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BANACH ALGEBRAS OF MEASURES WHICH HAVE DENSITY ON THE
NONNEGATIVE HALFLINE

M.S. SGIBNEV

Abstract. Convolution Banach algebras of measures are considered whose elements have
absolutely continuous restrictions to the nonnegative halfline. We investigate various types of
asymptotic behavior of the densities at infinity.

1. Introduction

Banach algebras of functions on the real line R have first been considered in [1, 2] and,
independently, in another setting, in [3]. Later on, the subject has also been raised in [4] where
some previous results have been generalized. This paper is a further development of [4]. Here
we discuss convolution Banach algebras of measures such that their elements have absolutely
continuous restrictions to the nonnegative halfline and their densities possess similar asymptotic
behavior at infinity.

Denote by R+ the set of all nonnegative numbers and by R− := R\R+ the set of all negative
numbers. The subsequent plan of the paper is as follows. Section ?? contains a formula for the
absolutely continuous restriction to R+ of the convolution µ∗ν of two measures with absolutely
continuous restrictions to R+. Besides, there is a brief description of the underlying convolution
Banach algebra S(ϕ) of measures which are finite with a submultiplicative weight function ϕ(x);
see Definition 1. In Section 3, we consider the Banach subalgebra Z(ϕ) of S(ϕ) whose elements
have have absolutely continuous restrictions to R+. Then we introduce specific convolution
Banach subalgebras of Z(ϕ) with various types of common asymptotic behavior at infinity of
the densities of their elements. Section 4 is devoted to the study of maximal ideals in Banach
algebras under investigation. Section 5 deals with values of analytic functions at elements of
our Banach algebras. Finally, Section 6 gives a simple probabilistic application of the theory.

In contrast to the previous works [1]– [4], the use of these new Banach algebras in applications
allows us to obtains asymptotic results for functions in a more general setting, that is, without
requiring that underlying measures be absolutely continuous on the whole line; see Remark 3
in Section 6.
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2. Preliminaries

Let ν and κ be finite measures on the σ-algebra B of Borel sets in R. Their convolution is
the measure

ν ∗ κ(A) :=

∫∫
{x+y∈A}

ν(dx)κ(dy) =

∫
R
ν(A− x)κ(dx), A ∈ B;

here A− x := {y ∈ R : x + y ∈ A}. If f(x) and g(x) are appropriate functions on R+, denote
their convolution as

f ∗ g(x) =

∫ x

0

f(x− y)g(y) dy, x ∈ R+.

Let µ and ν be complex-valued measures on B such that their restrictions µ|R+ and ν|R+ to R+

are absolutely continuous with respect to Lebesgue measure. Notice that µ|R+(A) := µ(A∩R+),
A ∈ B. Suppose that convolution µ ∗ ν makes sense. Then the restriction µ ∗ ν|R+ is also
absolutely continuous. To see this, denote µ± := µ|R± . We have

µ ∗ ν = µ− ∗ ν− + µ− ∗ ν+ + µ+ ∗ ν− + µ+ ∗ ν+.

The measure µ−∗ν− is concentrated on R−, whereas the remaining summands on the right-hand
side are absolutely continuous. It follows that the measure

(1) (µ ∗ ν)|R+ = (µ− ∗ ν+)|R+ + (µ+ ∗ ν−)|R+ + µ+ ∗ ν+

is obviously absolutely continuous.
For c ∈ C, we assume that c/∞ is equal to zero. The relation a(x) ∼ cb(x) as x→∞ means

that a(x)/b(x)→ c as x→∞; if c = 0, then a(x) = o[b(x)].

Definition 1. A positive function ϕ(x), x ∈ R(R+), is called submultiplicative if it is finite,
Borel measurable and satisfies the conditions: ϕ(0) = 1, ϕ(x+ y) ≤ ϕ(x)ϕ(y), x, y ∈ R(R+).

The following properties are valid for submultiplicative functions defined on the whole line [5,
Theorem 7.6.2]:

−∞ < r−(ϕ) := lim
x→−∞

logϕ(x)

x
= sup

x<0

logϕ(x)

x

≤ inf
x>0

logϕ(x)

x
= lim

x→∞

logϕ(x)

x
=: r+(ϕ) <∞.(2)

Here are some examples of submultiplicative function on R+: (i) ϕ(x) = (x + 1)r, r > 0; (ii)
ϕ(x) = exp(cxβ), where c > 0 and 0 < β < 1; (iii) ϕ(x) = exp(γx), where γ ∈ R. In (i) and
(ii), r+(ϕ) = 0, while in (iii), r+(ϕ) = γ. The product of a finite number of submultiplicative
function is again a submultiplicative function.

Consider the collection S(ϕ) of all complex-valued measures κ on B such that

‖κ‖ϕ :=

∫
R
ϕ(x) |κ|(dx) <∞;

here |κ| stands for the total variation of κ. The collection S(ϕ) is a Banach algebra with norm
‖ · ‖ϕ by the usual operations of addition and scalar multiplication of measures, the product of
two elements ν and κ of S(ϕ) is defined as their convolution ν ∗ κ [5, Section 4.16]. The unit
element of S(ϕ) is the measure δ0 of unit mass concentrated at zero. For arbitrary complex
measure ν, define its Laplace transform as ν̂(s) =

∫
R e

sx ν(dx) for those values of s ∈ C for
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which the integral absolutely converges with respect to the total variation |ν| of the measure ν.
It follows from (2) that the Laplace transform of any ν ∈ S(ϕ) converges absolutely with respect
to |ν| for all s in the strip

Π[r−(ϕ), r+(ϕ)] = {s ∈ C : r−(ϕ) ≤ <s ≤ r+(ϕ)}.

3. Banach algebras

Denote by Z̃(ϕ) the subalgebra (without unity) of S(ϕ) such that for all ν ∈ Z̃(ϕ) the
restriction ν|R+ is absolutely continuous. Adjoin the identity element δ0 to Z̃(ϕ) and denote
the resulting unital Banach algebra by Z(ϕ):

Z(ϕ) := {cδ0 + ν1 : c ∈ C, ν1 ∈ Z̃(ϕ)}.

Measures in Z(ϕ) will be denoted by small Greek letters and their densities on R+ by the same
letters with arguments, e.g., ν and ν(x). Let τ(x), x ∈ R+, be a bounded Borel-measurable
positive function such that

(3) lim
x→∞

[τ(x)]1/x = 1,

(4) sup
x∈R+,|y|≤1

τ(x)

τ(x− y)
= C0 <∞,

where τ(x) := τ(0) for x < 0. Let ν ∈ Z(ϕ) with density ν(x), x ∈ R+. Put

Pτ (ν) = ess sup
x∈R+

|ν(x)|ϕ(x)

τ(x)
.

Denote
Zϕ(τ) = {ν ∈ Z(ϕ) : Pτ (ν) <∞},

Z0
ϕ(τ) =

{
ν ∈ Zϕ(τ) : lim

x→∞

ν(x)ϕ(x)

τ(x)
= 0

}
.

Let us stipulate that relations with densities are understood in the sense that in the classes
of equivalent functions there are functions which satisfy the given relations. Assume that the
function τ(x) is such that for all ν and µ ∈ Zϕ(τ)

(5) Pτ (ν ∗ µ) ≤ C
[
‖ν‖ϕPτ (µ) + ‖µ‖ϕPτ (ν) + Pτ (ν)Pτ (µ)

]
,

where the constant C ≥ 1 does not depend on ν and µ.

Definition 2. Functions τ(x), x ∈ R+, satisfying the hypotheses (3)–(5) will be called norming.

While dealing with the collection Z0
ϕ(τ), we shall always assume that the following hypothesis

is fulfilled:

(6) ν ∗ µ ∈ Z0
ϕ(τ) for all ν, µ ∈ Z0

ϕ(τ).

Concrete conditions enabling (5) and (6) will be given below. (See Theorem 3.)
For arbitrary ν ∈ Zϕ(τ) set

‖ν‖ϕ,τ := C[‖ν‖ϕ + Pτ (ν)].

Since ‖ν ∗ µ‖ϕ ≤ ‖ν‖ϕ‖µ‖ϕ, we have

(7) ‖ν ∗ µ‖ϕ, τ ≤ ‖ν‖ϕ, τ‖µ‖ϕ, τ for all ν, µ ∈ Zϕ(τ).
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Theorem 1. Let ϕ and τ be submultiplicative and norming functions respectively. Then the
collection Zϕ(τ) is a complex Banach with respect to the norm ‖ · ‖ϕ,τ , and the collection Z0

ϕ(τ)

is a Banach subalgebra of Zϕ(τ).

Proof. By (5) and (7), the product ν∗µ ∈ Zϕ(τ) for all ν, µ ∈ Zϕ(τ). We prove the completeness
of Zϕ(τ). Let {νn} a fundamental sequence in Zϕ(τ). By the definition of the norm ‖ · ‖ϕ,τ ,
the sequence {νn} is fundamental in S(ϕ) and, therefore, converges to some measure ν ∈ S(ϕ)

with respect to the norm ‖ · ‖ϕ. Let us show that ν ∈ Zϕ(τ) and Pτ (νn − ν) → 0 as n → ∞,
which will prove the completeness of Zϕ(τ).

We have Pτ (νm − νn) → 0 as m,n → ∞. Let {εk} be a sequence of positive numbers such
that εk ↓ 0 as k → ∞. There exists a sequence of positive numbers {N(k)}∞k=1 (tending to
infinity as k →∞) such that

Pτ (νm − νn) ≤ εk for all m,n ≥ N(k).

Consider the sets

Ak,m,n :=

{
x ∈ R+ :

|νm(x)− νn(x)|ϕ(x)

τ(x)
> εk

}
.

The Lebesgue measure of the union A := ∪∞k=1 ∪m,n≥N(k) Ak,m,n is zero since all of Ak,m,n for
m,n ≥ N(k) are sets of Lebesgue measure zero. We have

(8)
|νm(x)− νn(x)|ϕ(x)

τ(x)
≤ εk for all x ∈ AC and all m,n ≥ N(k).

Thus, the sequence {νn(x)} is fundamental for every x ∈ AC and, therefore, converges to some
value γ(x), x ∈ AC . On the other hand, the sequence {νn(x)ϕ(x)} converges to ν(x)ϕ(x) in
L1(R+) as n→∞. It is well known that there exists a subsequence {νnk

(x)ϕ(x)} which tends
to ν(x)ϕ(x) as k → ∞ a.e. (almost everywhere) Obviously, ν(x) = γ(s) for x ∈ AC , i.e.,
ν(x) = γ(s) a.e. Put m = nk in (8) and let k tend to ∞. We get

(9)
|ν(x)− νn(x)|ϕ(x)

τ(x)
≤ εk for all x ∈ AC and all n ≥ N(k).

It follows from (9) that Pτ (ν) ≤ Pτ (νn) + εk < ∞, i.e., ν ∈ Zϕ(τ). It also follows from (9)
that Pτ (ν − νn) ≤ εk and, therefore, Pτ (ν − νn)→ 0 as n→∞. The completeness of Zϕ(τ) is
proven.

To finish the proof of Theorem 1, it remains to show that Z0
ϕ(τ) is a closed subalgebra of

Zϕ(τ). By condition (6), Z0
ϕ(τ) is a subalgebra of Zϕ(τ). Let us show that Z0

ϕ(τ) is a closed
subspace of Zϕ(τ). Let {νn} be a fundamental sequence in Z0

ϕ(τ). Without loss of generality,
we may assume that the elements νn of the equivalence classes are chosen in such a way that
there exist ordinary limits

lim
x→∞

νn(x)ϕ(x)

τ(x)
= 0.

Since {νn} ⊂ Zϕ(τ) and Zϕ(τ) is complete, there exists an element ν ∈ Zϕ(τ) such that
‖νn − ν‖ϕ,τ → 0 as n → ∞. In particular, Pτ (νn − ν) → 0 as n → ∞. Let us show that
ν ∈ Z0

ϕ(τ). Given ε > 0, choose n0 sufficiently large, so that Pτ (νn − ν) < ε for all n ≥ n0.
Each of the sets

An :=

{
x ∈ R+ :

|νn(x)− ν(x)|ϕ(x)

τ(x)
> Pτ (νn − ν)

}
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is of Lebesgue measure zero. We have

(10)
|ν(x)|ϕ(x)

τ(x)
≤ |νn(x)|ϕ(x)

τ(x)
+ ε for all n ≥ n0 and all x 6∈ An.

Set A := ∪nAn. The Lebesgue measure of A is equal to zero. Passing to the limit in (10) as
x→∞, x 6∈ A, we get

lim sup
x→∞, x 6∈A

|ν(x)|ϕ(x)

τ(x)
≤ ε.

Since ε > 0 is arbitrary,

lim
x→∞, x 6∈A

ν(x)ϕ(x)

τ(x)
= 0.

Redefine, if necessary, ν(x) on the set A by putting ν(x) := 0 for x ∈ A. We get that

lim
x→∞

ν(x)ϕ(x)

τ(x)
= 0.

This means that ν ∈ Z0
ϕ(τ). Thus, the completeness of Z0

ϕ(τ) has been established. The proof
of the theorem is complete. �

We now go over to the exact asymptotic behavior of densities in Z(ϕ). Consider the collection

Zϕ(τ, L) :=

{
ν ∈ Zϕ(τ) : there exists lim

x→∞

ν(x)ϕ(x)

τ(x)
=: L(ν)

}
.

In what follows, we shall assume that Zϕ(τ, L) is a Banach subalgebra of Zϕ(τ) and that the
following relation holds:

(11) L(µ ∗ ν) = L(µ)ν̂[r+(ϕ)] + L(ν) µ̂[r+(ϕ)]

for all µ, ν ∈ Zϕ(τ, L). Sufficient conditions ensuring (11) are given in the following

Theorem 2. Let ϕ(x), x ∈ R, and τ(x), x ∈ R+, be submultiplicative and norming functions,
respectively. Suppose that the following hypotheses are fulfilled :

(i) for each y ∈ R, the fraction
ϕ(x)τ(x− y)

ϕ(x− y)τ(x)
tends to a finite limit as x→∞;

(ii) either lim
n→∞

sup
x≥2n

∫ x/2

n

τ(x− y)τ(y)

τ(x)
dy = 0 or K1 := sup

x≥0
sup

x/2≤y≤x

τ(y)

τ(x)
<∞;

(iii) K2 := sup
x≥0

sup
y≥x

τ(y)

τ(x)
<∞.

Then

(12) lim
x→∞

ϕ(x)τ(x− y)

ϕ(x− y)τ(x)
= exp[r+(ϕ)y],

the collection Zϕ(τ, L) is a Banach subalgebra of Zϕ(τ) and relation (11) holds.

Proof. Denote the left-hand side of (12)) by g(y). The function g(y) is Borel measurable and
satisfies the equation g(u + v) = g(u)g(v) for all u, v ∈ R. It follows that g(y) = exp(αy)

for some α ∈ R [5, corollary of Theorem 4.17.3]. We show by contradiction that α = r+(ϕ).
Suppose, e.g., that α > r+(ϕ). Take ε > 0 such that r+(ϕ) < α− ε. Choose x0 so that

ϕ(x)τ(x− 1)

ϕ(x− 1)τ(x)
≥ exp(α− ε) for all x ≥ x0.

Then
ϕ(x0 + n)τ(x0)

ϕ(x0)τ(x0 + n)
≥ exp[n(α− ε)].

https://doi.org/10.28919/ejma.2025.5.4
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Take the logarithm and divide both sides of the resulting inequality by n:

logϕ(x0 + n)

n
+

log τ(x0)

n
− log τ(x0 + n)

n
− logϕ(x0)

n
≥ α− ε.

Passing to the limit as n → ∞ and taking into account relations (2) and (3), we see that
r+(ϕ) ≥ α− ε. A contradiction. An analogous reasoning shows that the inequality α < r+(ϕ)

is impossible too. This proves (12).
We now go over to proving the remaining assertions. Let µ, ν ∈ Zϕ(τ, L). We show that

µ ∗ ν ∈ Zϕ(τ, L) and equality (11) holds. Let x ∈ R+. By (1),

µ ∗ ν(x) =

∫ 0

−∞
ν(x− y)µ(dy) +

∫ 0

−∞
µ(x− y) ν(dy) +

∫ x

0

µ(x− y)ν(y) dy

=

∫ 0

−∞
ν(x− y)µ(dy) +

∫ 0

−∞
µ(x− y) ν(dy)

+

∫ x/2

0

µ(x− y)ν(y) dy +

∫ x/2

0

ν(x− y)µ(y) dy =:
4∑

k=1

Ik(x).(13)

By symmetry reasons, it suffices to establish the asymptotic behavior of I1(x) and of I3(x). We
have

ϕ(x)I1(x)

τ(x)
=

∫ 0

−∞

ϕ(x)τ(x− y)

ϕ(x− y)τ(x)

ϕ(x− y)ν(x− y)

τ(x− y)
µ(dy).

By Definition 1 and condition (iii), the integrand tends to exp[r+(ϕ)y]L(ν) as x → ∞ and
is majorized by the |µ|-integrable function ϕ(y)K2Pτ (ν), y ∈ R−. By Lebesgue’s bounded
convergence theorem,

(14) lim
x→∞

ϕ(x)I1(x)

τ(x)
= L(ν)µ̂−[r+(ϕ)].

Similarly,

(15) lim
x→∞

ϕ(x)I2(x)

τ(x)
= L(µ)ν̂−[r+(ϕ)].

Let us analyze the behavior of I3(x). For simplicity, we restrict ourselves to the case µ(x),
ν(x) ≥ 0. Suppose that the first relation of condition(ii) is fulfilled. We have, for x > 2n, that

(16)
ϕ(x)I3(x)

τ(x)
=
(∫ n

0

+

∫ x/2

n

)ϕ(x)τ(x− y)

ϕ(x− y)τ(x)

ϕ(x− y)µ(x− y)

τ(x− y)
ν(y) dy =: J1(x) + J2(x),

By both (12) and µ ∈ Zϕ(τ, L), the integrand tends to exp[r+(ϕ)]L(µ)ν(y) as x → ∞. Let
ε > 0 be arbitrary. Choose an integer n = n(ε) such that

L(µ)

∫ ∞
n

exp[r+(ϕ)y]ν(y) dy < ε, Pτ (µ)Pτ (ν) sup
x≥2n

∫ x/2

n

τ(x− y)τ(y)

τ(x)
dy < ε.

Further,

sup
y∈[0,n]

ϕ(x)τ(x− y)

ϕ(x− y)τ(x)

ϕ(x− y)µ(x− y)

τ(x− y)
≤ sup

y∈[0,n]

ϕ(y)Cn
0 <∞;

see Definition 1, [5, Theorem 7.4.1] and (4). By Lebesgue’s bounded convergence theorem,

lim
x→∞

J1(x) = L(µ)

∫ n

0

exp[r+(ϕ)]ν(y) dy.
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Choose n1 > 0 such that for all x > n1∣∣∣J1(x)− L(µ)

∫ n

0

exp[r+(ϕ)]ν(y) dy
∣∣∣ < ε.

Then, for all x > max{n, n1},∣∣∣J1(x)− L(µ)

∫ ∞
0

exp[r+(ϕ)y]ν(y) dy
∣∣∣ < 2ε.

Let us represent J2(x) in the form

(17) J2(x) =

∫ x/2

n

ϕ(x)

ϕ(x− y)ϕ(y)

τ(x− y)τ(y)

τ(x)

ϕ(x− y)µ(x− y)

τ(x− y)

ϕ(y)ν(y)

τ(y)
dy.

Obviously,

J2(x) ≤ Pτ (µ)Pτ (ν)

∫ x/2

n

τ(x− y)τ(y)

τ(x)
dy < ε

if x > n. Finally, for x > max{n, n1},∣∣∣ϕ(x)I3(x)

τ(x)
− L(µ)

∫ ∞
0

exp[r+(ϕ)y]ν(y) dy
∣∣∣ ≤∣∣∣J1(x)− L(µ)

∫ ∞
0

exp[r+(ϕ)y]ν(y) dy
∣∣∣+ J2(x) < 3ε.

Thus,

(18) lim
x→∞

ϕ(x)I3(x)

τ(x)
= L(µ)ν̂+[r+(ϕ)].

The case when the second relation of condition (ii) is fulfilled is even simpler to deal with. The
integrand in (16) tends to exp[r+(ϕ)y]L(µ) as x → ∞ and is majorized by the |ν|-integrable
function ϕ(y)K1Pτ (µ). Hence, by Lebesgue’s bounded convergence theorem, relation (18) also
holds true in this case. Notice that condition (iii) is superfluous in this case. Similarly,

(19) lim
x→∞

ϕ(x)I4(x)

τ(x)
= L(ν)µ̂+[r+(ϕ)].

Summing up relations (14), (15), (18) and (19), we see that and relation (11) holds. Thus,
µ ∗ ν ∈ Zϕ(τ, L). The proof of Theorem 2 is complete. �

In condition (ii) of Theorem2, the relation

sup
x≥2n

∫ x/2

n

τ(x− y)τ(y)

τ(x)
dy as n→∞

seems, at first glance, rather intractable. So let us give the following more intuitive relations:
for all y ∈ R,

τ(x+ y)

τ(x)
→ 1 as x→∞,

∫ ∞
0

τ(x) dx = 1,

τ(x) ↓ as x ↑, lim
x→∞

∫ x

0

τ(x− y)τ(y)

τ(x)
dy = 2.

Write for x ≥ 2n∫ x/2

0

τ(x− y)τ(y)

τ(x)
dy =

(∫ n

0

+

∫ x/2

n

)τ(x− y)τ(y)

τ(x)
dy =: In(x) + Jn(x).

https://doi.org/10.28919/ejma.2025.5.4
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Obviously, supx≥2n Jn(x) ↓ as n ↑. Hence there exists limn→∞ supx≥2n Jn(x) =: δ ≥ 0. Show
that δ = 0, which means that indicated relation in condition(ii) holds true. We argue by
contradiction. Suppose δ > 0. Then there exists a sequence {xn} such that xn ≥ 2n and
Jn(xn) ≥ δ/2. Moreover,∫ xn/2

0

τ(xn − y)τ(y)

τ(xn)
dy = In(xn) + Jn(xn)→ 1 as n→∞.

Evidently,

In(xn) ≥
∫ n

0

τ(x) dx→ 1 as n→∞.

It follows that

lim
n→∞

[
In(xn) + Jn(xn)

]
≥ 1 + lim inf

n→∞
Jn(xn) ≥ 1 +

δ

2
.

A contradiction. Hence δ = 0, which was to be proved.

Theorem 3. Let τ(x), x ∈ R+, be a bounded Borel-measurable positive function such that
relations (3) and (4) are fulfilled. Suppose that one of the folowing conditions is fulfilled :

sup
x≥0

[ 1

τ(x)

∫ x/2

0

τ(x− y)τ(y) dy + sup
y≥x

τ(y)

τ(x)

]
=: C1 <∞,(20)

sup
x≥0

sup
x/2≤y≤x

τ(y)

τ(x)
=: K <∞.(21)

Then relations (5) and (6) hold true. In particular, τ(x) is a norming function.

Proof. Let ν, µ ∈ Zϕ(τ). Let us show that, for a suitable choice of the constant C, the ratio
A(x) := ϕ(x)|(ν ∗ µ)|(x)/τ(x) does not exceed the right-hand side of (5). Without loss of
generality, we may assume that the measures µ and ν are nonnegative. We have, by (13),

A(x) =
4∑

k=1

ϕ(x)

τ(x)
Ik(x) =:

4∑
k=1

Jk(x).

By symmetry reasons, it suffices to estimate J1(x) and J3(x). We have

J1(x) ≤
∫ 0

−∞

τ(x− y)

τ(x)

ϕ(x− y)ν(x− y)

τ(x− y)
ϕ(y)µ(dy) ≤ C1Pτ (ν)‖µ−‖.

In order to estimate J3(x), we use the inequality

1

τ(x)

∫ x/2

0

τ(x− y)τ(y) dy ≤ C1

and proceed as follows:

J3(x) ≤
∫ x/2

0

ϕ(x− y)ν(x− y)

τ(x− y)

ϕ(y)ν(y)

τ(y)
dy ≤ C1Pτ (ν)Pτ (ν).

Combining the estimates for J1(x) and J3(x) and similar ones for J2(x) and J4(x), we get (5).
It remains to establish (6). Let ν, µ ∈ Z0

ϕ(τ). First consider condition (20). Given ε > 0

choose ∆ > 0 such that ϕ(x)[ν(x) + µ(x)]/τ(x) < ε for all x > ∆. Examine J1(x) and let
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x > ∆. We have

J1(x) =
ϕ(x)

τ(x)

∫ 0

−∞
ν(x− y)µ(dy) ≤

∫ 0

−∞

τ(x− y)

τ(x)

ϕ(x− y)ν(x− y)

τ(x− y)
ϕ(y)µ(dy)

≤ εC1

∫ 0

−∞
ϕ(y)µ(dy) ≤ εC1‖µ‖ϕ.

Similarly, J2(x) ≤ εC1‖µ‖ϕ. Consider J3(x) and let x > 2∆. We have

J3(x) =

∫ x/2

0

ϕ(x)

ϕ(x− y)ϕ(y)

τ(x− y)τ(y)

τ(x)

ϕ(x− y)µ(x− y)

τ(x− y)

ϕ(y)ν(y)

τ(y)
dy

≤ εPτ (ν)Pτ (µ)C1.

Similarly, J4(x) ≤ εPτ (ν)Pτ (µ)C1. Combining these estimates, we get

A(x) ≤ εC1[‖µ‖ϕ + ‖ν‖ϕ + 2Pτ (ν)Pτ (µ)],

that is, A(x)→ 0 as x→∞. Now consider condition (21). Obviously, for x > 2∆,

A(x) ≤
∫ x/2

−∞

ϕ(x− y)ν(x− y)

τ(x− y)

τ(x− y)

τ(x)
ϕ(y)µ(dy)

+

∫ x/2

−∞

ϕ(x− y)µ(x− y)

τ(x− y)

τ(x− y)

τ(x)
ϕ(y) ν(dy)

≤ εK[Pτ (ν)‖µ‖ϕ + Pτ (µ)‖ν‖ϕ],

that is, A(x)→ 0 as x→∞. This completes the proof of the theorem. �

4. Maximal ideals

In this section we describe the structure of maximal ideals in Banach algebras introduced in
Section 3.

4.1. Algebras Z0
ϕ(τ).

Theorem 4. Each maximal ideal M in Z0
ϕ(τ) is the intersection of a maximal ideal M1 in

Z(ϕ) with Z0
ϕ(τ):

(22) M = M1 ∩ Z0
ϕ(τ).

Vice versa, if M1 is a maximal ideal in Z(ϕ), then equation (22) defines a maximal ideal in
Z0
ϕ(τ).

Proof. The algebra Z0
ϕ(τ) is dense in Z(ϕ). In fact, let ν ∈ Z(ϕ) be arbitrary. Denote by νn the

element in Zϕ(τ) such that νn(x) = 1[0,n](x)ν(x) and νn|R−∪{0} = ν|R−∪{0}. Clearly, νn ∈ Z0
ϕ(τ)

since Pτ (νn) <∞ and νn(x) = 0 for x > n. Moreover,

‖ν − νn‖ϕ =

∫ ∞
n

ϕ(x) |ν|(dx)→ 0 as n→∞.

Consider now the closure M of M in Z(ϕ). For all µ ∈ M , the convolution νn ∗ µ belongs to
M because M is an ideal in Z0

ϕ(τ). Besides, νn ∗ µ → ν ∗ µ as n → ∞ and hence ν ∗ µ ∈ M .
It follows that M is an ideal in Z(ϕ). The ideal M is contained in some maximal ideal M1

of the algebra Z(ϕ) [5, Theorem 4.13.2]. Obviously, M1 ∩ Z0
ϕ(τ) is an ideal in Z0

ϕ(τ) and
M ⊂M1 ∩Z0

ϕ(τ). Since M is a maximal ideal in Z0
ϕ(τ), we have M = M1 ∩Z0

ϕ(τ). Vice versa,
let M1 be a maximal ideal in Z(ϕ). Let h : Z0

ϕ(τ) → C be the homomorphism with kernel
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M1 [5, Theorem 4.14.3]. The restriction h|Z0
ϕ(τ) of h to Z0

ϕ(τ) is obviously a homomorphism on
Z0
ϕ(τ) with kernel M1 ∩ Z0

ϕ(τ). Hence M1 ∩ Z0
ϕ(τ) is a maximal ideal [5, Theorem 4.14.4]. The

proof of the theorem is complete. �

4.2. Algebras Zϕ(τ). In this subsection we additionally assume that the norming function
τ(s), x ∈ R+, is such that the following relation holds true:

(23) lim
n→∞

Pτ (ν
c
n ∗ νcn) = 0 for all ν ∈ Z0

ϕ(τ),

where νcn(x) := ν(x)1(n,∞)(x), x ∈ R+, and νcn|R−∪{0} = ν|R−∪{0}. Consider the following
condition:

(24) lim
n→∞

sup
x≥2n

1

τ(x)

∫ x/2

n

τ(x− y)τ(y) dy = 0.

Theorem 5. Suppose that a norming function τ(x), x ∈ R+, satisfies either condition (21) or
condition (24). Then relation (23) holds true.

Proof. Let ν ∈ Zϕ(τ) be arbitrary. Without loss of generality, we can assume that ν(x) ≥ 0

a.e. Consider the fraction
An(x) :=

νcn ∗ νcn(x)ϕ(x)

τ(x)
.

First, let condition (24) be fulfilled. We have

An(x) = 2

∫ x/2

n

ν(x− y)ν(y)ϕ(x)

τ(x)
dy.

Clearly, An(x) = 0 for x ∈ [0, 2n] and

(25) An(x) ≤ 2Pτ (f)2

∫ x/2

n

τ(x− y)τ(y)

τ(x)
dy.

for x ≥ 2n. Let now condition (21) be fulfilled. Then

(26) An(x) ≤ KPτ (f)

∫ ∞
n

ν(y)ϕ(y) dy.

It follows from (25) and (26) that

lim
n→∞

Pτ (ν
c
n ∗ νcn) = lim

n→∞
sup
x≥0

An(x) = 0.

The proof of the theorem is complete. �

Theorem 6. Let either condition (21) or condition (24) be fulfilled. Then each maximal ideal
M in Zϕ(τ) is the intersection of a maximal ideal M1 in Z(ϕ) with Zϕ(τ):

(27) M = M1 ∩ Zϕ(τ).

Vice versa, if M1 is a maximal ideal in Z(ϕ), then equation (22) defines a maximal ideal in
Zϕ(τ).

Proof. Let M be a maximal ideal in Zϕ(τ). Then M2 = M ∩ Z0
ϕ(τ) is obviously an ideal in

Z0
ϕ(τ). Moreover, M2 is a maximal ideal in Z0

ϕ(τ). To prove this, suppose the contrary: there
exists a maximal ideal M3 in Z0

ϕ(τ) containing M2 as a proper subset. By Theorem 4, there
exists a maximal ideal M4 in Z(ϕ) such that M3 = M4 ∩ Z(ϕ). Consider the ideal M4 ∩ Zϕ(τ)

in Zϕ(τ). It contains the ideal M as a proper subset. A contradiction. Hence M2 is a maximal
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ideal in Zϕ(τ). It follows — by Theorem 4 — that M2 = M1 ∩ Z0
ϕ(τ), where M1 is a maximal

ideal in Z(ϕ). Obviously, M1 ∩Zϕ(τ) is an ideal in Zϕ(τ). To prove relation (27), it suffices to
show that M ⊂M1. We argue by contradiction. Suppose that M 6⊂M1, and let h : Zϕ(τ)→ C
and h1 : Z(ϕ)→ C be the homomorphisms with kernels M and M1, respectively. Put

(28) g(ν) := h(ν)− h1(ν), ν ∈ Zϕ(τ).

The functional g on Zϕ(τ) is continuous [5, Section 4.14, Corollary]. Direct verification shows
that

(29) g(ν ∗ µ) = h1(ν)g(µ) + g(ν)h1(µ) + g(ν)g(µ),

where ν, µ ∈ Sϕ(τ) are arbitrary and

(30) g(ν) = 0 for all ν ∈ Z0
ϕ(τ).

We have assumed that there exists an element ν0 ∈ M \M1. This means that h(ν0) = 0 and
h1(ν0) 6= 0. Relations (28) and (29) imply

g(ν0 ∗ ν0) = −[h1(ν0)]2 6= 0.

Set ν0,n(A) := ν0{A ∩ (R \ [0, n])}, A ∈ B. By (30),

(31) g(ν0,n) = g(ν0), n = 1, 2, . . .

In view of (29) and (31), we verify

(32) g(ν0,n ∗ ν0,n)→ [g(ν0)]2 as n→∞.

(33) ‖ν0,n ∗ ν0,n‖ϕ ≤ ‖ν0,n‖2
ϕ → 0 as n→∞.

According to the hypotheses of the theorem,

(34) Pτ (ν0,n ∗ ν0,n)→ 0 as n→∞.

Summing up relations (32)–(34), we arrive at a contradiction with the continuity of the func-
tional g. This proves (27). The converse assertion is obvious. The proof of the theorem is
complete. �

4.3. Algebras Zϕ(τ, L).

Theorem 7. Each maximal ideal M in Zϕ(τ, L) is the intersection of a maximal ideal M1 in
Z(ϕ) with Zϕ(τ, L):

(35) M = M1 ∩ Zϕ(τ, L).

Vice versa, if M1 is a maximal ideal in Z(ϕ), then equation (35) defines a maximal ideal in
Zϕ(τ, L).

Proof. Obviously, Z0
ϕ(τ) ⊂ Zϕ(τ, L). Let M be a maximal ideal in Zϕ(τ, L) and let h :

Zϕ(τ, L) → C be the homomorphism whose kernel is M . Then M ∩ Z0
ϕ(τ) is the kernel of

the homomorphism h0 : Z0
ϕ(τ) → C which is the restriction of h onto Z0

ϕ(τ). Therefore,
M ∩ Z0

ϕ(τ) is a maximal ideal in Z0
ϕ(τ). By Theorem 4, we have

M ∩ Z0
ϕ(τ) = M1 ∩ Z0

ϕ(τ),
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where M1 is a maximal ideal in Z(ϕ). Let h1 : Z(ϕ) → C be the homomorphism with kernel
M1. Then h(ν) = h1(ν) for all ν ∈ Z0

ϕ(τ). Show thatM ⊂M1, which will imply equality (35) as
follows. The set M1∩Zϕ(τ, L) is the kernel of the restriction h1|Zϕ(τ,L) and hence M1∩Zϕ(τ, L)

is a maximal ideal in Zϕ(τ, L) containing M . Therefore, M must coincide with M1 ∩ Zϕ(τ, L)

sinceM is maximal in Zϕ(τ, L). We return to the proof ofM ⊂M1. We argue by contradiction.
Suppose the contrary, that is, M 6⊂ M1. Then there exists an element ν0 ∈ Zϕ(τ, L) such that
h(ν0) = 0, h1(ν0) 6= 0 and L(ν0) 6= 0. For arbitrary ν ∈ Zϕ(τ, L) the following representation
holds:

(36) ν =
L(ν)

L(ν0)
ν0 + ν ′,

where ν ′ ∈ Z0
ϕ(τ). Setting in (36) ν = νk∗0 , k = 1, 2, . . . , we have, by ((11)),

(37) νk∗0 = k {ν̂[r+(ϕ)]}k−1 ν0 + (νk∗0 )′.

Since h(ν0) = 0, equality (37) implies h[(νk∗0 )′] = h1[(νk∗0 )′] = 0 and

[h1(ν0)]k = k {ν̂[r+(ϕ)]}k−1 h1(ν0),

or
[h1(ν0)]k−1 = k {ν̂[r+(ϕ)]}k−1 , k = 2, 3, . . . ,

which is impossible. Hence M ⊂ M1. The converse assertion of Theorem 7 is obvious: M =

M1 ∩ Z0
ϕ(τ) is the kernel of the homomorphism h which is the restriction onto Zϕ(τ, L) of the

homomorphism h1 : Z(ϕ)→ C with kernelM1, and henceM is a maximal ideal in Zϕ(τ, L). �

4.4. Spectrum.

Definition 3. Let A be a commutative complex Banach algebra with unity e. The spectrum
σ(x) of an element x ∈ A is called the set of all z ∈ C such that the element ze − x is not
invertible.

Theorem 8. Let the hypotheses of Theorems 4 (6, 7). be fulfilled. Let ν ∈ Z0
ϕ(τ) (Zϕ(τ),

Zϕ(τ, L)). Then the spectrum of the element ν in Z0
ϕ(τ) (Zϕ(τ), Zϕ(τ, L)) coincides with its

spectrum σ(ν) in the Banach algebra Z(ϕ).

Proof. Denote by σ0(ν) the spectrum of ν ∈ Z0
ϕ(τ) in Z0

ϕ(τ). Clearly, σ(ν) ⊂ σ0(ν), since the
invertibility of zδ0 − ν in Z0

ϕ(τ) automatically implies its invertibility in Z(ϕ) ⊃ Z0
ϕ(τ). Let

z 6∈ σ(ν). Then the element zδ0 − ν does not belong to any maximal ideal of the Banach
algebra Z(ϕ) and therefore, by Theorem 4, the element zδ0−ν does not belong to any maximal
ideal of the Banach algebra Z0

ϕ(τ), that is, the element zδ0 − ν is invertible in Z0
ϕ(τ). Hence

z 6∈ σ0(ν), that is, {σ(ν) ⊂ {σ0(ν), which proves the desired equality σ(ν) = σ0(ν). This proof
is valid for the remaining cases Zϕ(τ) and Zϕ(τ, L): just replace Z0

ϕ(τ) in the above with Zϕ(τ)

or Zϕ(τ, L), respectively. �

5. Analytic functions

Let A be a commutative complex Banach algebra with unity e, and let Λ(z) be an analytic
function in a domain D containing the spectrum of an element a ∈ A . Then there exists an
element Λ(a) ∈ A such that h[Λ(a)] = Λ[h(a)] for each homomorphism h : A → C [6, § 3].
The element Λ(a) is called the value of the analytic function Λ(z) at the element a ∈ A .
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Theorem 9. Let A be a complex commutative Banach algebra with unity e and multiplication ∗.
Suppose that L : A → C is a continuous linear functional with the following properties :

(i) L (e) = 0,
(ii) L (x ∗ y) = L (x)h(y) + L (y)h(x) for all x, y ∈ A ,

where h : A → C is some fixed homomorphism. Suppose that Λ(z) is an analytic function in
a domain D containing the spectrum of x ∈ A , and Λ(x) is the value of Λ(z) at the element
x ∈ A . Then

(38) L [Λ(x)] = Λ′[h(x)]L (x),

where Λ′(z) is the derivative of the function Λ(z).

Proof. We use the reasoning in the proof of [6, Theorem 3.1] about the existence of Λ(x) ∈ A

and track the accompanying evolution of the functional L . If Λ(z) = zn for integer n ≥ 1,
then induction on n yields

L (xn) = nh(x)n−1L (x) = Λ′[h(x)]L (x).

Therefore, formula (38) is also valid for polynomials. Further, if y ∈ A and there exists y−1 ∈ A,
then L(y−1) = −L(y)/h(y)2. This follows from

0 = L(e) = L(y ∗ y−1) = L(y)h(y−1) + L(y−1)h(y).

Let now Λ(z) = P (z)/Q(z), where P (z) and Q(z) are polynomials with Q(z) 6= 0 for all
z ∈ σ(x). Then there exists Q(x)−1 ∈ A and Λ(x) = P (x)Q(x)−1. By the already proved,

L[Λ(x)] = L[P (x)]h[Q(x)−1] + L[Q(x)−1]h[P (x)]

=
L[P (x)]

h[Q(x)]
− L[Q(x)]h[P (x)]

h[Q(x)]2

=

{
P ′[h(x)]

Q[h(x)]
− Q′[h(x)]P [h(x)]

h[Q(x)]2

}
L(x) = Λ′[h(x)]L(x).

Due to Runge’s theorem [6, Theorem 2.9], there exists a sequence of rational functions {Λn(z)},
analytic in D, such that Λn(z) → Λ(z) as n → ∞ uniformly on compact subsets of the
domain D and, in particular, on the spectrum σ(x). The sequence {Λ′n(z)} also tends to Λ′(z)

uniformly on compact subsets of the domain D [7, Chapter 3, § 4]. By Lemma 3.2 [6], the limit
limn→∞ Λn(x) exists in A and is equal to Λ(x). By continuity of the functional L, we have
limn→∞ L[Λn(x)] = L[Λ(x)]; moreover,

L[Λn(x)] = Λ′n[h(x)]L(x)→ Λ′[h(x)]L(x) as n→∞.

The proof of the theorem is complete.
�

Theorem 10. Let Λ(z) be an analytic function in a domain D containing the spectrum σ(ν)

of an element ν ∈ Z(ϕ), and Λ(ν) be the value of Λ(z) at ν. Then the following statements
hold true.

I. If ν ∈ Z0
ϕ(τ), then Λ(ν) ∈ Z0

ϕ(τ).
II. If ν ∈ Zϕ(τ) and condition (23)) is fulfilled, then Λ(ν) ∈ Zϕ(τ).
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III. If Zϕ(τ, L) is a Banach sub algebra of Zϕ(τ) and for all ν, g ∈ Zϕ(τ, L) equality ( (11))
is verified, then ν ∈ Zϕ(τ, L) implies Λ(ν) ∈ Zϕ(τ, L) and

(39) L[Λ(ν)] = Λ′ {ν̂[r+(ϕ)]}L(ν),

where Λ′(z) is the derivative of Λ(z).

Proof. Let us establish Λ(ν) ∈ Z0
ϕ(τ), and so on if ν is an element of other Banach algebras.

The spectra of the element ν in the enumerated algebras coincide with σ(ν). Consequently, the
values of Λ(z) at ν exist in these algebras. In order to prove equality (39) it suffices to apply
Theorem 9 with A := Zϕ(τ, L), x := ν, L (x) := L(ν) and

h(ν) := ν̂[r+(ϕ)], ν ∈ Zϕ(τ, L).

�

Remark 1. Equality (39) can be established using the proof of the similar equality (2) in [1,
Theorem 1], which is based on the representation of Λ(ν) in the form of a contour integral:

Λ(ν)
1

2πi

∮
Γ

(zδ0 − ν)−1Λ(z) dz;

here Γ is a contour such that the spectrum of ν ∈ Zϕ(τ, L) lies inside Γ. However, we have
given a proof of equality (39), which does not include arguments with contour integrals.

6. An application

In this section, we give a quite simple example of how these algebras can be used. Let
{Xk}∞k=1 be a sequence of independent, identically distributed random variables with a common
nonarithmetic distribution F . Set Sn =

∑n
k=1Xk, n ≥ 1, S0 = 0. We consider the distribution

of the first ascending ladder height of the random walk {Sn} and describe the asymptotic
behavior of its density. Suppose the random walk {Sn} drifts to +∞, that is, with probability
one Sn → +∞ as n→∞. Denote by F n∗ the n-th convolution power of F :

F 0∗ := δ0, F 1∗ := F, F (n+1)∗ := F n∗ ∗ F, n ≥ 1.

Put T+ := min
{
n ≥ 1 : Sn > 0

}
. The random variable H+ := ST+ is called the first

ascending ladder height. Similarly, T− := min
{
n ≥ 1 : Sn ≤ 0

}
and H− := ST− is the first

weak descending ladder height. We have the factorization identity (the symbol E stands for
“expectation”) [8, Section XVIII.3]

(40) 1− ξE(esX1) =
[
1− E

(
ξT−esH−

)][
[1− E

(
ξT+esH+

)]
, |ξ| ≤ 1, <s = 0.

Denote by F± the distributions of the random variables H±, respectively. It follows from the
identity (40) that

(41) δ0 − F = (δ0 − F−) ∗ (δ0 − F+).

Let U− :=
∑∞

k=0 F
k∗
− be the renewal measure generated by the distribution F− and ϕ(x), x ∈ R,

be a submultiplicative function such that r−(ϕ) ≤ 0 ≤ r+(ϕ).

Theorem 11. Suppose that F ∈ Z0
ϕ(τ), where ϕ and τ satisfy the hypotheses of Theorem 1.

Then F+ ∈ Z0
ϕ(τ). In particular,

f+(x) = o
[ τ(x)

ϕ(x)

]
as x→∞.
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Proof. As mentioned in [8, Chapter XVIII, § 4, Example a)], drifting of {Sn} to +∞ takes
place when the distribution F− is defect: F−(R) < 1. Hence U− is a finite measure and

Û−(s) =
∞∑
n=0

F̂ n
−(s =

1

1− F̂−(s)
, <s ≥ 0.

It follows from (41) that

1− F̂+(s) =
1− F̂ (s)

1− F̂−(s)
= [1− F̂ (s)]Û−(s),

whence

(42) F+ = F ∗ U− − U− − δ0.

Obviously, U− ∈ Z0
ϕ(τ) since the measure U− is concentrated on (−∞, 0]. Hence (42) implies

F+ ∈ Z0
ϕ(τ). The proof of the theorem is complete. �

Theorem 12. Suppose that F ∈ Zϕ(τ), where ϕ and τ satisfy the hypotheses of Theorem 1.
Then F+ ∈ Zϕ(τ). In particular,

f+(x) = O
[ τ(x)

ϕ(x)

]
as x→∞.

Proof. Replace Z0
ϕ(τ) with Zϕ(τ) in the proof of the preceding theorem. �

Theorem 13. Suppose that F ∈ Zϕ(τ, L), where ϕ and τ satisfy the hypotheses of Theorem 2.
Then F+ ∈ Zϕ(τ, L). Moreover,

(43) L(F+) =
L(F )

1− F̂−[r+(ϕ)]
.

Proof. Acting as in the proof of Theorem 11, we obtain U− ∈ Zϕ(τ, L). Obviously, L(U−) = 0.
Equality (43) now follows from (42) and (11). �

Remark 2. Provided that L(F ) > 0, relation (43) may be rewritten in other terms as follows:

f+(x) ∼ f(x)

1− F̂−[r+(ϕ)]
as x→∞,

where f+(x) is the density of F+ and f(x) is the density of the restriction F |(0,∞).

Remark 3. Notice that in the Theorems 11–13, we do not require that the underlying distri-
bution F be absolutely continuous of the whole line.
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