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SECOND ORDER ASYMPTOTICS FOR THE VASICEK MODEL DRIVEN
BY LEVY PROCESSES

JAYA P. N. BISHWAL

Abstract. In the Vasicek model driven by Levy processes, we obtain the bound on the Kol-
mogorov distance, i.e., the rate of weak convergence to normality for the maximum likelihood
estimator of the speed of mean reversion parameter.

1. Introduction and Preliminaries

Levy processes are stochastic processes with stationary independent increments. Levy Ornstein-
Uhlenbeck (LOU) process generalizes the Ornstein-Uhlenbeck process to include jumps, see
Jacod and Shiryayev [26]. The Levy Ornstein-Uhlenbeck (LOU) process, is an extension of
Ornstein-Uhlenbeck process with Levy process driving term. Levy driven processes of Ornstein-
Uhlenbeck type have been extensively studied over the last decade and widely used in finance,
see Barndorff-Neilsen and Shephard [1]. In finance, it is useful as a generalization of Vasicek
model, as one-factor short-term interest rate model which could take into account the jump of
the interest rate. It also generalizes stochastic volatility model where the volatility has jumps.

Jump processes are of two types: Finite activity processes and infinite activity processes.
Finite activity processes have finite number of jumps in a finite time interval, e.g., a Poisson
process and infinite activity processes have infinite number of jumps in a finite time interval,
e.g., gamma process, inverse Gaussian process and tempered stable process.

It is well known that the suitably parametrized autoregresive (AR) process with Gaussian
error has the continuous limit the Vasicek model. Wolfe (1982) studied continuous analogue of
the stochastic difference equation of AR type with Levy type innovations whose limit is a Levy
driven OU Process. Gourieroux and Jasiak [24] studied autoregressive gamma (ARG) process
and showed that its continuous time limit is the Cox-Ingersoll-Ross (CIR) model. Thus the sta-
tionary ARG process is a discretized version of the CIR process. Gourieroux and Jasiak(2006)
studied pseudo-maximum likelihood estimation in autoregressive gamma (ARG) process. This
process can also be used for application in series of squared returns and intertrade durations
for high-frequency data, i.e., it is a stochastic duration model. ARG model also fits a series of
volumes per trade, which is an alternative proxy for liquidity. This is different from gamma
autoregressive process (GAR) process studied in Sim [41] and Gaver and Lewis [23] where just
the noise of the linear autoregressive process is Gamma distributed. For intertrade durations,

Department of Mathematics and Statistics, University of North Carolina at Charlotte,
376 Fretwell Bldg., 9201 University City Blvd., Charlotte, NC 28223, USA

E-mail address: J.Bishwal@uncc.edu.
Key words and phrases. Itô stochastic differential equation, Vasicek model, Levy process, Mean-reversion

speed, Kolmogorov distance, Berry-Esseen bound.
Received 24/06/2024.

1

https://doi.org/10.28919/ejma.2025.5.2
http://ejma.euap.org


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2025.5.2 2

the most popular model is autoregressive conditional duration (ACD) model introduced by
Engle and Russell (1998).

For the exponential AR(1) model, the ratio estimator was introduced in Davis and Mc-
Cormick (1989). This estimator is motivated by the extreme value theory for the correlation
parameter of an AR(1) process whose innovation distribution is positive. In the case of expo-
nential AR(1) process, it coincides with the maximum likelihood estimator. See Neilsen and
Shephard [38].

The weak consistency of the ratio estimator in the LOU process was studied in Jongbloed et
al. [27]. The strong consistency and asymptotic Weibullness was studied in Brockwell, Davis
and Yang [15] in the case of Gamma innovations.

Parameter estimation for directly observed stochastic differential equations is studied in
Bishwal [6]. Parameter estimation in partially observed stochastic volatility models is studied
in Bishwal [13]. Hypothesis testing for stochastic differential equations is studied in Linkov
[29, 30]. Parameter estimation and hypotheses testing in ergodic diffusion processes is studied
in Kutoyants [28]. Luschgy [32–37] and Linkov [29] studied inference for semimartingales.

Berry-Esseen inequalities for discretely observed diffusion was studied in Bishwal [7]. For
the standard Ornstein-Uhlenbeck process, sufficiency and Rao-Blackwellization was studied in
Bishwal [10] where also a time transformation to reduce the general problem to a fixed time
case and the asymptotics were studied in large parameter case. Rate of weak convergence of the
approximate minimum contrast estimators for discretely observed Ornstein-Uhlenbeck process
was studied in Bishwal [4]. Maximum quasi-likelihood estimation in fractional Levy stochastic
volatility model was studied in Bishwal [9]. Berry-Esseen inequalities for the fractional Black-
Karasinski model of term structure of interest rates were studied in Bishwal [12].

The standard O(T−1) rate holds in the singular case. In the model driven by standard
Brownian motion innovation case, the limit distribution is Dicky-Fuller distribution or White
distribution, see White [42], which does not have a closed form, see Feigin [20]. Recall that in
the singular case for zero innovation mean locally asymptotically Brownian functional (LABF)
condition holds while for nonzero innovation mean, local asymptotic normality (LAN) condition
holds, see Bishwal [11].

Consider the Vasicek model

dXt = (θ0 − θ1Xt)dt+ dVt(θ2), X0 = 0

In financial literature, this model is heavily used in term structure of interest rates and in bond
pricing, see Brigo and Mercurio [14]. With a positive innovation process, this model is used for
modeling stochastic volatility, see Barndorff-Nielsen and Shephard [1] and Bishwal [13]. This is
a mean reverting model. The parameter θ0 is called the mean reversion level and the parameter
θ1 is called the speed of mean reversion. For simplicity first assume that θ0 = 0. Let Xt be
described by the Ornstein-Uhlenbeck type linear SDE

dXt = −θ1Xtdt+ dVt(θ2), X0 = 0

where θ1 ∈ Θ1 = R and V (θ2) is a process with stationary independent increments with
V0(θ2) = 0 and Levy characteristics (b(θ2)t, ct, L(θ2)t) depending on a parameter θ2 from
an arbitrary set Θ2. We assume that the trajectories of V (θ2) are right continuous with left
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limits. This model provides the natural analogue of the discrete time of AR(1) models with
i.i.d. innovations.

For θ = (θ1, θ2) ∈ Θ = Θ1×Θ2, let Pθ,t be the distribution of X when observed up to time t.
For θ ∈ Θ, let PΘ denote the distribution of the unique solution of the SDE on Ω = D(R+,R)

equipped with the coordinate process X = (Xt)t≥0 and the σ-algebra F = σ(Xt : t ≥ 0) where
D(R+,R) is the space of real valued functions on R+ which are right continuous with left limits.
Let (Ft)t≥0 denote the right continuous filtration generated by X.

Under Pθ, the process V (θ1) defined by Vt(θ1) = Xt + θ1

∫ t
0
Xsds has independent station-

ary increments and Levy characteristics (b(θ2)t, ct, L(θ2)t) relative to some fixed continuous
bounded truncation function h : R→ R with compact support satisfying h(x) = x in a neigh-
borhood of zero, that is,

Eθ exp(izVt(θ1)) = exp

(
t

[
izb(θ2)− 1

2
cz2 +

∫
(exp(izx)− 1− izh(x))L(θ2)(dx)

])
, z ∈ R,

where b(θ2) ∈ R, c > 0, and L(θ2) is a Levy measure on R satisfying L(θ2)({0}) = 0 and∫
(x2 ∧ 1)L(θ2)(dx) <∞ (See Jacod and Shiryayev [26] II.4.19, III.2.26). Thus X is a solution

of the above SDE with respect to V (θ1). Assume for simplicity that c = 1.

Now fix τ, θ ∈ Θ such that Pτ 6= Pθ. Let m(τ2) = Eτ (V1(τ1)) and σ2(τ2) = VarτV1(τ1).
Then

m(τ2) = b(τ2) +

∫
(x− h(x))L(τ2)(dx), σ2(τ2) = 1 +

∫
x2L(τ2)dx.

We call (m(τ2)t, t, L(τ2)t) Levy characteristics of V (τ1) without truncation.
The basic regularity conditions are the following: We assume the conditions (A1)–(A4).
(A1) L(τ2) and L(θ2) are mutually absolutely continuous and

∫
(f(τ2, θ2))1/2−1)2dL(θ2) <∞

where f(τ2, θ2) = dL(τ2)/dL(θ2).

Let
a(τ2, θ2) := b(τ2)− b(θ2)−

∫
(f(τ2, θ2)− 1)hdL(θ2).

(A1) implies that
∫
|(f(τ2, θ2) − 1)h|dL(θ2) < ∞. Hence a(τ2, θ2) ∈ R. Note also that

a(τ2, θ2) = −a(τ2, θ2).

Define the Kullback- Leibler information of Levy measures by

K(L(τ2, θ2)) =

∫
(f(θ2, τ2)− 1− log f(θ2, τ2))dL(τ2).

(A2) K((L(τ2), L(θ2)) <∞.
(A3)

∫
(log f(τ2, θ2))2dL(τ2) <∞.

(A4)
∫
x2L(τ2)(dx) <∞.

(A4) is equivalent to EτV 2
t (τ1) < ∞ for every t ≥ 0. Let m(τ2) = EτVt(τ1). Then m(τ2) =

b(τ2) +
∫

(x− h(x))L(τ2)(dx) and σ2(τ2) = 1 +
∫
x2L(τ2)(dx).

Under (A1), Pτ,t and Pτ,t are mutually absolutely continuous and he log-likelihood ratio
ΛT (τ, θ) = log(dPτ,t/dPθ,t) admits the representation

ΛT (τ, θ) = −ΛT (θ, τ) =

∫ T

0

[(θ1 − τ1)Xs− + a(τ2, θ2)]dXc
s(τ) +

1

2

∫ T

0

[(θ1 − τ1)Xs + a(τ2, θ2)]2ds

+

∫
(1− f(θ2, τ2))d(µ− ν(τ2)) +

∫ T

0

∫
(f(θ2, τ2)− 1− log f(τ2, θ2))dµ
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where µ is the Poisson random measure on R+ × R associated with the jumps of X by
µ =

∑
t≥0 ε(t,∆Xt)I{∆Xt 6=0} with with ∆Xt = Xt −Xt−, ∆X0 = 0 and dν = ν(ω, dt, dx) is the

compensator. ∑
0<s≤t

I(|∆Xs|>1) =

∫ t

0

∫
|x|>1

xdµ.

This gives

ΛT (τ, θ) = YT +
1

2

∫ T

0

[(θ1 − τ1)Xs + a(τ2, θ2)]2ds+K(L(τ2), L(θ2))T

where

YT =

∫ T

0

[(θ1 − τ1)Xs− + a(τ2, θ2)]dXc
s(τ) +

∫ T

0

∫
log f(τ2, θ2)d(µ− ν(τ2)).

We assume ∫
|x|dL(θ3, dx) <∞ and EθV (θ) =

∫
xdL(θ3)

for every θ.
The maximum likelihood estimator (MLE) based on the observations in [0, T ] is given by

θ̂1,T :=
T −X2

T +
∑

s≤T ∆X2
s

2
∫ T

0
X2
sds

.

Bishwal [10] studied Berry-Esseen inequalities for the maximum likelihood estimator in
Ornstein-Uhlenbeck driven by Gamma process in the ergodic case by the truncation method.

The MLE based on the observations in [0, T ] for the Vasicek model

dXt = (θ0 − θ1Xt)dt+ dVt(θ2), X0 = 0

are given by

θ̂1,T :=
TJ1,T +

∫ T
0
XsdsJ2,T

T
∫ T

0
X2
sds− (

∫ T
0
Xsds)2

,

θ̂0,T :=

∫ T
0
XsdsJ1,T +

∫ T
0
X2
sdsJ2,T

T
∫ T

0
X2
sds− (

∫ T
0
Xsds)2

,

where
J1,T := (

∑
s≤T

∆X2
s + T −X2

T )/2, J2,T := XT −
∑
s≤T

∆Xs.

Suppose V (θ)−Xc(θ) is a gamma process with parameter 1/θ3 under Pθ, with Lebesgue den-
sity θ−t2 xt−1e−x/θ2I(0,∞)(x)/Γ(t), Levy measure L(θ) has the Lebesgue density x−1e−x/θ2I(0,∞)(x),
E(V (θ)) =

∫
xdL(θ2) = θ2,

∫
x2L(θ2, dx) = θ2

2 or a Poisson process with intensity θ2, E(V (θ)) =

1/θ2. Then the MLE of θ3 is
θ̂2,T := T−1

∑
s≤T

∆Xs.

This estimator is regular and efficient.
The Kullback-Leibler information K(Pτ,t, Pθ,t) = EτΛt(τ, θ) of Pτ,t with respect to Pθ,t is

finite under the above conditions.

K(τ, θ) =
1

2
(θ1−τ1)2

(
σ2(τ2)

2τ1

+
m(τ2)2

τ 2
1

)
+(θ1−τ1)a(τ2, θ2)

m(τ2)

τ1

+K(L(τ2), L(θ2))+
1

2
a(τ2, θ2)2.
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Let

H(τ, θ) :=

[
m(τ2)

θ2
1

τ1

+ (a(τ2, θ2)−m(τ2))
θ1

τ1

]2

+σ2(τ2)
(θ2

1 − τ 2
1 )2

8τ 3
1

+

∫ [
log f(τ2, θ2)(x) +

(θ1 − τ1)2

4τ1

x2

+

{
m(τ2)

θ2
1

τ1

+ (a(τ2, θ2)− 2m(τ2))
θ1

τ1

+m(τ2)− a(τ2, θ2)

}
x

]2

L(τ2)(dx)

+σ2(τ2)

∫
x2L(τ2)(dx)

(θ1 − τ1)4

8τ 3
1

.

K(Pτ,T , Pθ,T ) =
1

6
θ2

1m(τ2)2T 3 +O(T 2) = K̄(τ, θ)T 3 +O(T 2)

where
K̄(τ, θ) :=

1

6
θ2

1m(τ2)2, H̄(τ, θ) :=
2

15
θ4

1m(τ2)2σ2(τ2).

Let
H̄−5/2 =: β.

Consider the critical case: θ1 = 0 and EV (θ) 6= 0.

For simplicity of notations, let m = m(τ2), σ2 = σ2(τ2), a = a(τ2, θ2), f = f(τ2, θ2), L =

L(τ2), ν = ν(τ2), Xc = Xc(τ), V = V (τ1). Hence H̄ = 2
15
θ4

1m
2σ2.

Define a Pτ martingale M by Mt := Vt −mt. Then EτM2
t = 〈M〉t = σ2 and integration by

parts under Pτ yields

Xt =
m

τ1

(1− e−τ1t) + e−τ1t
∫ t

0

eτ1sdMs

if τ1 6= 0.

The decomposition of M into a continuous martingale and purely discontinuous martingale
is equal to

Mt = Xc
t +

∫ t

0

∫
x(µ− ν)(ds, dx).

ΛT (τ, θ) = −ΛT (θ, τ) =

∫ T

0

[(θ1 − τ1)Xs− + a(τ2, θ2)]dXc
s(τ) +

1

2

∫ T

0

[(θ1 − τ1)Xs + a(τ2, θ2)]2ds

+

∫
(1− f(θ2, τ2))d(µ− ν(τ2)) +

∫ T

0

∫
(f(θ2, τ2)− 1− log f(τ2, θ2))dµ

Under the assumption θ1 = 0 and EV (θ) 6= 0 we have X = V .

ΛT (τ, θ) = YT +
1

2

∫ T

0

[(θ1 − τ1)Xs + a(τ2, θ2)]2ds+K(L(τ2), L(θ2))T

where

YT =

∫ T

0

[(θ1 − τ1)Xs− + a(τ2, θ2)]dXc
s(τ) +

∫ T

0

∫
log f(τ2, θ2)d(µ− ν(τ2))

is a Pτ martingale with the bracket process

〈Y 〉T =

∫ T

0

[(θ1 − τ1)Xs− + a(τ2, θ2)]2ds+

∫
(log f(τ2, θ2))2dLT.

ΛT (τ, θ) = YT +
1

2
θ2

1

∫ T

0

M2
s ds+ θ2

1m

∫ T

0

Mssds+ θ1a

∫ T

0

Msds
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+[K((L(τ2), L(θ2)) +
1

2
a2]T +

1

2
θ1amT

2 + K̄T 3.

T−5/2[ΛT (τ, θ)− K̄T 3] = T−5/2YT + T−5/2 1

2

∫ T

0

M2
s ds+ T−5/2θ2

1m

∫ T

0

Mssds

+T−5/2θ1a

∫ T

0

Msds+ T−3/2

[
K((L(τ2), L(θ2)) +

1

2
a2

]
+ T−1/2 1

2
θ1am.

For T > 0, define MT by MT
s = T−1/2MsT . By the functional limit theorem for martingales,

under Pτ , MT →D σB as T →∞ and hence by the continuous mapping theorem

T−5/2

∫ T

0

Mssds =

∫ 1

0

MT
s sds→D σ

∫ 1

0

Bssds,

T−2

∫ T

0

M2
s ds =

∫ 1

0

(MT
s )2ds→D σ2

∫ 1

0

B2
sds.

Since
Eτ

∫ ∞
0

(1 + s2)−2d〈Y 〉s <∞

it follows from the SLLN for martingales

T−2YT → 0 Pτ − a.s.

Also

T−2

∫ T

0

Msds→ 0 Pτ − a.s.

Since
∫ 1

0
Bssds is N (0, 2/15)-distributed, by the functional CLT for martingales,

lim
T→∞

T−5/2[ΛT (τ, θ)− K̄T 3] = N (0, H̄).

Next the derivative of the likelihood is given by

Λ′T (τ, θ) =

∫ T

0

Xs−dX
c
s + θ1

∫ T

0

M2
s ds+ 2θ1m

∫ T

0

Mssds+ a

∫ T

0

Msds+
1

2
amT 2 +

1

3
θ1m

2T 3.

Solution of the likelihood equation Λ′T (τ, θ) = 0 provides the MLE

θ̂1,T =
−
∫ T

0
Xs−dX

c
s − a

∫ T
0
Msds− 1

2
amT 2∫ T

0
M2

s ds+ 2
∫ T

0
Mssds+ 1

3
m2T 3

.

Thus

θ̂1,T − θ1 =
−
∫ T

0
Xs−dX

c
s − a

∫ T
0
Msds− 1

2
amT 2 − θ1

∫ T
0
M2

s ds− 2θ1

∫ T
0
Mssds− 1

3
θ1m

2T 3∫ T
0
M2

s ds+ 2
∫ T

0
Mssds+ 1

3
m2T 3

which gives (
T

2β

)1/2

(θ̂1,T − θ)

=

(
2β
T

)5/2
(
−
∫ T

0
Xs−dX

c
s − a

∫ T
0
Msds− 1

2
amT 2 − θ1

∫ T
0
M2

s ds− 2θ1

∫ T
0
Mssds− 1

3
θ1m

2T 3
)

(
2β
T

)5
(∫ T

0
M2

s ds+ 2
∫ T

0
Mssds+ 1

3
m2T 3

) .

Hence the MLE does not converge to normal distribution in the singular case. The asymp-
totic normality of the MLE only holds in the ergodic case θ1 > 0. In the following section we
only focus on the ergodic case.
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We need the following lemma in the sequel.

Lemma 1.2 (Esseen’s Smoothing Lemma:)

Let F be a non-decreasing function and G be a differentiable function of bounded variation on
the real line with F (±∞) = G(±∞). Denote the corresponding Fourier-Stieltjes transforms by
F̂ and Ĝ, respectively. Then for all U > 0,

sup
x∈R
|F (x)−G(x)| ≤ 1

π

∫ U

−U

∣∣∣F̂ (u)− Ĝ(u)
∣∣∣

|u|
du+

24

πU
sup
x∈R
|G′(x)|.

Proof: See Petrov (1975) or Feller (1971).

2. Main Results

Let Φ(·) denote the standard normal distribution function. Throughout the paper C denotes
a generic constant (perhaps depending on θ, but not on anything else). In this section, we
assume θ1 > 0 and θ0 = 0.

Denote (
T

2β

)1/2

(θ̂1,T − θ) = −
(

2β
T

)5/2
ZT(

2β
T

)5
IT

where

ZT :=

∫ T

0

XtdVt and IT :=

∫ T

0

X2
t dt.

Next we have some lemmas on large deviations and Fourier distance of the terms in the
MLE to obtain bounds on the Kolmogorov distance between the MLE distribution and normal
distribution.

The first lemma is on large deviations for the quadratic variation integral whose proof is
similar to Florens-Landais and Pham [22] and Bercu et al [2].

Lemma 2.1 For every δ > 0,

P

{∣∣∣∣ITT
∣∣∣∣ ≥ δ

}
≤ C exp

(
−CTδ2

)
.

The following lemma gives the bounds on the distance of the characteristic functions of the
terms in the MLE and the normal characteristic function.

Lemma 2.2 (a) Let φT (z1, z2) := E exp{(z1IT + z2(X2
T + JT )}, z1, z2 ∈ C where JT :=∑

s≤T ∆X2
s . Then φT (z1, z2) exists for |zi| ≤ δ, 1 = 1,2 for some δ > 0 and is given by

φT (z1, z2) = exp

(
βT

2

)[
2γ

(γ − β + 2z2)e−γT + (γ + β − 2z2)eγT

]1/2

https://doi.org/10.28919/ejma.2025.5.2
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where γ = (β2 − 2z1)1/2 and we choose the principal branch of the square root.
(b) Let

GT,x := −
(

2β

T

)1/2

ZT −
(

(
2β

T
)5IT − 1

)
x

Then for |x| ≤ 2(log T )1/2 and for |t| ≤ εT 1/2, where ε is sufficiently small,∣∣∣∣E exp(itGT,x)− exp(
−t2

2
)

∣∣∣∣ ≤ C exp(
−t2

4
)(|t|+ |t|3)T−1/2.

(c) For |t| ≤ ε1T
1
2 , where ε1 is sufficiently small, we have as T →∞,∣∣∣∣∣E exp

{
it

(
2β

T

)1/2(
βIT −

T

2

)}
− exp(−t

2

2
)

∣∣∣∣∣ ≤ C exp(−t
2

4
)(|t|+ |t|3)T−1/2.

(d) For |t| ≤ ε1T
1
2 , where ε1 is sufficiently small, we have as T →∞,∣∣∣∣∣E exp

{
it

(
2β

T

)1/2

ZT

}
− exp(−t

2

2
)

∣∣∣∣∣ ≤ C exp(−t
2

4
)(|t|+ |t|3)T−1/2.

Proof : Part (a) is given in Liptser and Shiryayev (1978) for z1 ∈ R, z2 = 0 for the Brownian
case. We shall prove part (b) in details. Proof of part (c) and (d) are very similar to part (b)
and will be omitted.

By Itô formula,

ZT = θIT +
X2
T

2
− T

2
+

1

2

∑
s≤T

∆X2
s .

Note that

E exp(itGT,x)

= E exp

[
−it

(
2β

T

)1/2

ZT − it
(

(
2β

T
)IT − 1

)
x

]

= E exp

[
−it

(
2β

T

)1/2
{
θIT +

X2
T

2
− T

2
+

1

2

∑
s≤T

∆X2
s

}
− it

(
(
2β

T
)IT − 1

)
x

]
= E exp[z1IT + z2(X2

T +
∑
s≤T

∆X2
s ) + z3])

= exp(z3)φT (z1, z2)

where

z1 = −itθδT,x, z2 = −it
2

(
2β

T

)1/2

, z3 =
itT

2
δT,x, δT,x =

(
2β

T

)1/2

+
2x

T
.

Note that (z1, z2) satisfies the conditions of (a) by choosing ε sufficiently small. Let α1,T (t), α2,T (t),

α3,T (t) and α4,T (t) be functions which areO(|t|T−1/2), O(|t|2T−1/2), O(|t|3T−3/2) andO(|t|3T−1/2)

respectively. Note that for the given range of values of x and t, the conditions on zi for part
(a) of Lemma are satisfied. Note also that z2 = α1,T (t). Further, with

$T (t) = 1 + it
δT,x
β

+
t2δ2

T,x

2β2
,
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Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2025.5.2 9

γ = (β2 − 2z1)1/2

= θ

[
1− z1

β2
− z2

1

2β4
+

z3
1

2β8
+ · · ·

]
= β

[
1 + it

δT,x
β

+
t2δ2

T,x

2β2
+
it3δ3

T,x

2β3
+ · · ·

]
= β[1 + α1,T (t) + α2,T (t) + α3,T (t)]

= β$T (t) + α3,T (t)

= β[1 + α1,T (t)].

Thus
γ − β = α1,T , γ + β = 2β + α1,T .

Hence the above expectation equals

exp

(
z3 +

βT

2

)[
2β$T (t) + α3,T (t)

α1,T exp{−θT$T (t) + α4,T (t)}+ (2β + α1,T (t)) exp{βT$T (t) + α4,T (t)}

]1/2

=

[
1 + α1,T (t)

α1,T exp(χT (t)) + (1 + α1,T (t)) exp(ψT (t))

]1/2

where

χT (t) = −βT$T (t) + α4,T (t)− 2z3 − βT

= −2βT + α1,T (t) + t2α1,T (t).

and

ψT (t) = βT$T (t) + α4,T (t)− 2z3 − βT

= βT

[
1 + it

δT,x
β

+
t2δ2

T,x

2β2

]
+ α4,T (t)− itT δT,x − βT

=
t2T

2β

[(
2β

T

)5/2

+
2x

T

]2

= t2 + t2α1,T (t).

Hence, for the given range of values of t, χT (t)− ψT (t) ≤ −βT .
Hence the above expectation equals

exp(− t
2

2
)(1 + α1,T )

1/2
[
α1,T exp{−2βT + α1,T + t2α1,T }+ (1 + α1,T (t)) exp{t2α1,T (t)}

]−1/2

= exp(− t
2

2
)
[
1 + α1,T )(1 + α1,T (1 + α1,T ) exp{−βT + α1,T + t2α1,T }

]
exp(t2α1,T (t)).

Parts (c) and (d) of Lemma 2.2 give the Berry-Esseen rate for ZT and IT immediately by
using the Esseen’s lemma.

Corollary 2.3

(a) sup
xεR

∣∣∣∣∣P
{(

2β

T

)1/2

ZT ≤ x

}
− Φ(x)

∣∣∣∣∣ ≤ CT−1/2.

(b) sup
x∈R

∣∣∣∣P {(
2β

T
)1/2(θIT −

T

2
) ≤ x

}
− Φ(x)

∣∣∣∣ ≤ CT−1/2.
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Before we prove the results on the Berry-Esseen bound for the MLE with nonrandom norm-
ing, we need the following estimate on the tail behaviour of the MLE.

Lemma 2.4

P

{
(
T

2β
)1/2|θT − θ| ≥ 2(log T )1/2

}
≤ CT−1/2

Proof :

P

{
(
T

2β
)1/2|θT − θ| ≥ 2(log T )1/2

}
= P

{∣∣∣∣∣(2β
T

)1/2ZT

(2β
T

)IT

∣∣∣∣∣ ≥ 2(log T )1/2

}

≤ P

{∣∣∣∣(2β

T
)1/2ZT

∣∣∣∣ ≥ (log T )1/2

}
+ P

{∣∣∣∣(2β

T
)IT

∣∣∣∣ ≤ 1

2

}
≤

∣∣∣∣P {(
2β

T
)1/2|ZT | ≥ (log T )1/2

}
− 2Φ(−(log T )1/2)

∣∣∣∣
+2Φ(−(log T )1/2) + P

{∣∣∣∣(2β

T
)IT − 1

∣∣∣∣ ≥ 1

2

}
≤ sup

x∈R

∣∣∣∣P {(
2β

T
)1/2|ZT | ≥ x

}
− 2Φ(−x)

∣∣∣∣
≤ sup

xεR

∣∣∣∣P {(
2β

T
)1/2|ZT | ≥ x

}
− 2Φ(−x)

∣∣∣∣
+2Φ(−(log T )1/2) + P

{∣∣∣∣(2β

T
)IT − 1

∣∣∣∣ ≥ 1

2

}
≤ CT−1/2 + C(T log T )−1/2 + Ce−CT

≤ CT−1/2.

The bounds for the first and the third terms come from Corollary 2.3 (a) and Lemma 2.1 re-
spectively and that for the middle term comes from Feller ( [21], p. 166).

We are now in a position to obtain the Berry-Esseen bound of the order O(T−5/2) for the MLE.

Theorem 2.5

(a) sup
x∈R

∣∣∣∣P {(
T

2β
)1/2(θ̂1,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣ = O(T−1/2).

Proof : We shall consider two possibilities: (i) |x| > 2(log T )1/2 and (ii) |x| ≤ 2(log T )1/2.
(i) We shall give a proof for the case x > 2(log T )1/2. The proof for the case x < −2(log T )1/2

runs similarly. Note that∣∣∣∣P {(
T

2β
)1/2(θ̂1,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣ ≤ P

{
(
T

2β
)1/2(θ̂1,T − θ) ≥ x

}
+ Φ(−x)

But Φ(−x) ≤ Φ(−2(log T )1/2) ≤ CT−2. See Feller ( [21], p. 166).
Moreover by Lemma 2.4, we have

P

{
(
T

2β
)1/2(θ̂1,T − θ) ≥ 2(log T )1/2

}
≤ CT−1/2.
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Hence ∣∣∣∣P {(
T

2β
)1/2(θ̂1,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣ ≤ CT−1/2.

(ii)

Let AT :=

{
(
T

2β
)1/2|θ̂1,T − θ| ≤ 2(log T )1/2

}
and BT :=

{
IT
T
> c0

}
where 0 < c0 <

1
2β
. By Lemma 2.4, we have

P (AcT ) ≤ CT−1/2. (2.1)

By Lemma 2.1, we have

P (Bc
T ) = P

{
(
2β

T
)IT − 1 < 2θc0 − 1

}
< P

{
|(2β

T
)IT − 1| > 1− 2θc0

}
≤ Ce−CT . (2.2)

Let b0 be some positive number. For ω ∈ AT∩BT and for all T > T0 with 4b0(log T0)5/2(2β
T0

)1/2 ≤
c0, we have

(
T

2β
)1/2(θ̂1,T − θ) ≤ x

⇒ IT + b0T (θ̂1,T − θ) < IT + (
T

2β
)1/22b0θx

⇒ (
T

2β
)1/2(θ̂1,T − θ)[IT + b0T (θ̂1,T − θ)] < x[IT + (

T

2β
)1/22b0θx]

⇒ (θ̂1,T − θ)IT + b0T (θ̂1,T − θ)2 < (
2β

T
)1/2ITx+ 2b0θx

2

⇒ ZT + (θ̂1,T − θ)IT + b0T (θ̂1,T − θ)2 < ZT + (
2β

T
)1/2ITx+ 2b0θx

2

⇒ 0 < ZT + (
2β

T
)1/2ITx+ 2b0θx

2

since

IT + b0T (θ̂1,T − θ)

> Tc0 + b0T (θ̂1,T − θ)

> 4b0(log T )1/2(
2β

T
)1/2 − 2b0(log T )1/2(

2β

T
)1/2

= 2b0(log T )1/2(
2β

T
)1/2 > 0.

On the other hand, for ω ∈ AT ∩BT and for all T > T0 with 4b0(log T0)1/2(2β
T0

)1/2 ≤ c0, we have

(
T

2β
)1/2(θ̂1,T − θ) > x

⇒ IT − b0T (θ̂1,T − θ) < IT − (
T

2β
)1/22b0θx

⇒ (
T

2β
)1/2(θ̂1,T − θ)[IT − b0T (θ̂1,T − θ)] > x[IT − (

T

2β
)1/22b0θx]

⇒ (θ̂1,T − θ)IT − b0T (θ̂1,T − θ)2 > (
2β

T
)1/2ITx− 2b0θx

2

⇒ ZT + (θ̂1,T − θ)IT − b0T (θ̂1,T − θ)2 > ZT + (
2β

T
)1/2ITx− 2b0θx

2

https://doi.org/10.28919/ejma.2025.5.2


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2025.5.2 12

⇒ 0 > ZT + (
2β

T
)1/2ITx− 2b0θx

2

since

IT − b0T (θ̂1,T − θ)

> Tc0 − b0T (θ̂1,T − θ)

> 4b0(log T )1/2(
2β

T
)1/2 − 2b0(log T )1/2(

2β

T
)1/2

= 2b0(log T )1/2(
2β

T
)1/2 > 0.

Hence

0 < ZT + (
2β

T
)1/2ITx− 2b0θx

2 ⇒ (
T

2β
)1/2(θ̂1,T − θ) ≤ x.

We use Pfanzagl (1971)’s squeezing method developed for the minimum contrast estimator in
the i.i.d. case.

Let us introduce the piecewise quadratic random functions involving the martingale and
quadratic variation part of θ̂1,T − θ:

g±(x) := ZT + (
2β

T
)1/2ITx± 2b0θx

2.

Let us introduce the events

D±T,x :=

{
ZT + (

2β

T
)1/2ITx± 2b0θx

2 > 0

}
.

we obtain

D−T,x ∩ AT ∩BT ⊆ AT ∩BT ∩
{

(
T

2β
)1/2(θ̂1,T − θ) ≤ x

}
⊆ D+

T,x ∩ AT ∩BT . (2.3)

This gives

P (D−T,x ∩ AT ∩BT ) ≤ P

(
AT ∩BT ∩

{(
(
2β

T
)1/2

)
(θ̂1,T − θ) ≤ x

})
≤ P (D+

T,x ∩ AT ∩BT )

so that ∣∣∣∣P (AT ∩BT ∩
{(

(
2β

T
)1/2

)
(θ̂1,T − θ) ≤ x

})
− Φ(x)

∣∣∣∣
≤ max

{
|P (D−T,x ∩ AT ∩BT )− Φ(x)|, |P (D+

T,x ∩ AT ∩BT )− Φ(x)|
}

≤ max
{
|P (D−T,x)− Φ(x)|, |P (D+

T,x)− Φ(x)|
}

+ P (AT ∩BT )c.

From (2.1) and (2.2), we have

P (AT ∩BT )c ≤ CT−1/2

for all T > T0 and |x| ≤ 2(βT )1/2.

If it is shown that ∣∣P {D±T,x}− Φ(x)
∣∣ ≤ CT−1/2 (2.4)

for all T > T0 and |x| ≤ 2(log T )1/2, then the theorem would follow from (2.1) – (2.3).
We shall prove (2.4) for D+

T,x. The proof for D−T,x is analogous.
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Note that∣∣P {D+
T,x

}
− Φ(x)

∣∣
=

∣∣∣∣P {−(
2β

T
)1/2ZT −

(
(
2β

T
)IT − 1

)
x < x+ 2(

2β

T
)1/2b0θx

2

}
− Φ(x)

∣∣∣∣
≤ sup

y∈R

∣∣∣∣P {−(
2β

T
)1/2ZT −

(
(
2β

T
)IT − 1

)
x ≤ y

}
− Φ(y)

∣∣∣∣+

∣∣∣∣Φ(x+ (
2β

T
)1/2b0θx

2

)
− Φ(x)

∣∣∣∣
=: ∆1 + ∆2.

(2.5)

Lemma 2.2 (b) and Esseen’s lemma 1.2 immediately yield

∆1 ≤ CT−1/2. (2.6)

On the other hand, for all T > T0,

∆2 ≤ 2(
2β

T
)1/2b0θx

2(2π)−1/2 exp(−x2/2)

where
|x− x| ≤ 2(

2β

T
)1/2b0θx

2.

Since |x| ≤ 2(log T )1/2, it follows that |x̄| > |x|/2 for all T > T0 and consequently

∆2 ≤ 2(
2β

T
)1/2b0θx

2(2π)−1/2x2 exp(−x2/8)

≤ CT−1/2.
(2.7)

From (2.5) – (2.7), we obtain ∣∣P {D+
T,x

}
− Φ(x)

∣∣ ≤ CT−1/2.

This completes the proof of the theorem.

Remarks 1) The deterministic norming we used in this paper, though useful for testing hy-
potheses about the unknown parameter, may not necessarily give a confidence interval. One
may use random norming and obtain the Berry-Esseen bounds, see Bishwal [3] in the Brownian
motion innovation case.

2) Sequential estimation unifies the ergodic, nonergodic and singular case and gives asymp-
totic normality in all cases. Sequential maximum likelihood estimation in semimartingales was
studied in Bishwal [5].

3) For fixed T case, Berry-Esseen rate of the order O(N−3/2) is obtained in Es-Sebaiy et
al. [19] for the MLE in a linear SPDE model where N is the number of Fourier coefficients in
the expansion of the solution.
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