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EXISTENCE AND REGULARITY OF SOLUTIONS IN α-NORM FOR
SOME SECOND ORDER PARTIAL NEUTRAL FUNCTIONAL

DIFFERENTIAL EQUATIONS WITH FINITE DELAY IN BANACH
SPACES

DJENDODE MBAINADJI1,∗, SYLVAIN KOUMLA2, AND ISSA ZABSONRE3

Abstract. The purpose of this work is to investigate the existence and regularity of solutions
in the α-norm for some second order partial neutral functional differential equations in Banach
spaces with finite delay using fractional α-power and the theory of the cosine family. As result,
we obtain a generalization of work of Herman R. Henriquez et al. (Journal of Mathematics,
Vol. 41, No. 6 (2011)) without alpha norm and regularity. Our results extend and complement
many other important results in the literature. Finally, a concrete example is given to illustrate
the application of the main results.

1. Introduction

In this work, we study the existence and regularity in α-norm of solutions for the following
second order neutral partial functional differential equation

(1.1)



d2

dt2
[u(t)− g(t, ut)] = Au(t) + f(t, ut, u

′
t) for t ≥ 0

u0 = ϕ ∈ Cα

u′0 = ϕ′ ∈ Cα

where A is the (possibly unbounded) infinitesimal generator of strongly continous cosine
family of linear operators in X. Cα = C1([−r, 0], D((−A)α)), 0 < α < 1, denotes the space of
continuous differentiable functions from [−r, 0] into D((−A)α), (−A)α is the fractional α-power
of A. This operator ((−A)α, D((−A)α)) will be describe later. Cα is endowed with the following
norm ‖h‖Cα = ‖h‖α + ‖h′‖α for all h ∈ C = C1([−r, 0], X),where ‖ϕ‖α = sup

−r≤θ≤0
|ϕ(θ)|α. The

1Université Polytechnique de Mongo, Faculté des Sciences Fondamentales, Département de
Mathematiques-Informatiques, B.P 4377 Mongo, Tchad

2Université Adam Barka d’Abéché, Faculté des Sciences et Techniques, Département de
Mathématiques,B.P. 1117 Abéché, Tchad

3Université Joseph KI-ZERBO, Unité de Recherche et de Formation en Sciences Exactes et
Appliquées, Département de Mathématiques B.P.7021 Ouagadougou 03, Burkina Faso
∗Corresponding author
E-mail addresses: mbainadjidjendode@gmail.com, skoumla@gmail.com , zabsonreissa@yahoo.fr.
Key words and phrases. Cosine family, Mild and strict solutions, Neutral equations, α-norm, second order

functional differential equations.
Received 22/08/2024.

1

https://doi.org/10.28919/ejma.2025.5.3
http://ejma.euap.org


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2025.5.3 2

norm |.|α will be specified later. For every t ≥ 0, ut denotes the history function of Cα defined
by

ut = u(t+ θ) for θ ∈ [−r, 0],

f : R+ × Cα × Cα → X and g : R+ × Cα → Xα are given functions.
In [9] the authors study firstly the abstract semi-linear second order initial value problem and
secondly they unify and simplify some ideas from strongly continuous cosine families of linear
operators in Banach spaces.
In [1], the authors reveal three properties of cosine families, distinguishing them from semigroups
of operators.
Recently, in [12], Zabsonre Issa et al. considered the following nonlinear second order differential
equation

(1.2)



u′(t) = Au(t) + f(t, ut, u
′
t) for t ≥ 0,

u0 = ϕ ∈ C = C1([−r, 0], X),

u′0 = ϕ′ ∈ C.

Using the cosine family theory and the Banach fixed point Theorem, the authors established
the existence and regularity of solutions.
More recently, in [7], D. Mbainadji et al. considered the following second order partial neutral
functional differential equation:

(1.3)



d

dt
[u′(t)− g(t, ut)] = Au(t) + f(t, ut, u

′
t) for t ≥ 0,

u0 = ϕ ∈ Cα,

u′0 = ϕ′ ∈ Cα.

The authors investigated the existence and regularity of solutions in the α-norm using cosine
family theory and Schauder’s fixed point theorem.

The present work is motived by the papers of Issa Zabsonre et al. [13] and Travis andWebb [9].
This is paper is a generalization of [10] and a continuation of [5].
Using the theory of strongly continuous cosine families of linear operators in Banach space,
in this paper we will prove the existence of mild and strict solutions. The organisation of
this paper is as follows, in section 2 we recall some preliminary results on cosine families and
fractional α-power, in section 3 we prove the existence and uniqueness of the mild solution in
the α-norm for (1.1). In section 4 we study the regularity of the solutions, we give sufficient
conditions to obtain the existence of a strict solution. Finally, in Section 5 we illustrate our
results by examining an example.

2. Preliminary Results

Let (X, ‖.‖) be a Banach space and α be a constant such that 0 < α < 1 and −A be
the infinitesimal generator of strongly continuous (C(t))t≥0 on X. We assume without loss of
generality that 0 ∈ ρ(−A). Note that if the assumption 0 ∈ ρ(−A) is not satisfied, one
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can substitute the operator −A by the operator (−A − σI) with σ large enough such that
0 ∈ ρ(−A−σI). This allows us to define the fractional power (−A)α for 0 < α < 1, as a closed
linear invertible operator with domain D((−A)α) dense in X. The closeness of Aα implies that
D((−A)α), endowed with the graph norm of (−A)α, |x| = ‖x‖+ ‖(−A)αx‖, is a Banach space.
Since (−A)α is invertible, its graph norm |.| is equivalent to the norm |x|α = ‖(−A)αx‖. Thus,
D((−A)α) equipped with the norm |.|α, is a Banach space, which we denote by Xα.

Definition 1. [9] A one parameter family {C(t), t ∈ R} of bounded linear operators mapping
the Banach space X into itself is called a strongly continuous cosine family if and only if

i) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R

ii) C(0) = I

iii) C(t)x is continuous on R for each fixed x ∈ X.

The strongly continuous sine family {S(t), t ∈ R} associated to the given strongly continuous
cosine family {C(t), t ∈ R} by

(2.1) S(t)x =

∫ t

0

C(s)xds, for x ∈ X, t ∈ R

Definition 2. The infinitesimal generator of strongly continuous cosine family {C(t), t ∈ R}
is the operator A : X −→ X define by

Ax =
d2C(t)x

dt2

∣∣∣
t=0
.

D(A) = {x ∈ X : C(t)x is a twice continuously differentiable function of t}.

We shall also make use of the set

E = {x : C(t)x is a once continuously differentiable function of t}

Lemma 1. Let C(t),∈ R be a strongly continuous cosine family in X with infinitesimal gen-
erator A. The following are true.
i) D(A) is dense in X and A is closed operator in X;

ii) if x ∈ X and s, r ∈ R then z =

∫ r

s

= S(u)xdu ∈ D(A) and Az = C(s)x− C(r)x;

iii) if x ∈ X, s, r ∈ R then z =

∫ s

0

∫ r

0

C(u)C(v)xdudv ∈ D(A) and

Az =
1

2
(C(s+ r)x− C(s− r)x);

iv) if x ∈ X, S(t)x ∈ E;

v) if ∈ X, the S(t)x ∈ D(A) and
dC(t)

dt
= AS(t)x:

vi) if x ∈ D(A), then C(t)x ∈ D(A) and
d2C(t)

dt2
= AC(t)x = C(t)Ax;

vii) if x ∈ E, then lim
t→0

AS(t) = 0;

viii) if x ∈ E, then S(t)x ∈ D(A) and
d2S(t)

dt2
= AS(t)x;
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ix) if x ∈ D(A), then S(t)x ∈ D(A) and AS(t)x = S(t)Ax;
x) C(t+ s) + C(t− s) = 2AS(t)S(s) for all s, t ∈ R.

In [9], for 0 < α < 1 the fractional powers (−A)α exist as closed linear operators in X,

D((−A)α) ⊂ D((−A)β) for 0 ≤ β ≤ α ≤ 1 and (−A)α(−A)β = (−A)α+β for 0 ≤ α + β ≤ 1.

For our objevtive we assume that
(H0) −A is the infinitesimal generator of a strongly continuous cosine family of linear operators
on a Banach space X.

By Lemma 1, (H0)) implies that the operator A is densely defined in X, i.e D(A) = X. We
have the following result

Lemma 2. [9] Assume that (H0) hols. Then there are constants M ≥ 1 and ω ≥ 0 such that

‖C(t)‖ ≤Meω|t| and ‖S(t1)− S(t2)‖ ≤M
∣∣∣ ∫ t2

t1

eω|s|ds
∣∣∣, for all t1, t2 ∈ R.

From previous inequality, since S(0) = 0 we can deduce that

‖S(t)‖ ≤ M

ω
eωt for t ∈ R+

In the sequel, let us pose M1 = max
(
M,

M

ω

)
.

Theorem 1. [9] If k : R+ → X is continous, h : R+ → X is continuous and u is a solution
of equation (1.1), the u is a solution of integral equation

u(t) = C(t)x+ S(t)y +

∫ t

0

AS(t− s)k(s)ds+

∫ t

0

S(t− s)h(s)ds.

(A1): For 0 < α < 1, (−A)α maps onto X and 1 − 1, so that D((−A)α) endowed with the
norm |x|α = ‖(−A)αx‖ is a Banach space. We denote by Xα this space. In addition we assume
that A−1 is compact. To establish our results, we need the following Lemmas.

Lemma 3. [10] Assume that (H0) holds. The following are true
(i) For 0 < α < 1, (−A)α is compact if and only if A−1 is compact.
(ii) For 0 < α < 1, and t ∈ R (−A)αC(t) = C(t)(−A)α and (−A)αS(t) = S(t)(−A)α

Recall from [4], (−A)α is given by the following formula

(−A)α =
sin πα

π

∫ +∞

0

t−α(tI − A)−1dt.

Lemma 4. [10] Assume that (H0) holds. Let v : R −→ x such that v is continuously differ-

entiable and let q(t) =

∫ t

0

S(t− s)v(s)ds. Then

(i) q is twice continuously differentiable and for t ∈ R, q(t) ∈ D(A),

q′(t) =

∫ t

0

C(t− s)v(s)ds
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and

q′′(t) =

∫ t

0

C(t− s)v′(s)ds+ C(t)v(0) = Aq(t) + v(t)

(ii) For 0 < α < 1 and t ∈ R, (−A)α−1q′(t) ∈ E.

Theorem 2. (Heine’s theorem)
Let f be a continous function on a compact set K, then f is uniformly continuous on K.

Theorem 3. (Arzela-Ascoli theorem)
Let (X, dX) and (Y, dY ) be compact metric spaces, C(X, Y ) be the set of continuous functions
from X to Y and Let F be q subset of C(X, Y ). If F is closed and equicontinuous then, it is
compact.

Let E be a Banach space. We define

χ(Ω) = inf{ε > 0 : Ω has finite cover diameter < ε},

where χ(Ω) is a Kuratowski measure of noncompactness of a set Ω ⊂ E.

Definition 3. A mapping K from a set C in Banach space E is called a condensing operator if
it is continuous and for every bounded noncompact set Ω ⊆ C the inequality holds

χ[K(Ω)] < χ(Ω).

Theorem 4. (Sadovskii’s fixed point theorem)
If a condensing operator K maps a bounded convex set C of Banach space E into itself (i.e
K(C) ⊆ C), then K has least one fixed point in C.

3. Existence of mild solutions

Definition 4. A continuous function u :] − r,+∞[→ Xα, for b > 0 is said to a mild solution
of equation (1.1) if

i) u(t) = C(t)(ϕ(0)− g(0, ϕ)) + S(t)(ϕ′(0)− g′(0, ϕ)) + g(t, ut) +

∫ t

0
AS(t− s)g(s, xs)ds

+

∫ t

0
S(t− s)f(s, us, u′(s))ds for t ∈ [0, b]

ii) u0 = ϕ, u′0 = ϕ′.

Proposition 1. Assume that (H0)) holds. If u is a solution of equation (1.1), then
(3.1)

u(t) = C(t)(φ(0)− g(0, φ) +S(t)(φ′(0)− η) +

∫ t

0

AS(t− s)g(s, us)ds+

∫ t

0

S(t− s)f(s, us, u
′
s)ds

Proof. It is just the consequence of Theorem 1. In fact, let us pose k(t) = g(t, ut) and
h(t) = f(t, ut, u

′
t) for t ≥ 0. The we get the desired results.�

Remark 1. The converse is not true. In fact if u satisfies equation (3.1), u may be not twice
continuously differentiable, that is why we distinguish between mild and strict solutions

https://doi.org/10.28919/ejma.2025.5.3
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Definition 5. A continuous function u :] − r,+∞[→ Xα, for b > 0 is said to a mild solution
of equation (1.1) if

i) u(.) ∈ C1([0, b], Xα)

ii)
d2

dt2
[u(t)− g(t, ut)] = Au(t) + f(t, ut, u

′
t), t ∈ [0, b]

iii) u0 = ϕ, u′0 = ϕ′.

In the following, we give a local existence of mild solutions of equation(1.1). We will use the
Sadovskii’s fixed point theorem which generalize the Schauder’s fixed point and the contraction
principle.
For this purpose, we make this following assumptions.
(H1)The function f : [0, b]× Cα → X satisfies the following conditions

i) f : [0, b]× Cα × Cα → X is continuously differentiable.
ii) There exists a continuous nondecreasing function β : [0, b]→ R+ such that

‖f(t, ϕ, ϕ′)‖ ≤ β(t)‖ϕ‖α for (t, ϕ) ∈ [0, b]× Cα.

(H2) g : [0, b]×Cα → Xα is continuously differentiable and for each b > 0 there exist 0 < Lg < 1

such that

(i) |g(t, ϕ)− g(t, ψ)|α ≤ Lg|ϕ− ψ‖α for every t ∈ [0, b] and ϕ, ψ ∈ Cα.

(ii)
d

dt
g(t, ut)

∣∣∣
t=0

= η

(H3) A
−1 is compact.

Theorem 5. Assume that (H0), (H1), (H2), (H3) and hold. Let ϕ ∈ Cα such that ϕ(0)−g(, ϕ),
ϕ′(0)− η ∈ E and assume that

Lg(1 +M1e
ωb) + ‖(−A)α−1‖ sup

t∈[0,b]

[(
β(t)(1 + 2M1e

ωb) +Meωb
]
< 1.

Then equation (1.1) has at least one mild solution on [0, b].

Proof. Let k > ‖ϕ‖Cα , we define the following set

Bk = {u ∈ C([0, b], Xα) : u(0) = ϕ(0) and |u|∞ ≤ k},

Bk is a closed subet of C([0, b], Xα), where C([0, b], Xα) is the space of continuous functions
from [0, b] to Xα equipped with the norm topology

|u|∞ = sup
t∈[0,b]

|u(t)|α.

For u ∈ Bk, define the ũ(t) : [0, b]→ Xα by

ũ(t) =


u(t) for t ∈ [0, b]

ϕ(t) for t ∈ [−r, 0].

https://doi.org/10.28919/ejma.2025.5.3
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The function t→ ũt is continuous from [0, b] to Cα. Now, define the operator K on Bk by

K(u)(t) = C(t)(ϕ(0)− g(0, ϕ)) + S(t)(ϕ′(0)− η) + g(t, ũt)

+

∫ t

0

AS(t− s)g(s, ũs)ds+

∫ t

0

S(t− s)f(s, ũs, ũ′s)ds for t ∈ [0, b].

It is sufficient to show that K has a fixed point in Bk. We give the proof in several steps.

Step 1: There is a positive k > ‖ϕ‖α such that K(Bk) ⊂ Bk.

If not, then for each k > ‖ϕ‖α, there exist uk ∈ Bk and tk ∈ [0, b] such that |(Kuk)(tk)|α > k.

k < |(Kuk)(tk)|α =
∣∣∣C(tk)(ϕ(0)− g(0, ϕ)) + S(tk)(ϕ

′(0)− η) + g(tk, ũk) +

∫ tk

0

AS(tk − s)g(s, ũs)ds

+

∫ tk

0

S(tk − s)f(s, ũs)ds
∣∣∣
α

< |C(tk)(ϕ(0)− g(0, ϕ))|α + |S(tk)(ϕ′(0)− η)|α + |g(tk, ũk)|α

+
∣∣∣ ∫ tk

0

AS(tk − s)g(s, ũs)ds
∣∣∣
α
+
∣∣∣ ∫ tk

0

S(tk − s)f(s, ũs)ds
∣∣∣
α

< |C(tk)(ϕ(0)− g(0, ϕ))|α + |S(tk)(ϕ′(0)− η)|α + |g(tk, ũk)− g(tk, 0)|α + |g(tk, 0)|α

+
∣∣∣ ∫ tk

0

d

ds

(
C(tk − s)g(s, ũs)

)
ds−

∫ tk

0

C(tk − s)
d

ds

(
g(s, ũs)

)
ds
∣∣∣
α

+
∥∥∥− (−A)α−1

∫ tk

0

AS(tk − s)f(s, ũs, ũ′s)ds
∥∥∥

< |C(tk)(ϕ(0)− g(0, ϕ))|α + |S(tk)(ϕ′(0)− η)|α + |g(tk, ũk)− g(tk, 0)|α + |g(tk, 0)|α

+
∣∣∣ ∫ tk

0

d

ds

(
C(tk − s)g(s, ũs)

)
ds−

∫ tk

0

C(tk − s)
d

ds

(
g(s, ũs)

)
ds
∣∣∣
α

+
∥∥∥(−A)α−1[ ∫ tk

0

d

ds

(
C(tk − s)f(s, ũs, ũ′s)

)
ds−

∫ tk

0

C(tk − s)
d

ds

(
f(s, ũs, ũ′s)

)]∥∥∥
< |C(tk)(ϕ(0)− g(0, ϕ))|α + |S(tk)(ϕ′(0)− η)|α + Lg|ũtk |α + sup

s∈[0,b]
|g(s, 0)|α

+|g(tk, ũtk)− C(tk)g(0, ũ0)|α +M1e
ωb|g(tk, ũtk)− g(0, ũ0)|α

+‖(−A)α−1‖
(
‖f(tk, ũtk , ũ′tk)‖+ ‖C(tk)f(0, ũ0, ũ′0)‖

+M1e
ωb‖f(tk, ũtk , ũ′tk)− f(0, ũ0, ũ′0)‖

)

< M1e
ωb
(
|(ϕ(0)− g(0, ϕ))|α + |(ϕ′(0)− η)|α

)
+ Lg‖ũtk‖α + 2 sup

s∈[0,b]
|g(s, 0)|α

https://doi.org/10.28919/ejma.2025.5.3
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+M1e
ωbLg‖ũtk‖α + ‖(−A)α−1‖

[(
β(tk) +M1e

ωb)|ũtk |α + 2M1e
ωbβ(0)‖ũ0‖α

]
Since |ũt|∞ ≤ k for all t ∈ [0, b] and u ∈ Bk. The we have

k < M1e
ωb
(
|(ϕ(0)− g(0, ϕ))|α + |(ϕ′(0)− η)|α

)
+ Lg

(
1 +M1e

ωb
)
k + 2 sup

s∈[0,b]
|g(s, 0)|α

+ +M1e
ωb|g(0, ũ0)|α‖(−A)α−1‖ sup

t∈[0,b]

[(
β(t)(1 + 2M1e

ωb) +M1e
ωb
]
k

Divinding above sides of obove inequality by k, it follows that

1 <
M1e

ωb
(
|(ϕ(0)− g(0, ϕ))|α + |(ϕ′(0)− η)|α

)
k

+ Lg
(
1 +M1e

ωb
)

+

2 sup
s∈[0,b]

|g(s, 0)|α

k
+
M1e

ωb|g(0, ũ0)|α
k

+ ‖(−A)α−1‖ sup
t∈[0,b]

[(
β(t)(1 + 2M1e

ωb) +M1e
ωb
]
.

When k → 0, we have

1 < Lg
(
1 +M1e

ωb
)

+ ‖(−A)α−1‖ sup
t∈[0,b]

[(
β(t)(1 + 2M1e

ωb) +M1e
ωb
]
,

which gives contradiction.
Now we decompose K as follows K = K1 +K2, where

K1(u)(t) = g(t, ũt) for t ∈ [0, b]

and

K2(u)(t) = C(t)(ϕ(0)− g(0, ϕ)) + S(t)(ϕ′(0)− η) +
∫ t

0

AS(t− s)g(s, ũs) +
∫ t

0

S(t− s)f(s, ũs, ũ′s) for t ∈ [0, b]

Then, we shall show K1 is a strict contraction and K2 is continous.
Step 2: K1 is strict contraction and K2 is continuous

For t ∈ [0, b] and u, v ∈ Bk and by (H2) we have

|K1(u)(t)−K1(v)(t)|α = |g(t, ũt)− g(t, ṽt)|α

≤ Lg‖ũt − ṽt‖α

≤ Lg sup
0≤τ≤b

|u(τ)− v(τ)|α.

Then

|K1(u)(t)−K1(v)(t)|∞ ≤ Lg|u− v|∞

This means K1 is a strict contraction.

Let (un)n ∈ Bk with un → u in Bk. Then, the set

∆ = {(s, ũns , ũ′
n

s )), (s, ũs, ũs)) : s ∈ [0, b], n ≥ 1}

https://doi.org/10.28919/ejma.2025.5.3
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and
∧ = {(s, ũns ), (s, ũs) : s ∈ [0, b], n ≥ 1}

are compact respectively in [0, b]×Cα×Cα and [0, b]×Cα. Heine’s theorem implies that f and
g are uniformly continuous respectively in ∆ and ∧. Then, we have

|K2(u
n)(t)−K2(u)(t)|∞

≤ sup
t∈[0,b]

∣∣∣ ∫ t

0

AS(t− s)
(
g(s, ũns )− g(s, ũs)

)
ds
∣∣∣
α

+ sup
t∈[0,b]

∥∥∥− (−A)α−1
∫ t

0

AS(t− s)
(
f(s, ũns , ũ

′n
s )− f(s, ũs, ũ′s)ds

)∥∥∥
≤ sup

t∈[0,b]

∣∣∣ ∫ t

0

d

ds

(
C(t− s)g(s, ũns )− g(s, ũs)

)
ds

−
∫ t

0

C(t− s) d
ds

(
g(s, ũns )− g(s, ũs)

)
ds
∣∣∣
α

+ sup
t∈[0,b]

∥∥∥(−A)α−1
[ ∫ t

0

d

ds

(
C(t− s)f(s, ũns , ũ

′n
s )− f(s, ũs, ũ′s)

)
ds

−
∫ t

0

C(t− s) d
ds

(
f(s, ũns , ũ

′n
s )− f(s, x̃s, ũ′s)ds

)]∥∥∥
≤ sup

t∈[0,b]

[
|g(t, ũnt )− g(t, ũt)|α + |C(t)

(
g(0, ũn0 )− g(0, ũ0)

)
|α

+Meωb
(
|g(t, ũnt )− g(t, ũt)|α − |g(0, ũn0 )− g(0, ũ0)|α

]
+ sup

t∈[0,b]
‖(−A)α−1‖

[(
f(t, ũnt , ũ

′n
t )− f(t, ũt, ũ′t)

)
− C(t)

(
f(0, ũn0 , ũ

′n
0 )

−f(0, ũ0, ũ′0)
))
‖

+M1e
ωb‖f(t, ũnt , ũ

′n
t )− f(t, ũt, ũ′t)

)
−
(
f(0, ũn0 , ũ

′n
0 )− f(0, ũ0, ũ′0)

))]
≤ sup

t∈[0,b]

[
(1 +M1e

ωb)|g(t, ũnt )− g(t, ũt)|α + 2Meωb|g(0, ũn0 )− g(0, ũ0)|α
]

+ sup
t∈[0,b]

‖(−A)α−1‖
[
(1 +M1e

ωb)‖f(t, ũnt , ũ
′n
t )− f(t, ũt, ũ′t)‖

+2M1e
ωb‖f(0, ũn0 , ũ

′n
0 )− f(0, ũ0, ũ′0)‖

]
→ 0 as n→∞,

and this yield the continuity of K2 on Bk.

Step 3: The set {K2(u)(t) : u ∈ Bk} is relatively compact for each t ∈]0, b].
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Let t ∈]0, b] be fixed and γ > 0 be such that α < γ < 1. Using the same reasoning like
previously, it follows that

Step 1

‖(−A)γK2(u)‖ ≤ ‖(−A)γ−1‖
[
M1e

ωb
(
‖A(ϕ(0)− g(0, ϕ))‖+ ‖A(ϕ′(0)− η)‖

+ sup
t∈[0,b]

[(
β(t)(1 + 2M1e

ωb) +M1e
ωb
]
k + LgM1e

ωbk + sup
s∈[0,b]

|g(s, 0)|γ

+M1e
ωb|g(0, ũ0)|γ <∞

Consequently for t ∈]0, b] fixed, the set {(−A)γK2(u)(t) : u ∈ Bk} is bounded in X. By (H3),
we deduce that (−A)−γ : X → Xα is compact. It follows that the set {K2(u)(t) : u ∈ Bk} is
relatively compact for each t ∈]0, b] in Xα.

Step 4: The set {K2(u) : u ∈ Bk} is an equicontinuous family of functions.

Let u ∈ Bk and 0 ≤ τ1 < τ2 ≤ b then we have

|K2(u)(τ2)−K2(u)(τ1)|α
≤ |[C(τ2)− C(τ1)](ϕ(0)− g(0, ϕ))|α + |[S(τ2)− S(τ1)](ϕ

′(0)− η)|α

+
∣∣∣ ∫ τ2

0

AS(τ2 − s)g(s, ũs)ds−
∫ τ1

0

AS(τ1 − s)g(s, ũs)ds
∣∣∣
α

+
∣∣∣ ∫ τ2

0

S(τ2 − s)f(s, ũs, ũ′s)ds−
∫ τ2

0

S(τ2 − s)f(s, ũs, ũ′s)ds
∣∣∣

≤ |[C(τ2)− C(τ1)](ϕ(0)− g(0, ϕ))|α + |[S(τ2)− S(τ1)](ϕ
′(0)− η)|α

+
∣∣∣ ∫ τ1

0

A[S(τ2 − s)− S(τ1 − s)]g(s, ũs)ds−
∫ τ2

τ1

A[S(τ2 − s)g(s, ũs)ds
∣∣∣
α

+
∣∣∣ ∫ τ1

0

[S(τ2 − s)− S(τ1 − s)]f(s, x̃s, ũ′s)ds
∣∣∣

+
∣∣∣ ∫ τ2

τ2

S(τ2 − s)f(s, ũs, ũ′s)ds
∣∣∣

It follows that

|K2(u)(τ2)−K2(u)(τ1)|α
≤ |[C(τ2)− C(τ1)](ϕ(0)− g(0, ϕ))|α + |[S(τ2)− S(τ1)](ϕ

′(0)− η)|α

+
∣∣∣ ∫ τ1

0

d

ds

(
[C(τ2 − s)− C(τ1 − s)]g(s, ũs)

)
ds
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−
∫ τ1

0

[C(τ2 − s)− C(τ1 − s)]
d

ds
g(s, ũs)ds

∣∣∣
α

+
∥∥∥(−A)α−1

[ ∫ τ1

0

d

ds

(
[C(τ2 − s)− C(τ1 − s)]f(s, ũs, ũ′s)ds

−
∫ τ1

0

[C(τ2 − s)− C(τ1 − s)]
d

ds

(
]f(s, ũs, ũ′s)

)
ds
∥∥∥

+
∥∥∥(−A)α

∫ τ2

τ1

d

ds

(
C(τ2 − s)f(s, ũs, ũ′s)

)
ds

−
∫ τ2

τ1

C(τ2 − s)
d

ds

(
f(s, ũs, ũ′s)

)
ds
∥∥∥.

Consequently, we have

|K2(u)(τ2)−K2(u)(τ1)|α
≤ |[C(τ2)− C(τ1)](ϕ(0)− g(0, ϕ))|α + |[S(τ2)− S(τ1)](ϕ

′(0)− η)|α

+|(C(τ1)− I)g(τ1, ũτ1)|α

+|[C(τ2)− C(τ1)]g(0, ũ0)|α + |[C(τ2)− C(τ1)](g(τ1, ũτ1))|α

+|g(τ2, ũτ2)− C(τ2 − τ1)g(τ1, ũτ1)|α +Meωb|g(τ2, ũτ2)− g(τ1, ũτ1)|α

+‖(−A)α−1‖
[
‖(C(τ2 − τ1)− I)f(τ1, x̃τ1 , ũ

′
τ1)‖

+‖[C(τ2)− C(τ1)]f(0, ũ0, ũ′0)‖

+‖f(τ2, ũτ2 , ũ
′
τ2)− C(τ2 − τ1)f(τ1, ũτ1 , ũ

′
τ1)‖

+M1e
ωb‖f(τ2, ũτ2 , ũ

′
τ2) − f(τ1, ũτ1 , ũ

′
τ1)
]
→ 0 as τ1 → τ2.

Since (−A)α−1 is compact from X to X and (C(t)t∈R) is uniformly continuous on compact
subset of X. Thus H maps Bk into an equicontinuous family of functions.
So from Step 1 to Step 4 and by Ascoli-Arzela theorem we can conclude that K2 : Bk → Bk is
compact and K = K1 +K2 is an condensing operator. Hence by Sadvoskii’s fixed point theorem
4, we conclude that K has least one fixed point in Bk which is a mild solution of equation (1.1)
on [0, b]. �

Our next objective is to prove the uniqueness of mild solution. To do this, we assume that
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(H4): f : [0, b]× Cα × Cα → X is contunuously differentiable and lipschitzian with the respect
on second variable. Then there exists c0(r) > 0 such that for ϕ, ψ ∈ Cα with ‖ϕ‖α, ‖ψ‖α ≤ r,
we have

‖f(t, ϕ1, ϕ
′
1, )− f(t, ϕ2, ϕ

′
2, ) ≤ c0(r)‖ϕ1 − ϕ2‖α for ∈ [0, b], ϕ1, ϕ2 ∈ Cα

(H5) The function g : [0, b] × Cα → Xα is continuously differentialble and D1g and D2g are
locally lipschitz. Then there exists c0(r) > 0 such that for ϕ, ψ ∈ Cα with ‖ϕ‖Cα , ‖ψ‖Cα ≤ r,
we have

|Dtg(t, ϕ)−Dtg(t, ψ)|α ≤ c0(r)‖ϕ− ψ‖α for t ∈ [0, b].

|Dϕg(t, ϕ)−Dϕg(t, ψ)|α ≤ c0(r)‖ϕ− ψ‖α for t ∈ [0, b].

(H6) The maps t 7→ AC(t) is locally bounded.

Theorem 6. Assume that (H0), (H2), (H3), (H4), (H5) and (H6) hold. Let ϕ ∈ Cα sucth that
ϕ(0)− g(0, ϕ) ∈ D(A) and ϕ′(0)− η ∈ E Then Eq.(1.1) has unique mild solution.

Proof. Let us consider the following set

F(ϕ) = {u ∈ C1([0, b]), Xα) : u(0) = ϕ(0)}

endowed with the norm ‖u‖F(ϕ) = sup
0≤s≤b

|u(s)|α + sup
0≤s≤b

|u′(s)|α.

For u ∈ F(ϕ) we define ũ : [−r, b]→ Xα by

ũ(t) =


u(t) for t ∈ [0, b]

ϕ(t) for t ∈ [−r, 0]

Now, we define the operator Φ : F(ϕ)→ F(ϕ) by

Φ(u)(t) = C(t)(ϕ(0)− g(0, ϕ)) + S(t)(ϕ′(0)− η) + g(t, ũt) +

∫ t

0

AS(t− s)g(s, ũs)ds

+

∫ t

0

S(t− s)f(s, ũs, ũ′s)ds for t ∈ [0, b].

We will show that Φ is a strict contarction. Let u, v ∈ F(ϕ) and µ be a positive real number
such that ‖AC(t)‖ ≤ µ for t ∈ [0, b]. Then we have

Φ(u)(t)− Φ(v)(t) = g(t, ũt) + g(t, ṽt) +

∫ t

0

AS(t− s)[g(s, ũs)− g(s, ũs)]ds

+

∫ t

0

S(t− s)[f(s, ũs, ũ′
s)− f(s, ṽs, ṽ′s)]ds.

Then

|Φ(u)(t)− Φ(v)(t)|α ≤ |g(t, ũt) + g(t, ṽt)|α +
∣∣∣ ∫ t

0

AS(t− s)[g(s, ũs)− g(s, ũs)]ds
∣∣∣
α

+
∣∣∣ ∫ t

0

S(t− s)[f(s, ũs, ũ′s)− f(s, ṽs, ṽ′s)]ds
∣∣∣
α

≤ Lg‖ũt − ṽt‖α +
∣∣∣ ∫ t

0

(∫ t−s

0

AC(σ)[g(s, ũs)− g(s, ũs)]dσ
)
ds
∣∣∣
α
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+
∣∣∣ ∫ t

0

(∫ t−s

0

C(σ)[f(s, ũs, ũ′s)− f(s, ṽs, ṽ′s)]dσ
)
ds
∣∣∣
α

≤ Lg‖ũt − ṽt‖α + µLgb

∫ t

0

‖ũs − ṽs‖αds

+‖(−A)α−1‖bM1e
wbLF

∫ t

0

‖ũs − ṽs‖αds.

It follows that

|Φ(u)(t)− Φ(v)(t)|α ≤ γ1(b)‖u− v‖F(ϕ),(3.2)

where
γ1 =

[
Lg(1 + µb2) + ‖(−A)α−1‖M1e

wbb2LF

]
.

On the other hand, by use of Eq. (2.1) and Proposition 1, we have

(φ(u))′(t) = C′(t)(ϕ(0)− g(0, ϕ)) + S′(t)(ϕ′(0)− g′(0, ϕ)) +
d

dt
g(t, ũt) +

∫ t

0

AC(t− s)g(s, ũs)ds

+

∫ t

0

C(t− s)f(s, ũs, ũ′
s)ds.

Now let us pose

P (u)(t) =
d

dt
g(t, ut) = Dtg(t, ut) +Dϕg(t, ut)u

′
t.

Then we have

|P (u)(t)− P (v)(t)|α ≤ |Dtg(t, ut)−Dtg(t, vt)|α + |Dϕg(t, ut)−Dϕg(t, vt)|α

≤ |Dtg(t, ut)−Dtg(t, vt)|α + |Dϕg(t, ut)u
′
t −Dϕg(t, vt)u

′
t +D2g(t, vt)u

′
t −D2g(t, vt)|α

≤ |Dtg(t, ut)−Dtg(t, vt)|α + |Dϕg(t, ut)−Dϕg(t, vt)||u′
t|α + |Dϕg(t, vt)|α|u′

t − v′t|α

≤ c0(r)‖ut − vt‖α + c0(r)‖ut − vt‖Cα |u
′
t|α

+|Dϕg(t, vt)−Dϕg(t, ϕ) +Dϕg(t, ϕ)|α|u′
t − v′t|α

≤ c0(r)‖ut − vt‖α + c0(r)‖ut − vt‖α|u′
t|α

+
(
|Dϕg(t, vt)−D2g(t, ϕ)|α + |Dϕg(t, ϕ)|α

)
|u′
t − v′t|α

≤ c0(r)‖ut − vt‖α + c0(r)‖ut − vt‖α|u′
t|α +

(
c0(r)‖ut − ϕ‖|α + |Dϕg(t, ϕ)|α

)
|u′
t − v′t|α.

By the local lipschitz of Dϕg, there exists for each r > 0 a positive constant c0(r) such that
for ϕ ∈ Cα with ‖ϕ‖Cα ≤ r

|Dϕg(t, ϕ)|α ≤ c0(r)‖ϕ‖α + |Dϕg(s, 0)|α ≤ c0(r)r + sup
s∈[0,b]

|Dϕg(s, 0)|α = c1(r)

Moreover
‖ut − ϕ‖α ≤ sup

0≤τ≤b
|u(τ)− ϕ(0)|α ≤ ‖u− ϕ‖F(ϕ)
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because of u(τ) = ϕ(0) for τ ∈ [−r, 0].

Likewise, we have
‖ut − vt‖α ≤ sup

0≤τ≤b
|u(τ)− v(τ)|α ≤ ‖u− v‖F(ϕ)

because of u(τ) = v(τ) for τ ∈ [−r, 0].

Since by the definition of ‖.‖F(ϕ), we have

|u′t|α ≤ ‖u‖F(ϕ).

Thus it follows that

|P (u)(t)− P (v)(t)|α ≤
[
c0(r)

(
1 + ‖u‖F(ϕ) + ‖u− ϕ‖F(ϕ)

)
+ c1(r)

]
‖u− v‖F(ϕ)

(Φ(u))′(t)− (Φ(v))′(t) = P (u)(t)− P (v)(t) +

∫ t

0

AC(t− s)[g(s, ũs)− g(s, ṽs)]ds

+

∫ t

0

C(t− s)[f(s, ũs, ũ′s)− [f(s, ṽs, ṽ′s)]ds

Using the same reasoning like previously, then we have

|(Φ(u))′(t)− (Φ(v))′(t)|α ≤ γ2(b)‖u− v‖F(ϕ),(3.3)

where

γ2(b) =
[
c0(r)

(
1 + r + ‖u− ϕ‖F(ϕ)

)
+ c1(r)

]
+ b
(
µLg + LFM1e

wb‖(−A)α−1‖
)]

Adding equation (3.2) and equation (3.3), then we have

‖Φ(u)(t)− Φ(u)(t)‖F(ϕ) ≤ γ(b)
)
‖u− v‖F(ϕ),

where γ(b) = γ1(b) + γ2(b).
We choose b sufficiently small such that γ(b) < 1.

This means Φ is a strict contraction. By principle contraction, we can deduce that Φ has a
unique fixed point in F(ϕ). Then Eq.(1.1) has a unique mild solution on [0, b]. �

4. Existence of strict solutions

Theorem 7. Assume that (H0), (H2), (H3), (H4) and (H6) hold and f is continuously dif-
ferentiable. Moreover assume that the partial derivatives f1, f2 and f3 are locally lipschitz in
classical sens. i.e, there exists positive constant L1 such for ϕ1, ϕ2 ∈ Cα,

‖fi(t, ϕ, ϕ′)− fi(t, ψ, ψ′)‖ ≤ L1‖ϕ− ψ‖α for t ≥ 0, i = 1, 2, 3.

Let ϕ ∈ C2([−r, 0], D((−A)α)) such that ϕ(0), ϕ′′(0) ∈ D(A), ϕ′(0)− η ∈ E and

ϕ′′(0)− ∂ttg(0, ϕ)− ∂ϕtg(0, ϕ)ϕ′ − ∂tϕg(0, ϕ)ϕ′ − ∂ϕϕg(0, ϕ)ϕ′′ = Aϕ(0) + f(0, ϕ, ϕ′)

and Then the corresponding of mild solution u becomes a strict solution of equation (1.1) on
[0, b].
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Proof. Let ϕ ∈ C2([−r, 0], D((−A)α)) such that ϕ(0), ϕ′′(0) ∈ D(A), ϕ′(0)− η ∈ E and

ϕ′′(0)− ∂ttg(0, ϕ)− ∂ϕtg(0, ϕ)ϕ′ − ∂tϕg(0, ϕ)ϕ′ − ∂ϕϕg(0, ϕ)ϕ′′ = Aϕ(0) + f(0, ϕ, ϕ′).

Let v be the corresponding mild solution of equation (1.1) which is defined on [0, b] by



v(t) = C(t)
[
A(ϕ(0) + f(0, ϕ, ϕ′)

]
+ S(t)A(ϕ′(0)− η) + d

dt
P (u)(t) +

∫ t

0
AC(t− s)[Dtg(s, us)

−Dϕg(s, us)vs]ds+
∫ t

0
C(t− s)[f1(s, us, u′s) + f2(s, us, u

′
s)u
′
s + f3(s, us, u

′
s)vs]ds

v0 = ϕ′′

Now, we define w by

(4.1) w(t) =



ψ′(0) +

∫ t

0

v(s)ds if t ∈ [0, b]

w(t) = ψ′(t) if − r ≤ t ≤ 0

w′(t) = ψ′′(t) if − r ≤ t ≤ 0.

Where ψ′(0) = (ϕ′(0)− η)

Then we can see that wt = ψ′ +

∫ t

0

vsds for t ∈ [0, b].

Consequently the map t 7→ wt and t 7→
∫ t

0

C(t−s)f(s, us, u
′
s)ds are continuously differentiable.

Then we have

d

dt

∫ t

0

C(t− s)f(s, us, u
′
s)dss

=
d

dt

∫ t

0

C(s)f(t− s, ut−s, u′t−s)ds

= C(t)f(0, u0, w0) +

∫ t

0

C(t− s)
[
f1(s, us, ws) + fs(s, us, u

′
s)u
′
s

+f3(s, us, ws)vs

]
ds

= C(t)f(0, ϕ, ϕ′) +

∫ t

0

C(t− s)
[
f1(s, us, ws) + fs(s, us, u

′
s)u
′
s

+f3(s, us, ws)vs

]
ds,
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it follows that ∫ t

0

C(s)f(0, ϕ, ϕ′)ds

=

∫ t

0

C(s)f(s, us, u
′
s)ds−

∫ t

0

∫ s

0

C(s− τ)
[
f1(τ, uτ , wτ ) + f2(τ, uτ , wτ )u

′
τ

+f3(τ, uτ , wτ )vτ

]
dτds.

On other hand one has
d

dt

∫ t

0

AC(t− s)g(s, us)ds

=
d

dt

∫ t

0

AC(s)g(t− s, ut−s)dss = C(t)Ag(0, ϕ) +

∫ t

0

AC(t− s)[Dtg(s, us)

+Dϕg(s, us)vs]ds

which implies that∫ t

0

∫ s

0

AC(t− s)[D1g(τ, uτ ) +D2g(τ, uτ )vτ ]dτds =

∫ t

0

AC(t− s)g(s, us)ds− AS(t)g(0, ϕ).

Consequently we have

w(t) = ψ′(0) +

∫ t

0

C(s)(A(ϕ(0)− g(0, ϕ)ds+

∫ t

0

S(s)A(ϕ′(0)− η)ds+ P (u)(t)

+

∫ t

0

AC(t− s)g(s, us)ds−AS(t)g(0, ϕ) +

∫ t

0

C(t− s)f(s, us, u
′
s)ds−

∫ t

0

C(t− s)f(s, us, ws)ds

+

∫ t

0

∫ s

0

C(s− τ)
[
f1(τ, uτ , u

′
τ ) + f2(τ, uτ , u

′
τ )u′

s + f3(τ, uτ , u
′
τ )vτ

]
dτds

−
∫ t

0

∫ s

0

C(s− τ)
[
f1(τ, uτ , wτ ) + f2(τ, uτ , wτ )u′

τ

+f3(τ, uτ , wτ )vτ
]
dτds.

Moreover by Lemma 1, we have∫ t

0

C(s)Aϕ(0)ds = S(t)Aϕ(0)∫ t

0

S(t)A(ϕ′(0)− η)ds = C(t)(ϕ′(0)− η)− (ϕ′(0)− η) = C(t)(ϕ′(0)− η)− ψ′(0)

It follows that

w(t) = S(t)A(ϕ(0)− g(0, ϕ)) + C(t)(ϕ′(0)− η) +

∫
0

C(t− s)f(s, us, ws)ds+ P (u)(t)

+

∫ t

0

AC(t− s)g(s, us)ds+

∫ t

0

∫ s

0

C(s− τ)
[
(f1(τ, uτ , u

′
τ )− f1(τ, uτ , wτ ))

+(f2(τ, uτ , u
′
τ )− f2(τ, uτ , u′τ ))u′τ + (f3(τ, uτ , u

′
τ )− f3(τ, uτ , wτ ))vτdτ

]
ds.
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Furthermore for t ≥ 0, we know that

u′(t) = AS(t)(ϕ(0)− g(0, ϕ)) +C(t)(ϕ′(0)− η) + P (u)(t) +

∫ t

0

AC(t− s)g(s, us)ds+
∫ t

0

C(t− s)f(s, us, u′s)ds,

then for t ∈ [0, b], we have

u′(t)− w(t)

=

∫
0
C(t− s)[f(s, us, u′s)− f(s, us, ws)]ds+

∫ t

0

∫ s

0
C(s− τ)

[
(f1(τ, uτ , u

′
τ )− f1(τ, uτ , wτ ))

+(f2(τ, uτ , u
′
τ )− f2(τ, uτ , u′τ ))u′τ

+(f3(τ, uτ , u
′
τ )− f3(τ, uτ , wτ ))vτdτ

]
ds.

|u′(t)− w(t)|α

≤
∫ t

0

|C(t− s)[f(s, us, u
′
s)− f(s, us, ws)]|αds

+

∫ t

0

∫ s

0

|C(s− τ)(f1(τ, uτ , u
′
τ )− f1(τ, uτ , wτ ))|αdτds

+

∫ t

0

∫ s

0

|(f2(τ, uτ , u′τ )− f2(τ, uτ , u′τ ))u′τ |αdτds

+

∫ t

0

∫ s

0

|(f3(τ, uτ , u′τ )− f3(τ, uτ , wτ ))vτ |αdτds.

(4.2)

Let us choose F =
{
u′s, ws : s ∈ [0, b]

}
. Then F is compact set. It follows that f1, f2 and f3

are globally lipschitz on F . Let L1 > 0 be such that for t ∈ [0, b] and x, y ∈ H Then we have

‖f(t, x, x′)− f(t, y, y′)‖ ≤ L1‖x− y‖α
‖f1(t, x, x′)− f1(t, y, y′)‖ ≤ L1‖x− y‖α
‖f2(t, x, x′)− f2(t, y, y′)‖ ≤ L1‖x− y‖α
‖f3(t, x, x′)− f3(t, y, y′)‖ ≤ L1‖x− y‖α.

Consequently, using equation (4.2), we one can find a positive constance k(b) such that by
Gronwall’s lemma,

|u′τ − wτ |α ≤ k(b)

∫ t

0

‖u′s − ws‖αds,

then we deduce that u′ = w. Consequently, it follows that the mild solution is twice continuous
differentiable from [−r, b] to Xα and the function t −→ f(t, ut, u

′
t) and t −→ g(t, ut) are

continuous differentiable on [0, b], thus according to Theorem (1), we conclude that u is a strict
solution of equation (1.1) on [0, b]. �
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5. Application

For our illustration, we propose to study the existence of solutions for the following model
(5.1)

∂2

∂t2
[z(t, x)−

∫ 0

−r
k(t, z(t+ θ, x))dθ] =

∂2

∂x2
z(t, x)] +

∫ 0

−r
h(t,

∂

∂x
z(t+ θ, x),

∂

∂x
z′(t+ θ, x))dθ

for t ≥ 0 and x ∈ [0, π]

z(t, 0)−
∫ 0

−r
k(t, z(t+ θ, x))dθ = 0 for t ≥ 0

z(t, π)−
∫ 0

−r
k(t, z(t+ θ, x))dθ = 0

z(θ, x) = ϕ0(θ)(x) for θ ∈ [−r, 0] and x ∈ [0, π]

where h : R× R× R −→ R is continuous and there exists a positive constant L such that for
x, y, x1, y1 ∈ R,

|h(t, x, y)− h(t, x1, y2)| ≤ L
(
|x− x1|+ |y − y1|

)
We can choose for exemple

h(t, x, y) = e−t
2

[sin(
x

2
) + sin(

y

2
)] for (θ, x, y) ∈ R− × R× R

we can observe that

|h(t, x1, y1)− h(t, x2, y2)| ≤
1

2

(
|x1 − x2|+ |y1 − y2|

)
k : R− × R −→ R is lipschizian with respect to the second argument.
In the oder to rewrite equation (5.1) in the abstract form, we introduce the space X =

L2([0, π];R) vanishing at 0 and π, equipped with the L2 norm that is to say for all x ∈ X,

‖x‖L2 =
(∫ π

0

|x(s)|2ds
) 1

2
.

Let en(x) =

√
2

π
sin(nx), x ∈ [0, π], n ≥ 1, then (en)n≥1 is an orthogonal base for X.

Let A : X → X be defined by
Ay = y′′

D(A) =
{
y ∈ X : y, y′ are absolutuely continuous, y′′ ∈ X, y(0) = y(π) = 0

}
Then the operator is computed by

Ay =
+∞∑
n=1

−n2(y, en)en, y ∈ D(A),

where
(u, v) =

∫ π

0

u(s)v(s)ds for u, v ∈ X
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It is well known that A is the infinitesimal generator of strongly continuous cosine family
C(t), ∈ R in X which is given by

C(t)y =
+∞∑
n=1

cosnt(y, en)en, y ∈ X.

and that the associated sine family is given by

S(t)y =
+∞∑
n=1

1

n
sinnt(y, en)en, y ∈ X.

If we choose α =
1

2
. then (H0) and (A1) are satisfied since

(−A)
1
2y =

+∞∑
n=1

(y, en)en, y ∈ D((−A)).

and

(−A)
1
2y =

+∞∑
n=1

1

n
(y, en)en, y ∈ X.

Frome [10], the compactness of A−1 follows from Lemma 3 and the fact that the eigenvalues of

(−A)
1
2 are λn =

1

n
, n = 1, 2 . . ., the (H3) is satisfied.

We define the space
C = C1([−r, 0], X)

where C1([−r, 0], X) is the space of bounded uniformly continuous differentiable from [−r, 0]

into X whith the norm
|ϕ| = sup

−r≤θ≤0
|ϕ(θ)|.

Let f : R× C 1
2
× C 1

2
−→ X and g : R× C 1

2
define by

f(t, ϕ, ϕ′)(x) =

∫ 0

−r
h(t,

∂

∂x
ϕ(θ)(x),

∂

∂x
ϕ′(θ)(x))dθ for x ∈ [0, π], t ≥ 0, ϕ,∈ C 1

2

and

g(t, ϕ, )(x) =

∫ 0

−r
k(t, ϕ(θ)(x))dθ for x ∈ [0, π], t ≥ 0, ϕ,∈ C 1

2

where ϕ,∈ C 1
2
define by

ϕ(θ)(x) = ϕ0(θ, x)

and the norm in C 1
2
is given by

‖ϕ‖C 1
2

= sup
θ∈[−r,0]

(∫ π

0

∣∣ ∂
∂x

[ϕ(θ)(x)]
∣∣2dx) 1

2
+ sup

θ∈[−r,0]

(∫ π

0

∣∣ ∂
∂x

[ϕ′(θ)(x)]
∣∣2dx) 1

2

Let us pose v(t) = z(t, x). Then equation (5.1) takes the following abstract form

(5.2)



d2

dt
[v(t)− g(t, vt)] = Av(t) + f(t, vt, v

′
t) for t ≥ 0

v0 = ϕ ∈ C 1
2

v′0 = ϕ′ ∈ C 1
2
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From [10], for all y ∈ X 1
2
, y is absolutely continuous and |y| 1

2
= |y|L2 Let ϕ, ψ ∈ C1([−r, 0], X 1

2
),

since
|h(t, x1, y1)− h(t, x2, y2)| ≤

1

2

(
|x1 − x2|+ ‖y1 − y2|

)
|f(t, ϕ, ϕ′)− f(t, ψ, ψ′)|L2 ≤

(∫ π

0

(∫ 0

−r
h(t,

∂

∂x
[ϕ(θ)(x)],

∂

∂x
[ϕ′(θ)(x)]dθ

)

+
(∫ π

0

(∫ 0

−r
h(t,

∂

∂x
[ψ(θ)(x)],

∂

∂x
[ψ′(θ)(x)])dθ

)2
dx
) 1

2

≤ 1

2
r
[( ∫ π

0

∣∣∣ ∂
∂x

[ϕ(θ)(x)]− ∂

∂x
[ψ(θ)(x)]

∣∣∣2dx) 1
2

+
(∫ π

0

∣∣∣ ∂
∂x

[ϕ′(θ)(x)]− ∂

∂x
[ψ′(θ)(x)]

∣∣∣2dx) 1
2
]

By Minkawski Lemma, we have

|f(t, ϕ, ϕ′)− f(t, ψ, ψ′)|L2 ≤ 1

2
r
[( ∫ π

0

∣∣∣ ∂
∂x

[ϕ(θ)(x)]− ∂

∂x
[ψ(θ)(x)]

∣∣∣2dx) 1
2

+
(∫ π

0

∣∣∣ ∂
∂x

[ϕ′(θ)(x)]− ∂

∂x
[ψ′(θ)(x)]

∣∣∣2dx) 1
2
]

≤ 1

2
r
[

sup
θ∈[−r,0]

(∫ π

0

∣∣∣ ∂
∂x

[ϕ(θ)(x)]− ∂

∂x
[ψ(θ)(x)]

∣∣∣2dx) 1
2

+ sup
θ∈[−r,0]

(∫ π

0

∣∣∣ ∂
∂x

[ϕ′(θ)(x)]− ∂

∂x
[ψ′(θ)(x)]

∣∣∣2dx) 1
2
]
,

which implies that

|f(t, ϕ, ϕ′)− f(t, ψ, ψ′)|L2 ≤ 1

2
r‖ϕ− ψ‖C 1

2

.

(H7) 0 < rLh < 1

We claim that g is a contraction function with respect to the second argument with value in
X 1

2
. Indeed let ϕ1, ϕ2 ∈ C 1

2
and Lk the constant lipschitz of k. Then we have

|g(t, ϕ)− g(t, ψ)|L2 ≤ Lkr‖ϕ− ψ‖C 1
2

.

Consequently, assumption (H7) implies that g is a strict contraction. Moreover

Dt(g(t, ϕ)(x)) =

∫ 0

−r

∂

∂t
k(t, ϕ(θ)(x))dθ,

and

Dϕ(g(t, ϕ)(ϕ)(x)) =

∫ 0

−r

∂

∂v
k(t, ϕ(θ)(x))(ψ(θ))(x)dθ,

which implies that the partial derivates of g are locally lipschitzian with the respect of second
argument. Then the equation (5.2) has a unique mild solution.

Proposition 2. Under the above assumptions, equation (5.2) has a unique mild solution which
is defined for all t ≥ 0
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