledge of exact MLE at the initial time.

Newton type algorithms are insensitive to initial conditions and implementable for all t0 > 0.
The algorithm makes the estimator θt follow the gradient when U 6= 0 until it enters the
neighborhood of a local maximum and then keeps θt in this neighborhood as long as possible,
i.e., as long as singularity does not arise (where afterwards the process repeats itself). This
switching policy is needed in order to maintain the necessary flexibility which prevents the
estimator for being ’trapped’ in a no solution situation (i.e, when R = 0 in (2.9)).

Fix α > 0 and some small ε, δ, define the set

A(t) := {θ : |Ut(θ)| ≤ δ, Rt(θ) ≤ −ε}. (2.10)

https://doi.org/10.28919/ejma.2025.5.5
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A simplified version of the Newton Algorithm is

dθt = −R−1
t (θt){fθ(θt, Xt, t)[dXt − f(θt, Xt, t)dt]

+[H(2H − 1)Qt(θt)R
−2
t (θt)f

2
θ (θt, Xt, t)

−R−1
t (θt)fθ(θt, Xt, t)fθθ(θt, Xt, t)

+α Ut(θt)]dt}I{θt0∈A(t)} + t−νUt(θt)dtI{θt0 /∈A(t)}

(2.11)

with initial condition θt0 , t0 > 0.

When θt ∈ A(t), the algorithm follows the likelihood equation (with a decay term), where
as when θt ∈ Ac(t), it follows the gradient towards a local maximum. The main problem with
(2.10) is the fact that this scheme could result in infinitely many switchings in the bounded
time intervals (or even uncountably many switchings). This prevents (2.10) from being an
implementable algorithm.

Choose continuous 0 < δt ↓ 0 and 0 < εt ↓ 0 where δt satisfies∫ ∞
t0

δtdt =∞, (s/t)ν < δt/δs ∀t0 ≤ s < t. (2.12)

For example δ = t−β, 0 < β < 1 ∧ ν will do.
Redefine the set A(t),

A(t) := {θ : |Ut(θ)| ≤ δtt
ν , Rt(θ) ≤ −εt}. (2.13)

Let A(t) := {φt0 ∈ C[0, t] : ∃ s ≤ t such that Rs(φs) ≤ −2εs and φr ∈ A(r)∀r ∈ [s, t]}}. (2.14)

A(t) sets for R the ’entrance level’ −2εt into A(t) and ’exit level’ −εt (into and from A(t)

respectively).
The changes in (2.12) are in the definition of good event and the normalizing of the second

term. The proposed algorithm is given by

dθt = −R−1
t (θt){fθ(θt, Xt, t)[dXt − f(θt, Xt, t)dt]

+[H(2H − 1)Qt(θt)R
−2
t (θt)f

2
θ (θt, Xt, t)

−R−1
t (θt)fθ(θt, Xt, t)fθθ(θt, Xt, t) +α Ut(θt)]dt} I{θt0∈A(t)}

+t−νUt(θt)dt I{θt0 /∈A(t)}

(2.15)

which holds in [t0, τ) (where τ is the explosion time), with any initial condition θt0 , t0 > 0

(where θt = θt0∀t ∈ [0, t0]).

3. Bootstrap Confidence Interval

The bootstrap belongs to the family of modern statistical techniques which exploit the Monte
Carlo method in order to obtain precise estimators and powerful statistical tests for complex
models. The EDF of Xi given by Pn = 1

n

∑n
i=1 δXi converges to the CDF P as n → ∞.

Sequential Importance Sampling with Resampling (SISR) uses bootstrap. The resampling idea
is to get rid in a principled way particles with small weight and multiply the particles with
large weight.

Bootstrap confidence intervals was studied in Hall [15, 16] and DiCiccio and Efron [12].
Corradi and Swanson [9] studied bootstrap specification test for diffusion processes. Confidence
interval estimation for SGDCT estimators has remained largely unexplored.

https://doi.org/10.28919/ejma.2025.5.5
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We have the system of fractional SDEs given by

dXt = f(θt, Xt, t)dt+ dWH
t , (3.1)

dθt = −R−1
t (θt){fθ(θt, Xt, t)[dXt − f(θt, Xt, t)dt]

+[H(2H − 1)Qt(θt)R
−2
t (θt)f

2
θ (θt, Xt, t)

−R−1
t (θt)fθ(θt, Xt, t)fθθ(θt, Xt, t) +α Ut(θt)]dt} I{θt0∈A(t)}

+t−νUt(θt)dt I{θt0 /∈A(t)}.

(3.2)

Continuous Observation

We need the following proposition from Pardoux and Veretennikov [22] in the sequel.

Proposition 3.1 Let Lx be the infinitesimal generator of the X process. Let F (x, θ) ∈
Cα,2(X ,Rn) which satisfies

∫
X F (x, θ)π(dx) = 0. and for some positive constants M and q,

and

|F (x, θ)|+
∣∣∣∣ ∂∂θF (x, θ)

∣∣∣∣+

∣∣∣∣ ∂2

∂θ2
F (x, θ)

∣∣∣∣ ≤M(1 + |x|q).

Then the Poisson equation Lxu(x, θ) = F (x, θ),
∫
X u(x, θ)π(dx) = 0 has a unique solution that

satisfies u(x, ·) ∈ C2 for every x ∈ X , ∂2
θu ∈ C(X × Rn) and there exist positive constants K

and p such that

|u(x, θ)|+
∣∣∣∣ ∂∂θu(x, θ)

∣∣∣∣+

∣∣∣∣ ∂2

∂θ2
u(x, θ)

∣∣∣∣ ≤ K(1 + |x|p).

Let the parametric model be given by

dXt = θb(Xt)dt+ σ(Xt)dW
H
t , t ≥ 0. (3.3)

The following lemma follows from Theorem 7 in Yoshida [27].

Lemma 3.1 Let Mt := 1√
tI(θ0)

∫ t
0
f(θ0, Xs)dWs. Then

sup
x∈R
|Pθ0 {Mt ≤ x} − Φ(x)| ≤ Ct−1/2. (3.4)

MLE is given by

θt =

∫ t
0

b(Xs)
σ2(Xs)

dXs∫ t
0
b2(Xs)
σ2(Xs)

ds
. (3.5)

The empirical model is given by

dYt = θtb(Yt)dt+ σ(Yt)dB
H
t (3.6)

where BH is a fractional Brownian motion independent of WH and θt satisfies the SDE

dθt = −R−1
t (θt){gθ(θt, Yt, t)[dYt − g(θt, Yt)dt]

+[H(2H − 1)Qt(θt)R
−2
t (θt)g

2
θ(θt, Yt)

−R−1
t (θt)gθ(θt, Yt)gθθ(θt, Yt) +α Ut(θt)]dt} I{θt0∈A(t)}

+t−νUt(θt)dt I{θt0 /∈A(t)}

(3.7)

where g(θ, y) := θy.

https://doi.org/10.28919/ejma.2025.5.5
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The Bootstrap MLE is given by

θ̂t =

∫ T
0

b(Ys)
σ2(Ys)

dYs∫ T
0

b2(Ys)
σ2(Ys)

ds
(3.8)

and satisfies the SDE

dθ̂t = −R−1
t (θ̂t){gθ(θ̂t, Yt, t)[dYt − g(θt, Yt)dt]

+[H(2H − 1)Qt(θ̂t)R
−2
t (θ̂t)g

2
θ(θ̂t, Yt)

−R−1
t (θ̂t)gθ(θ̂t, Yt)gθθ(θ̂t, Yt) +α Ut(θt)]dt} I{θ̂t0∈A(t)}

+t−νUt(θt)dt I{θ̂t0 /∈A(t)}

(3.9)

where g(θ, y) := θy.
Let

St :=

√
µ

(
b2

σ2

)
t (θt − θ0) .

If the coefficients of the polynomial h were explicitly known the coverage level of the confi-
dence interval could be easily corrected using the fact from Yoshida [27] that

P

(
St ≤ y − 1√

t
h(y)

)
= Φ(y) + o

(
1√
t

)
.

uniformly in y ∈ I, an interval in R.
The confidence interval is given by

It(α) :=

θt − qα√
µ
(
b2

σ2

)
t
, ∞

 .

where qα is the α-th quantile of the normal distribution. We have

P (θ ∈ It(α))− α = −hθ(qα)√
t

+ o

(
1√
t

)
where

hθ(qα) :=
ϕ(qα)√
µ
(
b2

σ2

)
µ

(
bF ′′

b2

σ2

)
h2(qα)

2µ
(
b2

σ2

)
+

ϕ(qα)√
µ
(
b2

σ2

)
µ

(
bF ′′

b2

σ2

)
µ
(
b2

σ2

)
 ,

µ

(
b2

σ2

)
:=

∫ ∞
0

b2(x)

σ2(x)
dµ(x), (3.10)

F is defined in Proposition 3.1, µ is the invariant measure of the diffusion and h2 is second
order Hermite polynomial, i.e., h2(y) = y2 − 1.

The α-th quantile of St is given by ωα(t) := infy∈R

{
P

(√
µ
(
b2

σ2

)
t (θt − θ0) ≤ y

)
≥ α

}
.

The empirical estimate of α-th quantile is given by

ω̃α(t) := infy∈R

{
P

(√
µ
(
b2

σ2

)
t
(
θ̂t − θt

)
≤ y

)
≥ α

}
.

The quantile ω̃α(t) can be estimated by the Monte Carlo method.
The bootstrap confidence interval is given by

Iboott (α) :=

θt − ω̃α(t)√
µ
(
b2

σ2

)
t
, ∞

 . (3.11)

https://doi.org/10.28919/ejma.2025.5.5
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Conditional on θ̂t the quantile ω̃ can be expanded as

ω̃α(t) = qα +
1√
t
hθ̂t(qα) + o

(
1√
t

)
, (3.12)

ωα(t) = qα +
1√
t
hθ(qα) + o

(
1√
t

)
.

Since
hθ̂t(qα)− hθ(qα)→ 0 a.s. as t→∞,

we have
ω̃α(t) = ωα(t) + o

(
1√
t

)
.

It only remains to proceed to a Taylor expansion in the first term of the Edgeworth devel-
opment of St in Yoshida (1997) to ensure that

P
(
θ ∈ Iboott (α)

)
− α = o

(
1√
t

)
. (3.13)

We therefore corrected the confidence interval coverage error.

Discretization

Based on discrete observations Xti , 0 ≤ i ≤ n, the parametric Euler model is given by

Xti −Xti−1
= θb(Xti−1

)(ti − ti−1) + σ(Xti−1
)(WH

ti
−WH

ti−1
). (3.14)

The AMLE is given by

θn,T :=

∑n
i=1

b(Xti−1 )

σ2(Xti−1 )
(Xti −Xti−1

)∑n
i=1

b2(Xti−1 )

σ2(Xti−1 )
(ti − ti−1)

. (3.15)

Empirical Euler model is given by

Yti − Yti−1
= θn,T b(Yti−1

)(ti − ti−1) + σ(Yti−1
)(BH

ti
−BH

ti−1
). (3.16)

where BH is a fractional Brownian motion independent of WH .
The Bootstrap AMLE is given by

θ̂n,T :=

∑n
i=1

b(Yti−1 )

σ2(Yti−1 )
(Yti − Yti−1

)∑n
i=1

b2(Yti−1 )

σ2(Yti−1 )
(ti − ti−1)

. (3.17)

The α-th quantile is given by

ω̃α(n, T ) := inf
y∈R

{
P

(√
µ

(
b2

σ2

)
T
(
θ̂n,T − θn,T

)
≤ y

)
≥ α

}
. (3.18)

The bootstrap confidence interval is given by

Ibootn,T (α) :=

θn,T − ω̃α(n, T )√
µ
(
b2

σ2

)
T
, ∞

 . (3.19)

Conditional on θn,T , the quantile ω̃ can be expanded as

ω̃α(n, T ) = qα +
1√
T
hθ̂n,T (qα) + o

(
1√
T

∨ T√
n

)
. (3.20)

https://doi.org/10.28919/ejma.2025.5.5
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P (θ ∈ Ibootn,T (α))− α = o

(
1√
T

∨ T√
n

)
. (3.21)

Edgeworth Expansion for MCE

Podloskij, Veliyev and Yoshida [23] studied Edgeworth expansion for Euler approximation of
continuous diffusion processes. Consider the Ornstein-Uhlenbeck process

dXt = θXtdt+ dWt, t ≥ 0, θ < 0. (3.22)

It is well known that the minimum contrast estimator (MCE) θ̂T is consistent as T →∞:

P-limT→∞θ̂T = P-limT→∞
−T

2
∫ T

0
X2
t dt

= θ since E(
∫ T

0
X2
t dt) = T

2θ
, see Bishwal (2008).

We have the following Edgeworth expansion:

Theorem 3.2

Pν [
√
T (θ̂T − θ)/σ ≤ x] = Φ(x) + T−1/2φ(x)(a1 + a2(1− x2)) +O(T−1)

uniformly in x ∈ R where

σ2 =
E(F̄0)2

E(L0)
, F̄0 = F0 − θL0, α = E(L0),

a1 = Eµ(F̄0)− Eν(F̄0), a2 =
κ− 3ρσ2

6ασ3
, κ = Ex(F̄

3
0 ), ρ = Ex(F̄0L0).

Regenerative Method

The regenerative method consists, in the case when the chain possesses an accessible atom
(regeneration point), in dividing the trajectory of the Markov process into i.i.d. blocks of
observations (namely, regenerative cycles) corresponding to the successive visits to the atom,
see Datta and McCormick [11].

A cadlag process X is called a regenerative process if there exists an increasing sequence of
finite random times {τj}j≥1 such that

{Xt}0≤t≤τ1 , {Xt}τ1≤t≤τ2 , . . . , {Xt}τj≤t≤τj+1
, . . .

are independent and
{Xt}τ1≤t≤τ2 , . . . , {Xt}τj≤t≤τj+1

, . . .

are identically distributed. The random times τj is called a j-th regenerative epoch.
Let E be the state space of the regenerative strong Markov process X. Let Ex stand for Eδx

for x ∈ E. Let

τj+1 = inf{t > τj : Xt = x, there exists s ∈ (τj, t) such that Xs ∈ x̂}

where τ0 = 0 and x, x̂ are a point and a closed set of E respectively such that x /∈ x̂. In
particular, {τj} is a sequence of stopping times with respect to the canonical filtration of X
and Xτj = x for all j ≥ 1. Here x̂ was introduced to ensure that τj+1 > τj a.s.
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The asymptotic variance σ is practically unknown in the nonparametric context. Hence we
have to construct an estimator when constructing confidence interval for instance. We propose
the following estimator.

Let Lj := τj+1 − τj, j ≥ 1, MT := max{j : τj+1 ≤ T}. Observe that
∑MT

j=1 Lj = τN − τ1.

Define the estimators of θ and σ as

θ̌T :=
−
∑MT

j=1 Lj

2
∑MT

j=1 Fj
, σ̂2

T :=

∑MT

j=1 |Lj − θ̌TFj|2

2
∑MT

j=1 Fj
(3.23)

where Fj :=
∫ τj+1

τj
X2
t dt, j ≥ 0 is a sequence of i.i.d. random variables.

The sequence Lj := τj+1 − τj, j ≥ 1 is a sequence of i.i.d. random variables and τj → ∞
as j → ∞. It holds that τj → ∞ a.s. as j → ∞. The primary use of regenerative method
appears in the proof of consistency of the MCE as follows. By the law of large numbers for
i.i.d. sequences,

P-limT→∞
−T

2
∫ T

0
X2
t dt

= P-limN→∞
τ1 − τN

2
∑N−1

j=0

∫ τj+1

τj
X2
t dt

= θ (3.24)

since θ = E(L0)/2E(F0). Thus P − lim θ̌T = θ and P − lim σ̂2
T = σ2 as T →∞.

This section is inspired by Bertail and Clemencon [1–3] and Fukasawa [13,14]. The studentized
statistic admits the following Edgeworth expansion.

Theorem 3.3

Pµ[
√
T (θ̌T − θ)/σ̂T ≤ x] = Φ(x) + T−1/2φ(x)(a1 + a2(1− x2)) +O(T−1)

uniformly in x ∈ R where

σ2 = Ex(F̄
2
0 )/α, F̄0 = F0 − θL0, α = Ex(L0), a1 = Eµ(F̄0)− Eν(F̄0), a2 =

κ− 3ρσ2

6ασ3
,

κ = Ex(F̄
3
0 ), ρ = Ex(F̄0L0).

Since X is stationary, µ = ν. Hence a1 = 0.

Theorem 3.4

Pµ[
√
T (θ̌T − θ)/σ̂T ≤ x] = Φ(x) + T−1/2φ(x)(â2(2x2 + 1)) +OP (T−1)

uniformly in x ∈ R where â2 is an estimator of a2 with
√
T (â2 − a2) = O(1). We can use for

instance

σ̂2 =
1

MT

MT∑
j=1

F̌ 2
j

α̂
, F̌j = Fj − θ̌Lj, α̂ =

1

MT

MT∑
j=1

Lj,

â2 =
κ̂− 3ρ̂σ̂2

6α̂σ̂3
, κ̂ =

1

MT

MT∑
j=1

F̌ 3
j , ρ̂ =

1

MT

MT∑
j=1

F̌jLj, F̌j = Fj − θ̌TLj.
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In fact, it is easy to show that Pµ[|T − αMT | ≥ δT ] = O(T−1) for δ ∈ (0, 1/2). Using
Kolmogorov’s inequality, we have

sup
T>0

Pµ

[√
T

MT

∣∣∣∣∣
MT∑
j=1

{(Fj, Lj)n − Eµ(Fj, Lj)
n}

∣∣∣∣∣ > K

]
→ 0

as K → ∞. Hence the above expansion formula is practically of use to obtain second order
correct confidence intervals for instance by means of Cornish-Fisher expansion. For the same
purpose, it is then natural to expect that there corresponds a bootstrap method.

Let FT = {(Fj, Lj)}, j = 1, 2, . . . ,MT be the set of the observed regenerative blocks. To
bootstrap the sampling distribution of θ̌T , we resample the cycles {(Fj, Lj)}, j = 1, 2, . . . ,MT

following the sample random sampling with replacement. Let (F ∗j , L
∗
j), j = 1, 2, . . . ,MT denote

the selected cycles.
Let (F ∗j , L

∗
j), j = 1, 2, . . . ,MT be an i.i.d. sequence and each (F ∗j , L

∗
j) be uniformly distributed

on FT . Here MT and FT are fixed conditionally on the observation {Xt, 0 ≤ t ≤ T}. Put∑MT

j=1 L
∗
j = T ∗.

Define the bootstrap statistics:

θ̌∗T =
−
∑MT

j=1 L
∗
j

2
∑MT

j=1 F
∗
j

=
−T ∗

2
∑MT

j=1 F
∗
j

, σ̂∗2T =

∑MT

j=1 |L∗j − θ̌∗TF ∗j |2

2
∑MT

j=1 F
∗
j

. (3.25)

Theorem 3.5

P ∗µ [
√
T ∗(θ̌∗T − θ̌T )/σ̂∗T ≤ x] = Φ(x) + T−1/2φ(x)(̂b+ â2(2x2 + 1)) +OP (T−1)

uniformly in x ∈ R where P ∗µ is the conditional bootstrap probability given {Xt, 0 ≤ t ≤ T} and
b̂ = ρ̂/(2α̂σ̂). In particular,

Pµ[
√
T (θ̌T − θ)/σ̂T ≤ x] = P ∗µ [

√
T ∗(θ̌∗T − θ̌T )/σ̂∗T − b̂T−1/2 ≤ x] +OP (T−1)

uniformly in x ∈ R.

The approximate minimum contrast estimator (AMCE) which is an Euler discretization of
the MCE is defined as

θ̂n,T =
−T

2
∑n

i=1 X
2
ti−1

(ti − ti−1)
. (3.26)

We define another symmetric AMCE based on trapezoidal rule as

θ̃n,T :=
−T∑n

i=1(X2
ti−1

+X2
ti)(ti − ti−1)

. (3.27)

Define the symmetric bootstrap statistic:

θ̃∗T :=
−
∑MT

j=1 L
∗
j∑MT

j=1(F ∗j + F ∗j+1)
=

−T ∗∑MT

j=1(F ∗j + F ∗j+1)
. (3.28)

We have the following Edgeworth expansion of the AMCEs:

Theorem 3.6 As T →∞, n→∞, T/
√
n→ 0,

Pν [
√
T (θ̂n,T−θ̂T )/σ̂ ≤ x] = Φ(x)+T−1/2φ(x)(â1+â2(1−x2))+O((T−1 log T )∨((T/

√
n)8(log T )−2))

uniformly in x ∈ R where â1 and â2 are estimators of a1 and a2 in Theorem 3.3.
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Theorem 3.7 As T →∞, n→∞, T/n2/3 → 0,

Pν [
√
T (θ̃n,T − θ̂T )/σ̂ ≤ x] = Φ(x) + T−1/2φ(x)(â1 + â2(1− x2)) +O(T−1 ∨ (T 2/n4/3))

uniformly in x ∈ R where â1 and â2 are estimators of a1 and a2 in Theorem 3.3.

Theorem 3.8

P ∗µ [
√
T ∗(θ̃∗T − θ̌T )/σ̂∗T ≤ x] = Φ(x) + T−1/2φ(x)(̂b+ â2(2x2 + 1)) +OP (T−1)

uniformly in x ∈ R where P ∗µ is the conditional probability given {Xt, 0 ≤ t ≤ T} and b̂ =

ρ̂/(2α̂σ̂). In particular,

Pµ[
√
T (θ̌T − θ)/σ̂T ≤ x] = P ∗µ [

√
T ∗(θ̃∗T − θ̌T )/σ̂∗T − b̂T−1/2 ≤ x] +OP (T−1)

uniformly in x ∈ R.

4. Bootstrap SGDCT Algorithm

Consider the SDE
dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ 0. (4.1)

Sirignano and Spiliopoulos [25] studied a deep learning algorithm for solving PDE. Sirignano
and Spiliopoulos [24,26] studied stochastic gradient descent in continuous time (SGDCT). First,
we recall the Q-learning algorithm: The Q-learning algorithm uses stochastic gradient descent
to minimize an approximation to the discrete time Hamilton-Jacobi-Bellman (HJB) equation.
Consider the Q-learning algorithm to estimate the value function

V (x) := E

[∫ ∞
0

e−γtr(Xt)dt
∣∣ X0 = x

]
, Xt = x+Wt (4.2)

where γ > 0 is a discount factor and r(x) is a reward function. The function Q(x, θ) is
an approximation for the value function V (x). The traditional approach is to discretize the
dynamics of V (x) and apply a stochastic gradient descent update to the objective function:

E
[(
r(Xt)∆ + e−γ∆E[Q(Xt+∆; θ)|Xt]−Q(Xt; θ)

)2
]
. (4.3)

The result is the stochastic gradient descent algorithm:

θt+∆ = θt −
αt
∆

(
e−γ∆E[Qθ(Xt+∆; θt)|Xt]−Qθ(Xt; θt))

)
×
(
r(Xt)∆ + e−γ∆E[Q(Xt+∆; θt)|Xt]−Q(Xt; θt)

)
. (4.4)

The learning rate is ∆−1. The Q-learning algorithm has a major computational issue. The
expectation E[Qθ(Xt+∆; θt)|Xt] is challenging to calculate if the process Xt is high dimensional.
To circumvent this situation, Q-learning algorithm ignores the inner expectation leading to

θt+∆ = θt −
αt
∆

(e−γ∆Qθ(Xt+∆; θt)−Qθ(Xt; θt)(r(Xt)∆ + e−γ∆Q(Xt+∆; θt)−Q(Xt; θt)). (4.5)

Although computationally efficient, the Q-learning algorithm is biased. The SGDCT algo-
rithm can be directly derived by letting ∆→ 0 and using Itô formula:

dθt = −αt
(

1

2
Qθxx(Xt; θt)− γQθ(Xt; θt)

)(
r(Xt) +

1

2
Qxx(Xt; θt)− γQ(Xt; θt)

)
dt. (4.6)
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Furthermore, when ∆→ 0, the Q-learning algorithm blows up.

Bootstrap SGDCT Algorithm for American Option

Let Xt ∈ Rd, d ≥ 1 be the prices of d stocks. The maturity time is T and the payoff function
is g(x) : Rd → R. The stock price dynamics and the value functions are given by

dX i
t = θb(X i

t)dt+ σ(X i
t)dW

i
t , i = 1, 2, . . . , d (4.7)

Vt,x := sup
τ≥t

E[e−r(τ∧T )g(Xτ∧T )|Xt = x] (4.8)

where Wt ∈ Rd is a Brownian motion. The distribution of Wt is specified by Var(W i
t ) = t, i =

1, 2, . . . , d and Corr(W i
t ,W

j
t ) = ρi,jdt for i 6= j. The price of the American option is V0,x.

SGDCT for American option is given by

θn+1
t∧T = θn0 −

∫ τ∧T

0

αn+1
t

(
∂

∂t
Qθ(t,Xt; θ

n+1
t ) + LxQθ(t,Xt; θ

n+1
t )− rQθ(t,Xt; θ

n+1
t )

)

×
(
∂

∂t
Q(t,Xt; θ

n+1
t ) + LxQ(t,Xt; θ

n+1
t )− rQ(t,Xt; θ

n+1
t )

)
dt

+αn+1
τ∧T Qθ

(
τ ∧ T,Xτ∧T ; θn+1

τ∧T ) (g(Xτ∧T )−Q(τ ∧ T,Xτ∧T ; θn+1
τ∧T )

)
, (4.9)

τ := inf{t ≥ 0 : Q(t,Xt; θ
n+1
t ) < g(Xt)}, X0 ∼ ν(dx). (4.10)

The function Q(x, θ) is an approximation of the value function. The parameter θ must be
estimated. Here Lx is the infinitesimal generator of the X process. The algorithm is run for
many iterations n = 0, 1, 2, . . . until convergence.

The empirical model is given by

dY i
t = θtb(Y

i
t )dt+ σ(Y i

t )dW i
t , i = 1, 2, . . . , d (4.11)

V̂t,x := sup
τ≥t

E[e−r(τ̂∧T )g(Yτ∧T )|Yt = y]. (4.12)

Let θ̂ be the bootstrap MLE of θ as defined in (3.8)-(3.9). The bootstrap SGDCT for American
option is given by

θ̂n+1
t∧T = θ̂n0 −

∫ τ∧T

0

αn+1
t

(
∂

∂t
Qθ(t, Yt; θ̂

n+1
t ) + LxQθ(t,Xt; θ̂

n+1
t )− rQθ(t, Yt; θ̂

n+1
t )

)

×
(
∂

∂t
Q(t, Yt; θ̂

n+1
t ) + LxQ(t, Yt; θ̂

n+1
t )− rQ(t, Yt; θ̂

n+1
t )

)
dt

+αn+1
τ∧T Qθ

(
τ ∧ T, Yτ∧T ; θ̂n+1

τ∧T ) (g(Yτ∧T )−Q(τ ∧ T, Yτ∧T ; θ̂n+1
τ∧T )

)
, (4.13)

τ̂ := inf{t ≥ 0 : Q(t, Yt; θ̂
n+1
t ) < g(Yt)}, Y0 ∼ ν̂(dy) (4.14)

where ν̂ is the empirical distribution.
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