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ON STATE-DEPENDENT DELAY, FRACTIONAL ORDER NEUTRAL
INTEGRODIFFERENTIAL SYSTEMS WITH NON-INSTANTANEOUS

IMPULSES AND NONLOCAL CONDITIONS: EXISTENCE AND
CONTROLLABILITY RESULTS

KORA HAFIZ BETE

Abstract. The current paper is concerned by the existence and controllability of mild so-
lution for a new class of state-dependent delay, fractional order, neutral integrodifferential
systems with non-instantaneaous impulses and nonlocal conditions. More precisely, using the
α−resolvent operator theory, combinated with the theory of measures of noncompactness, we
derive some conditions which guarantee the existence and the controllability of the mild so-
lutions. One of the major innovations of this system is that the nonlinear term is a function
of both the state function and the control function. We provide an example which shows the
applicatibility of the results.

1. Introduction

The theory of differential equations has been widely developed and now applies in all fields.
Whether it is physics, climate sciences, medecine, including economics, finance, energy, etc...,
it is now obvious that we need to model the phenomena that we meet in order to make rational
decisions to achieve the targeted objectives. However, there are complex phenomena for which
the classical differential and partial differential equations fail for their modeling. For the latter,
the use of fractional order differential equations is essential.

Fractional calculus is the theory of integrals and derivatives of arbitrary real (and even
complex) order and was first suggested in works by mathematicians such as Leibniz, L’Hospital,
Abel, Liouville, Riemann, etc. The importance of fractional derivatives for modeling phenomena
in different branches of science and engineering is due to their nonlocality nature, an intrinsic
property of many complex systems. Unlike the derivative of integer order, fractional derivatives
do not take into account only local characteristics of the dynamics but considers the global
evolution of the system; for that reason, when dealing with certain phenomena, they provide
more accurate models of real-world behavior than standard derivatives. They arise in many
scientific and engineering areas such as physics, chemistry, biology, biophysics, economics, signal
and image processing, etc. Particularly, nonlinear systems describing different phenomena
can be modeled with fractional derivatives. Chaotic behavior has also been reported in some
fractional models. There exist theoretical results related to existence and uniqueness of solutions
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to initial and boundary value problems with fractional differential equations. For instance,
in [12], V. Lakshmikantham and A.S.Vatsala, discussed about the basic theory of fractional
differential equations. In [6], K. Diethelm and J. Ford studied the existence and structural
stability of solutions of nonlinear differential equations of fractional order. Using the Grünwald-
Letnikov definition of fractional derivatives, R. Sherer et al. discussed in [17] on finite difference
schemes for the approximation of solutions for fractional order differential systems. For more
informations on the theory of frcational differential systems, we refer the readers to the book
of N’Guerekata et al. [1].

On the other hand, following the exemple of the resolvent operator developed by R. Grimmer
[8] in the 1980s, to study the solutions of classical integrodifferential systems, R. P. Agarwal
et al. [2] and J. P. Dos Santos [7] introduced the α−resolvent operator for the fractional case.
This last tool indeed generalizes Grimmer’s theory to the case where the order of the derivative
is fractional, first for α ∈ (1, 2) then for α ∈ (0, 1).

Moreover, in real life, it is common to find phenomena that in addition to the impulsive
effects, have effects of delays. Modeling such phenomena involves impulsive (integro)differential
systems with delay. These equations have also been widely studied, notably by Hernandez et
al. [10], Ren et al. [13] and references therein.

However, it is important to point out that from a theoretical point of view, the study of
impulsive differential equations has long focused on the case where impulses appear at fixed
moments. It was not until very recently in 2013 that O’Regan and Hernandez developed in [16]
a larger study, taking into account the case where impulses are non-instantaneous. This new
study, which has the merit of covering a broad category of real phenomena, has been further
developed by numerous publications including those due to Agarwal et al. [2], Nieto et al. [4]
and refernces therein. Unlike the classical local conditions, nonlocal conditions are involved in
phenomena with functional dependance in the boundary conditions or in the equation.

The controllability is one of the fundamental concepts in mathematical control theory. It is
a qualitative behaviour of dynamical systems and is of particular importance in control theory
of dynamical systems. A control system is said to be controllable if it is possible to steer
the solution of the system from an arbitrary initial state to an arbitrary final state using the
set of admissible controls, where the initial and final states may vary over the entire space.
Different types of controllability have been defined, such as approximate, null, local null and
local approximate null controllability. Thus, the study of controllability for such systems is
important for many applications. Using various approaches, reseachers have studied different
types of controllability for several classes of integrodifferential systems. See for instance the
papers [9, 21] and references therein. But for the differential systems for which the nonlinear
term is a function of both the state function and the control function, we had to wait until
2011, and the paper of Sukavanam [19]. Later, in 2022 Wen et al. [20] will extend the previous
work to the case of a fractional order differential system of neutral type. However, to the best
of our knowledge, there is no work combining both the notions of state dependent delay, neutral
integrodifferential systems with non-instantaneous impulses, nonlocal conditions and in which
the nonlinear term depend on the control function.
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Motivated by the considerations mentioned above, in this paper, using an approach intro-
duced in the 1980s by Banas and Goebel (see [5]) and which mainly uses the theory of mea-
sures of noncompactness, we consider a controllability problem for the following class of state-
dependent delay, fractional order, neutral integrodifferential systems with non-instantaneous
impulses and nonlocal conditions and for which the nonlinear term is a function of both the
state function and the control function.

cDα
t

[
v(t)− p

(
t, vρ(t,vt)

)]
= A

[
v(t)− p

(
t, vρ(t,vt)

)]
+

∫ t

0

γ(t− s)
[
v(t)− p

(
t, vρ(t,vt)

)]
+ζ
(
t, vρ(t,vt), u(t)

)
+Bu(t), t ∈ I =

n⋃
i=0

Ii :=
n⋃
i=0

(si, ti+1]

v(t) = hi
(
t, vρ(t,vt)

)
, t ∈

n⋃
i=1

(ti, si]

v0 = g (β(v), v) ∈ C = C ([−τ, 0],H).

(1)

In this system, cDα
t is the Caputo fractional derivative of order α ∈ (0, 1); the state variable

v(·) belongs to a Hilbert space (H, ‖ · ‖) ; A : D(A) ⊂ H→ H is an infinitesimal generator of an
analytic semigroup {T (t), t ≥ 0} in H; for t ≥ 0, γ(t) is a closed linear operator with domain
at least D(A). B : U → H is a bounded linear operator, U is a Hilbert space and the control
function u belongs to L2(J,U ). Let 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tn ≤ sn ≤ tn+1 = T,

the mappings β : C ([−τ,T],H) → [0,T]; ρ : [0,T]× C → [0,T]; g : [0,T]× C ([−τ,T],H) → C;

p :
n⋃
i=0

(si, ti+1]× C→ H; ζ :
n⋃
i=0

(si, ti+1]× C×U → H and for i ∈ J1, nK, hi : (ti, si]× C→ H

are given. The History vt : [−τ, 0]→ H is an element of C given by vt(θ) = v(t+ θ).

In the following, we introduce in section 1, the notations and preliminary notions that will
be used in the rest of the work, mainly the theory of measures of noncompactness and the
theory of α−resolvent operators. In section 2, we present and prove our main results. Section
3 focuses on the applicability of the results presented in the previous section and we conclude
in the last section.

2. Preliminaries

First, we give some notations which will be used in the sequel of this work.

Let introduce the space
Ξ = {v : [−τ, 0] → H : v is continuous except at s where v(s−) and v(s+) exists and v(s−) =
v(s)}, furnished with the norm ‖v‖Ξ = sup

t∈[−τ,0]
{‖v(t)‖}.

We denote by ΞPC , the space
ΞPC = {v : [−τ,T]→ H such that v|(si,ti+1] is continuous and v(ti) = v(t−i ), v(t

+
i ) exist; v0 ∈

C and sup
t∈[−τ,T]

‖v(t)‖ <∞}, given with the norm ‖v‖ΞPC = sup
t∈[−τ,T]

{‖v(t)‖}. In the following, we

will denote this norm by ‖ · ‖ is there is no possible confusion.

2.1. The Kuratowski measure of noncompactness. This section concerns the Kuratowski
measure of noncompactness. We give some basic definitions and lemmas.

https://doi.org/10.28919/ejma.2025.5.1
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Definition 2.1. (Kuratowski [11]) Let (H, d) be a complete metric space. The Kuratowski
measure of noncompactness of a nonempty and bounded subsets D of H, denoted by µ(D), is
the infimum of all numbers ε > 0 such that D can be covered by a finite number of sets with
diameters less than ε, i.e.,

µ(D) = inf

{
ε > 0 : D ⊂

n⋃
i=1

Bi : Bi ⊂ H, diam(Bi) < ε, i ∈ J1, nK, n ∈ N

}
.

The function µ defined on the set of all nonempty and bounded subsets of (H, d), is called
Kuratowski’s measure of noncompactness.

Throughout this paper, we denote by µ(·) and µ[a,b](·) the Kuratowski mesure of noncom-
pactness on the bounded subsets of H and C ([a, b],H), respectively.

Let t ∈ [a, b]. If D ⊂ C ([a, b],H) is bounded, then D(t) := {x(t) : x ∈ D} is bounded in H

and µ(D(t)) ≤ µ[a,b](D).

Next, we give the following results on the Kuratowski measure of noncompactness which will
be very useful in the sequel.

Lemma 2.1. [5] On the Banach space H, let’s consider the bounded and equicontinuous set
D ⊂ C ([a, b],H). Then µ(D(t)) is continuous on [a, b], and

µ[a,b](D) = sup
t∈[a,b]

µ(D(t)).

Lemma 2.2. [18] On the Banach space H, if D = {xn} ⊂ C ([a, b],H) is a bounded and
countable set, then µ(D(t)) is Lebesgue integrable on [a, b], and we have:

µ

({∫ b

a

xn(t)dt : n ∈ N
})
≤ 2

∫ b

a

µ(D(t))dt.

Lemma 2.3. [3] If D is a bounded subset of a Banach space H, then there is a countable subset
D∗ of D, such that µ(D) ≤ 2µ(D∗).

Lemma 2.4. [14] Considering two bounded subsets B1 and B2 of H, with norms respectively
‖ · ‖B1 and ‖ · ‖B2 , if there is surjective map Ξ : B1 → B2 such that for any x, y ∈ B1,

‖Ξ(x)− Ξ(y)‖B2 ≤ ‖x− y‖B1 , then µ(B2) ≤ µ(B1).

For more details on the measures of noncompactness and their properties, we refer the reader
to [11] and references therein.

To end this part, we give the Mönch fixed point theorem, which is usefull to prove our
existence result.

Theorem 2.5. [15] Let B be a bounded closed and convex subset of H, 0 ∈ B. Λ : B → B

is continuous, such that for any countable set D ⊆ B, D ⊆ conv ({0} ∪ Λ(D)) , D is relatively
compact. Then Λ has a fixed point in B.

2.2. Fractional order integrodifferential systems in Banach spaces. Now, for the ques-
tion of existence of mild solutions of the integrodifferential Eq.(1), we recall some needed
fundamental results. Regarding the theory of α−resolvent operator, we refer the reader to [7].

First, we consider the following homogeneous integrodifferential Cauchy problem:
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(2)

Dα
t v(t) = Av(t) +

∫ t
0
γ(t− s)v(s)ds for t ∈ [0,T],

v(0) = v0 ∈ H,

where α ∈ (0, 1) and Dα
t v(t) represents the Caputo derivative of v.

The Caputo derivative of v is defined for α > 0 by:

Dα
t v(t) :=

∫ t

0

ln−α(t− s)
dn

dsn
v(s)ds,

where n is the smallest integer greater than or equal to α and ln−α is the Gelfand-Shilov function
given by lβ(t) = tβ−1

Γ (β)
, t > 0, β ≥ 0. These functions satisfy the semigroup property

lα ? lβ = lα+β.

Denoted by

Jαt f(t) = (lα ? f) (t) =

∫ t

0

lα(t− s)f(s)ds,

we get

Dα
t J

α
t f(t) = f(t) and Jαt D

α
t f(t) = f(t)−

n−1∑
k=0

f (k)(0)
tk

k!
.

The properties of the Laplace transform and the fact that l̂α(Λ) = Λ−α lead to:

D̂α
t f(Λ) = Λαf(Λ)−

n−1∑
k=0

f (k)(0)Λα−1−k.

Throughout this paper, let (Z, ‖·‖Z) and (W, ‖·‖W) be Banach spaces. We denote by L(Z,W)

the space of bounded linear operators from Z into W endowed with norm of operators, and we
write simply L(Z) when Z = W. By R(Q) we denote the range of a map Q and for a closed
linear operator P : D(P ) ⊆ Z → W, the notation [D(P )] represents the domain of P endowed
with the graph norm, ‖z‖1 = ‖z‖Z + ‖Pz‖W, z ∈ D(P ). The notation, B(v,R) and B[v,R]

represent the open ball and the closed ball, respectively, with center at v and radius R > 0 in
H. Let J ⊂ R, by C (J,H) we denote the space of continuous functions defined on J into H, and
C 1(J,H) stands for the space of continuous functions from J to H having continuous derivative.
We define the space C α(J,H), by C α(J,H) := {v ∈ C (J,H) : Dα

t v ∈ C (J,H)}.
We denote by Lp(J,H) the set of all measurable functions v(·) on J into H such that ‖v(t)‖p

is integrable, and its norm is given by ‖v‖Lp(J,H) =
(∫

J
‖v(t)‖p

) 1
p , similarly, by Lploc(R

+,H)

we denote the space of the functions belonging Lp(J,H), for any compact set J ⊂ R+. When
H = Rn, for some n, we denote for simplicity by C (J), C 1(J), C α(J), Lp(J) and Lploc(R

+),

respectively.
The notation ρ(P ) stands for the resolvent set of P and R(Λ, P ) = (ΛIL(H) − P )−1 is

the resolvent operator of P. Furthermore, for appropriate functions K : [0,∞) → Z and
S : [0,∞) → L(Z,W), the notation K̂ denotes the Laplace transform of K, and S ? K the
convolution between S and K, which is defined by S ? K(t) =

∫ t
0
S(t− s)K(s)ds.

We introduce the following concept of resolvent operator for the abstract fractional integro-
differential problem (2).

https://doi.org/10.28919/ejma.2025.5.1
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Definition 2.2. [7] A α−resolvent operator of (2) is a family of bounded linear operators
(Rα(t))t≥0 on H, satisfying the following properties:

(1) The function Rα : R+ → L(H) is strongly continuous and Rα(0)v = v for all v ∈ H and
α ∈ (0, 1).

(2) for each v ∈ D(A), Rα(·)v ∈ C ([0,∞), [D(A)]) ∩ C α((0,∞),H), and

Dα
t Rα(t)v = ARα(t)v +

∫ t

0

γ(t− r)Rα(s)vds

Dα
t Rα(t)v = Rα(t)Av +

∫ t

0

Rα(t− r)γ(s)vds, t ≥ 0.

To study the existence of the relsolvent operator of the system (1), we suppose the following
hypothesis:

A1 The operator A : D(A) ⊆ H→ H is a closed linear operator with [D(A)] dense in H, for
some φ ∈

(
π
2
, π
)
there is positive constants C0 = C0(φ) such that Λ ∈ ρ(A) for each

Σ0,φ = {Λ ∈ C : |arg(Λ)| < φ} ⊂ ρ(A),

and ‖R(Λ,A)‖ ≤ C0

|Λ| for all Λ ∈ Σ0,φ.

A2 For all t ≥ 0, γ(t) : D(γ(t)) ⊂ H → H is closed linear operator, D(A) ⊆ D(γ(t))

and γ(·)v is strongly measurable on (0,∞) for each v ∈ D(A). There exists a function
b(·) ∈ L1loc(R

+) such that b̂(Λ) exists for Re(Λ) > 0 and ‖γ(t)v‖ ≤ b(t)‖v‖1 for all t > 0

and v ∈ D(A). Moreover, the operator valued function γ̂ : Σ0,π/2 → L([D(A)],H) has
an analytical extension (still denoted by γ̂) to Σ0,φ, such that ‖γ̂(Λ)v‖ ≤ ‖γ̂(Λ)‖‖v‖1
for all v ∈ D(A), and ‖γ̂(Λ)‖ = O

(
1
|Λ|

)
, as |Λ| → ∞.

A3 There exists a subspace D ⊆ D(A) dense in [D(A)] and positive constant C1, such that
A(D) ⊆ D(A), γ̂(Λ)(D) ⊆ D(A), ‖Aγ̂(Λ)v‖ ≤ C1‖v‖ for every v ∈ D and all Λ ∈ Σ0,φ.

In the sequel, for r > 0 and θ ∈ (π
2
, φ),

Σr,θ = {Λ ∈ C : |Λ| ≥ r, and | arg(Λ)| < θ}.
In addition, ρ(Fα) and ρ(Gα) are the sets

ρ(Fα) = {Λ ∈ C : Fα(Λ) := (ΛαIL(H) − A− γ̂(Λ))−1 ∈ L(H)}

and
ρ(Gα) = {Λ ∈ C : Gα(Λ) := Λα−1(Λα − A− γ̂(Λ))−1 ∈ L(H)}.

Assuming that the conditions (Ai), i = 1, 2, 3, holds, r, θ are numbers such that r > r1 and
θ ∈ (π/2, φ). Moreover, we denote by Γr,θ, Γ i

r,θ, i = 1, 2, 3, we define the paths

Γ 1
r,θ = {teiθ : t ≥ r}, Γ 2

r,θ = {reiξ : −θ ≤ ξ ≤ θ} and Γ 3
r,θ = {te−iθ : t ≥ r},

and Γr,θ =
3⋃
i=1

Γ i
r,θ oriented counterclockwise.

In the following, we give the generalization of the analytic resolvent operator associated a
integrodifferential equations [8] for the fractional integro-differential problem (2) with α ∈ (0, 1).

Definition 2.3. [7] We define the operator family (Rα(t))t≥0 by

(3) Rα(t) =
1

2πi

∫
Γr,θ

eΛtGα(Λ)dΛ, t ≥ 0,

https://doi.org/10.28919/ejma.2025.5.1
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and the auxiliary resolvent operator family (Sα(t))t≥0 by

Sα(t) =
t1−α

2πi

∫
Γr,θ

eΛtFα(Λ)dΛ, t ≥ 0,

These operators satisfy the following properties.

Theorem 2.6. [7] The operator function Rα(·) is:
(1) exponentially bounded in L(H);

(2) exponentially bounded in L([D(A)]);
(3) strongly continuous on [0,∞) and uniformly continuous on (0,∞);

(4) strongly continuous on [0,∞) in L([D(A)]).

Theorem 2.7. [7] The operator funtion t 7→ tα−1Sα(t) is exponentially bounded in L(H) and
uniformly (strong) continuous on (0,∞).

Theorem 2.8. [7] The function Rα(·) is a α−resolvent operator for the system (2).

Remark 2.1. By the theorems 2.6(i) and 2.7, we conclude that there is some constants M and
Nα such that:

∀ t ∈ [0,T], ‖Rα(t)‖L(H) ≤ M and ‖tα−1Sα(t)‖L(H) ≤ Nα.

The existence of resolvent operator implies in the existence of solutions for problem (2).

Theorem 2.9. [7] Let v0 ∈ [D(A)] and define v(t) = Rα(t)v0. Then v ∈ C ([0,∞), [D(A)]) ∩
C α((0,∞),H), and is a solutions of (2).

Let f : [0,T] × H → H be a appropriate function and we consider the following non-
homogeneous fractional order integrodifferential system:

(4)

Dα
t v(t) = Av(t) +

∫ t
0
γ(t− s)v(s)ds+ f(t, v(t)) for t ∈ [0,T],

v(0) = v0 ∈ H.

We give the following results.

Theorem 2.10. [7] The functions Rα(·) and Sα(·) are respectively α−resolvent and auxiliary
α−resolvent operators for the system (4).

Now we derive the appropriate definition of mild solutions of (4).

Definition 2.4. [7] Let τ > 0, a function v : (0, τ)→ H is called mild solution of (4) in (0, τ)

if v ∈ C ((0, τ),H) and v satisfies the following variation of constants formula:

v(t) = Rα(t)v0 +

∫ t

0

(t− s)α−1Sα(t− s)f(s, v(s))ds,

holds for all t ∈ (0, τ).

https://doi.org/10.28919/ejma.2025.5.1
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3. Main results

In this section, we establish and prove the existence of mild solution for the system (1).
First we give the definition of the mild solution for (1).

Definition 3.1. A mild solution of the fractional order integrodifferential system (1) is a func-
tion v ∈ ΞPC such that v0(t) = g(β(v), v)(t) for t ∈ [−τ, 0] and satisfying the following integral
system

v(t) =



Rα(t)
[
g(β(v), v)(0)− p

(
0, vρ(0,v0)

)]
+ p

(
t, vρ(t,vt)

)
+

∫ t

0

(t− s)α−1Sα(t− s)×

×
[
ζ
(
s, vρ(s,vs), u(s)

)
+Bu(s)

]
ds, t ∈ [0, t1]

hi
(
t, vρ(t,vt)

)
, t ∈ (ti, si]

Rα(t− si)
[
hi
(
t, vρ(t,vt)

)
− p

(
si, vρ(si,vsi )

)]
+ p

(
t, vρ(t,vt)

)
+

∫ t

si

(t− s)α−1Sα(t− s)×

×
[
ζ
(
s, vρ(s,vs), u(s)

)
+Bu(s)

]
ds, t ∈

n⋃
i=1

(si, ti+1].

(5)

To prove our results, we need the following conditions

H1 The function ζ : I× C×U → H satisfies the following conditions:
(a) ζ is of caratheodory, this is: for any (v, u) ∈ C ×U , the function t 7→ ζ(t, v, u) is

strongly measurable; and for any t ∈ I, the function (v, u) 7→ ζ(t, v, u) is continuous.
(b) There is a bounded function ς : I → (0,+∞), and a continuous nondecreasing

function $ : R+ → R+ such that for any (t, s, v, y, u, x) ∈ (I2 × C2 ×U 2),

‖ζ(t, v, u)− ζ(s, y, x)‖ ≤ ς(t− s) ($(‖v − y‖) + ‖u− x‖U ) , and lim inf
n→∞

$(n)

n
= 0.

Where ζ(0, 0, u) = 0, ∀ u ∈ U .

(c) There is δζ : I→ R+, such that for any bounded set D ⊂ ΞPC , and (t, u) ∈ (I×U ),

µ(ζ(t,Dt, u)) ≤ δζ(t)µ(Dt),

where Dt := {vt : v ∈ D} ⊂ Ξ.

H2 The function p : I× C→ H satisfies:
(a) For any v ∈ C, the function t 7→ p(t, v) is piecewise continuous and for any t ∈ I,

the function v 7→ p(t, v) is continuous.
(b) There is a bounded function η : I→ R+, and a continuous nondecreasing function

φ : R+ → R+ such that for any t ∈ I and v ∈ C,

‖p(t, v)‖ ≤ η(t)φ(‖v‖), lim inf
n→∞

φ(n)

n
= 0.

(c) There is δp : I→ R+, such that for any bounded set D ⊂ ΞPC and t ∈ I,

µ(p(t,Dt)) ≤ δp(t)µ(Dt),

where Dt := {vt : v ∈ D} ⊂ Ξ.

H3 For any i ∈ J1, nK, the functions hi : (ti, si]× C→ H satisfy:
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(a) There is a bounded function κi : (ti, si] → R+, and a continuous nondecreasing
function ψi : R+ → R+ such that for any t ∈ (ti, si] and v ∈ C,

‖hi(t, v)‖ ≤ κi(t)ψi(‖v‖), lim inf
n→∞

ψi(n)

n
= 0.

(b) There is δhi : (ti, si]→ R+, non decreasing, such that for any bounded set D ⊂ ΞPC

and t ∈ (ti, si],

µ(hi(t,Dt)) ≤ δhi(t)µ(Dt),

where Dt := {vt : v ∈ D} ⊂ Ξ.

H4 The function g : [0,T]× C ([−τ,T],H)→ C satisfy:
(a) There is a bounded function λ > 0, such that for any v ∈ C ([−τ,T],H),

‖g(β(v), v)‖ ≤ λ(1 + (‖v‖);

(b) There is δg > 0, such that for any bounded set D ⊂ C ([−τ,T],H),

µ(g(β(v),D)) ≤ δgµ(D).

H5 B : U → H is a bounded linear operator, Θi : L
2(I,U )→ H is a linear operator defined

by:

Θiu =

∫ ti+1

si

(ti+1 − s)α−1Sα(ti+1 − s)Bu(s)ds, i ∈ J0, nK,

and we have the following asumptions:
(a) The operator Θi has an inverse Θ−1i which takes values in L2(I,U ) \ kerΘi and

there is some positive constants LB and LΘ, such that:

‖B‖ ≤ LB, ‖Θ−1i ‖ ≤ LΘ;

(b) There is δΘ ∈ L1(I,R+) and δB ≥ 0 such that for any bounded sets D1 ⊂ H and
D2 ⊂ U ,

µ
((
Θ−1i D1

)
(t)
)
≤ δΘ(t)µ(D1(t)), µ(B(D2)) ≤ δBµU (D2).

H6 For i ∈ J0, nK,

Πi :=

{
max {Mδhi(si);Mδg}+Mδp(si) + δp(t) + 2(t− si)Nα sup

s∈[0,T]
δζ(s) + 2(t− si)NαδBδΘ(t)×

×
(
1 + max {Mδhi(si);Mδg}+Mδp(si) + δp(ti+1) + 2(ti+1 − si)Nα sup

s∈[0,T]
δζ(s)

)}
< 1.

We give the main result of this section.

Theorem 3.1. Under the asumptions H1 −H6, the fractional order, non instantaneous im-
pulsive integrodifferential system (1) admits at least a mild solution which is controllable on I,

provided that

Mλ+

LΘ
√
t− siNα

(
sup

s∈(si,ti+1]

ς(s) + LB

)
{1 +Mλ}

1−
√
ti+1 − siLΘNα sup

s∈(si,ti+1]

ς(s)
< 1, i ∈ J0, nK.(6)
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Proof. Using the hypothesis H6, for an arbitrary function v, let’s define the control function
uv, satisfying the following integral equation:

uv(t) =



Θ−11

{
v − Rα(t1)

[
g(β(v), v)(0)− p

(
0, vρ(0,v0)

)]
− p

(
t1, vρ(t1,vt1 )

)
−
∫ t1

0

(t1 − s)α−1Sα(t1 − s)
[
ζ
(
s, vρ(s,vs), uv(s)

)]
ds

}
(t), t ∈ [0, t1]

Θ−1i

{
v − Rα(ti+1 − si)

[
hi

(
ti+1, vρ(ti+1,vti+1 )

)
− p

(
si, vρ(si,vsi )

)]
− p

(
ti+1, vρ(ti+1,vti+1 )

)
+

∫ ti+1

si

(ti+1 − s)α−1Sα(ti+1 − s)
[
ζ
(
s, vρ(s,vs), uv(s)

)]
ds

}
(t), t ∈

n⋃
i=1

(si, ti+1].

(7)

Using the control uv, we introduce the operator Λ : ΞPC → ΞPC defined by:

(Λv)(t) =



g(β(v), v)(t), t ∈ [−τ, 0]

Rα(t)
[
g(β(v), v)(0)− p

(
0, vρ(0,v0)

)]
+ p

(
t, vρ(t,vt)

)
+

∫ t

0

(t− s)α−1Sα(t− s)×

×
[
ζ
(
s, vρ(s,vs), u(s)

)
+Buv(s)

]
ds, t ∈ [0, t1]

hi
(
t, vρ(t,vt)

)
, t ∈

n⋃
i=1

(ti, si]

Rα(t− si)
[
hi
(
t, vρ(t,vt)

)
− p

(
si, vρ(si,vsi )

)]
+ p

(
t, vρ(t,vt)

)
+

∫ t

si

(t− s)α−1Sα(t− s)×

×
[
ζ
(
s, vρ(s,vs), u(s)

)
+Buv(s)

]
ds, t ∈

n⋃
i=1

(si, ti+1].

(8)

We will show that the operator Λ has a fixed point. We give the proof into the following four
steps.

Step 1: We show that there is r > 1, such that Λ(Br) ⊂ Br, where Br = {v ∈ ΞPC :

‖v‖ ≤ r}. If it is not true, for any r > 1, there exists v? ∈ Br, such that Λv? /∈ Br.

In fact, we have from H1 −H5 that:

For t ∈ [0, t1],

r ≤ ‖Λv?(t)‖

≤ ‖Rα(t)g(β(v?), v?)(0)‖+
∥∥∥Rα(t)p(0, v?ρ(0,v?0))∥∥∥+ ∥∥∥p(t, v?ρ(t,v?t ))∥∥∥

+

∥∥∥∥∫ t

0

(t− s)α−1Sα(t− s)ζ
(
s, v?ρ(s,v?s ), uv?(s)

)
ds

∥∥∥∥+ ∥∥∥∥∫ t

0

(t− s)α−1Sα(t− s)Buv?(s)ds
∥∥∥∥

≤ Mλ(1 + ‖v?‖) +Mη(0)φ(‖v?0‖Ξ) + η(t)φ
(
‖v?ρ(t,v?t )‖Ξ

)
+

∫ t

0

Nας(s)
(
$(‖v?ρ(s,v?s )‖Ξ) + ‖uv?(s)‖U

)
ds+

∫ t

0

NαLB‖uv?(s)‖U ds

≤ Mλ(1 + ‖v?‖) +Mη(0)φ(‖v?‖) + η(t)φ (‖v?‖) + Nα$(‖v?‖)
∫ t

0

ς(s)ds

+ Nα sup
s∈[0,t1]

ς(s)

(∫ t

0

ds

) 1
2
(∫ t

0

‖uv?(s)‖2U ds
) 1

2

+ NαLB

(∫ t

0

ds

) 1
2
(∫ t

0

‖uv?(s)‖2U ds
) 1

2
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≤ Mλ(1 + r) +Mη(0)φ(r) + η(t)φ (r) + tNα$(r) sup
s∈[0,t1]

ς(s)

+ Nα sup
s∈[0,t1]

ς(s) (t)
1
2 ‖uv?‖L2 + NαLB (t)

1
2 ‖uv?‖L2

≤ Mλ(1 + r) +Mη(0)φ(r) + η(t)φ (r) + tNα$(r) sup
s∈[0,t1]

ς(s)

+
√
tNα

(
sup
s∈[0,t1]

ς(s) + LB

)
‖uv?‖L2(9)

Concerning the control uv? , we have:

‖uv?‖L2 =
∥∥Θ−11

{
v − Rα(t1)

[
g(β(v), v)(0)− p

(
0, vρ(0,v0)

)]
− p

(
t1, vρ(t1,vt1 )

)
−
∫ t1

0

(t1 − s)α−1Sα(t1 − s)
[
ζ
(
s, vρ(s,vs), uv(s)

)]
ds

}∥∥∥∥
L2

≤ LΘ
{
‖v‖+ ‖Rα(t1)‖L(H)‖g(β(v?), v?)(0)‖+ ‖Rα(t1)‖L(H)

∥∥∥p(0, v?ρ(0,v?0))∥∥∥
+
∥∥∥p(t1, v?ρ(t1,v?t1 ))∥∥∥+

∫ t1

0

∥∥(t1 − s)α−1Sα(t1 − s)∥∥L(H)

∥∥ζ (s, v?ρ(s,v?s ), uv?(s))∥∥ ds}
≤ LΘ

{
‖v‖+Mλ(1 + ‖v?‖) +Mη(0)φ(‖v?0‖Ξ) + η(t1)φ(‖v?ρ(t1,v?t1 )‖Ξ)

+

∫ t1

0

Nας(s)
(
$(‖v?ρ(s,v?s )‖Ξ) + ‖uv?(s)‖U

)
ds

}
≤ LΘ

{
‖v‖+Mλ(1 + ‖v?‖) +Mη(0)φ(‖v?‖) + η(t1)φ(‖v?‖)

+t1Nα$(‖v?‖) sup
s∈[0,t1]

ς(s) + Nα sup
s∈[0,t1]

ς(s)

(∫ t1

0

ds

) 1
2
(∫ t1

0

‖uv?(s)‖U ds
) 1

2

}

≤ LΘ

{
r +Mλ(1 + r) +Mη(0)φ(r) + η(t1)φ(r) + t1Nα$(r) sup

s∈[0,t1]
ς(s)

+
√
t1Nα‖uv?‖L2 sup

s∈[0,t1]
ς(s)

}
.

By this inequality, we deduce that

(10) ‖uv?‖L2 ≤
LΘ

{
r +Mλ(1 + r) +Mη(0)φ(r) + η(t1)φ(r) + t1Nα$(r) sup

s∈[0,t1]
ς(s)

}
1−
√
t1LΘNα sup

s∈[0,t1]
ς(s)

.

Using (9) and (10), we get:

For t ∈ [0, t1],

r ≤Mλ(1 + r) +Mη(0)φ(r) + η(t)φ (r) + tNα$(r) sup
s∈[0,t1]

ς(s)

+
√
tNα

(
sup
s∈[0,t1]

ς(s) + LB

)
‖uv?‖L2
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≤Mλ(1 + r) +Mη(0)φ(r) + η(t)φ (r) + tNα$(r) sup
s∈[0,t1]

ς(s) + LΘ
√
tNα

(
sup
s∈[0,t1]

ς(s) + LB

)

+

{
r +Mλ(1 + r) +Mη(0)φ(r) + η(t1)φ(r) + t1Nα$(r) sup

s∈[0,t1]
ς(s)

}
1−
√
t1LΘNα sup

s∈[0,t1]
ς(s)

.

Dividing both sides by r, we obtain :

1 ≤Mλ(1
r
+ 1) +Mη(0)

φ(r)

r
+ η(t)

φ (r)

r
+ tNα

$(r)

r
sup
s∈[0,t1]

ς(s) + LΘ
√
tNα

(
sup
s∈[0,t1]

ς(s) + LB

)

+

{
1 +Mλ(1

r
+ 1) +Mη(0)φ(r)

r
+ η(t1)

φ(r)
r

+ t1Nα
$(r)
r

sup
s∈[0,t1]

ς(s)

}
1−
√
t1LΘNα sup

s∈[0,t1]
ς(s)

.

Taking the limit as r → ∞ and using the hypothesis H1(b), H2(b) and H3(a), this
contradicts with our assumption (6). Thus, there exists r > 1, such that Λ(Br) ⊂ Br.

For t ∈ (ti, si], i ∈ J1, nK

r ≤ ‖Λv?(t)‖ ≤ κi(t)ψi

(∥∥∥v?ρ(t,v?t )∥∥∥Ξ)
≤ κi(t)ψi (‖v?‖)

≤ κi(t)ψi (r) .(11)

Using the hypothesis H3− (a) and taking the limit as r →∞, this contradicts with our
assumptions. Thus, there exists r > 1, such that Λ(Br) ⊂ Br.

For t ∈ (si, ti+1], i ∈ J1, nK

r ≤ ‖Λv?(t)‖

≤
∥∥∥Rα(t− si)hi(t, v?ρ(t,v?t ))∥∥∥+ ∥∥∥Rα(t− si)p(si, v?ρ(si,v?si ))∥∥∥+ ∥∥∥p(t, v?ρ(t,v?t ))∥∥∥

+

∥∥∥∥∫ t

si

(t− s)α−1Sα(t− s)ζ
(
s, v?ρ(s,v?s ), uv?(s)

)
ds

∥∥∥∥+ ∥∥∥∥∫ t

si

(t− s)α−1Sα(t− s)Buv?(s)ds
∥∥∥∥

≤ Mκi(t)ψi(‖v?ρ(t,v?t )‖Ξ) +Mη(si)φ(‖v?ρ(si,v?si‖Ξ) + η(t)φ
(
‖v?ρ(t,v?t )‖Ξ

)
+

∫ t

si

Nας(s)
(
$(‖v?ρ(s,v?s )‖Ξ) + ‖uv?(s)‖U

)
ds+

∫ t

si

NαLB‖uv?(s)‖U ds

≤ Mκi(t)ψi(‖v?‖) +Mη(si)φ(‖v?‖) + η(t)φ (‖v?‖) + (t− si)Nα$(‖v?‖) sup
s∈(si,ti+1]

ς(s)

+ Nα sup
s∈(si,ti+1]

ς(s)

∫ t

si

‖uv?(s)‖U ds+ NαLB

∫ t

si

‖uv?(s)‖U ds

≤ Mκi(t)ψi(r) +Mη(si)φ(r) + η(t)φ (r) + (t− si)Nα$(r) sup
s∈(si,ti+1]

ς(s)

+
√
t− siNα

(
sup

s∈(si,ti+1]

ς(s) + LB

)
‖uv?‖L2 .(12)
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Concerning the control uv? , we have:

‖uv?‖L2 =
∥∥∥Θ−1i {

v − Rα(ti+1 − si)
[
hi

(
ti+1, vρ(ti+1,vti+1 )

)
− p

(
si, vρ(si,vsi )

)]
−p
(
ti+1, vρ(ti+1,vti+1 )

)
+

∫ ti+1

si

(ti+1 − s)α−1Sα(ti+1 − s)
[
ζ
(
s, vρ(s,vs), uv(s)

)]
ds

}∥∥∥∥
L2

≤ LΘ
{
‖v‖+ ‖Rα(ti+1 − si)‖L(H)‖hi(ti+1, v

?
ρ(ti+1,v?ti+1

))‖

+‖Rα(ti+1 − si)‖L(H)

∥∥∥p(si, v?ρ(si,v?si ))∥∥∥+ ∥∥∥p(ti+1, v
?
ρ(ti+1,v?ti+1

)

)∥∥∥
+

∫ ti+1

si

‖(ti+1 − s)α−1Sα(ti+1 − s)‖L(H)

∥∥ζ (s, v?ρ(s,v?s ), uv?(s))∥∥ ds}
≤ LΘ

{
‖v‖+Mκi(ti+1)ψi(‖v?ρ(ti+1,v?ti+1

)‖Ξ) +Mη(si)φ(‖v?ρ(si,v?si )‖Ξ)

+η(ti+1)φ(‖v?ρ(t,v?t )‖Ξ) +
∫ ti+1

si

Nας(s)
(
$(‖v?ρ(s,v?s )‖Ξ) + ‖uv?(s)‖U

)
ds

}
≤ LΘ {‖v‖+Mκi(ti+1)ψi(‖v?‖) +Mη(si)φ(‖v?‖) + η(ti+1)φ(‖v?‖)

+(ti+1 − si)Nα$(‖v?‖) sup
s∈(si,ti+1]

ς(s) + Nα sup
s∈(si,ti+1]

ς(s)

∫ ti+1

si

‖uv?(s)‖U ds

}

≤ LΘ

{
r +Mκi(ti+1)ψi(r) +Mη(si)φ(r) + η(ti+1)φ(r)

+(ti+1 − si)Nα$(r) sup
s∈(si,ti+1]

ς(s) +
√
ti+1 − siNα‖uv?‖L2 sup

s∈(si,ti+1]

ς(s)

}
.

By this inequality, we deduce that

‖uv?‖L2

≤
LΘ

{
r +Mκi(ti+1)ψi(r) +Mη(si)φ(r) + η(ti+1)φ(r) + (ti+1 − si)Nα$(r) sup

s∈(si,ti+1]

ς(s)

}
1−
√
ti+1 − siLΘNα sup

s∈(si,ti+1]

ς(s)
.(13)

Using (12) and (13), we get:

For t ∈ (si, ti+1],

r ≤Mκi(t)ψi(r) +Mη(si)φ(r) + η(t)φ (r) + (t− si)Nα$(r) sup
s∈(si,ti+1]

ς(s)

+
√
t− siNα

(
sup

s∈(si,ti+1]

ς(s) + LB

)
‖uv?‖L2

≤Mκi(t)ψi(r) +Mη(si)φ(r) + η(t)φ (r) + (t− si)Nα$(r) sup
s∈(si,ti+1]

ς(s)

+ LΘ
√
t− siNα

(
sup

s∈(si,ti+1]

ς(s) + LB

)
×
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×

{
r +Mκi(ti+1)ψi(r) +Mη(si)φ(r) + η(ti+1)φ(r) + (ti+1 − si)Nα$(r) sup

s∈(si,ti+1]

ς(s)

}
1−
√
ti+1 − siLΘNα sup

s∈(si,ti+1]

ς(s)
.

Dividing both sides by r, we obtain :

1 ≤Mκi(t)
ψi(r)

r
+Mη(si)

φ(r)

r
+ η(t)

φ (r)

r
+ (t− si)Nα

$(r)

r
sup

s∈(si,ti+1]

ς(s)

+ LΘ
√
t− siNα

(
sup

s∈(si,ti+1]

ς(s) + LB

)
×

×

{
1 +Mκi(ti+1)

ψi(r)
r

+Mη(si)
φ(r)
r

+ η(ti+1)
φ(r)
r

+ (ti+1 − si)Nα$(r)
r

sup
s∈(si,ti+1]

ς(s)

}
1−
√
ti+1 − siLΘNα sup

s∈(si,ti+1]

ς(s)
.

Taking the limit as r → ∞ and using the hypothesis H1(b), H2(b) and H3(a), this
contradicts the condition (6). Thus, there exists r > 1, such that Λ(Br) ⊂ Br.

Step 2: We show that the operator Λ : Br → Br is continuous. Let {v(n)}∞n=1 be a
sequence in Br such that v(n) −−−→

n→∞
v in Br. Using the hypothesis H1 − H5 and the Hölder

inequality, we have:

For t ∈ [0, t1],

‖(Λv(n))(t)− (Λv)(t)‖

≤ ‖Rα(t)‖L(X)
∥∥g(β(v(n)), v(n))(0)− g(β(v), v)(0)∥∥

+ ‖Rα(t)‖L(X)
∥∥∥∥p(0, v(n)ρ(0,v

(n)
0 )

)
− p

(
0, vρ(0,v0)

)∥∥∥∥+ ∥∥∥p(t, v(n)ρ(t,v
(n)
t )

)
− p

(
t, vρ(t,vt)

)∥∥∥
+

∫ t

0

∥∥(t− s)α−1Sα(t− s)∥∥L(X) ∥∥∥ζ (s, v(n)ρ(s,v
(n)
s )
, uv(n)(s)

)
− ζ

(
s, vρ(s,vs), uv(s)

)∥∥∥ ds
+

∫ t

0

∥∥(t− s)α−1Sα(t− s)∥∥L(X) ‖Buv(n)(s)−Buv(s)‖ ds
≤ M

∥∥g(β(v(n)), v(n))(0)− g(β(v), v)(0)∥∥
+M

∥∥∥∥p(0, v(n)ρ(0,v
(n)
0 )

)
− p

(
0, vρ(0,v0)

)∥∥∥∥+ ∥∥∥p(t, v(n)ρ(t,v
(n)
t )

)
− p

(
t, vρ(t,vt)

)∥∥∥
+ Nα

∫ t

0

ς(0)

[
$

(∥∥∥v(n)
ρ(s,v

(n)
s )
− vρ(s,vs)

∥∥∥
Ξ

)
+ ‖uv(n)(s)− uv(s)‖U

]
ds

+ NαLB

∫ t

0

‖uv(n)(s)− uv(s)‖U ds

≤ M
∥∥g(β(v(n)), v(n))(0)− g(β(v), v)(0)∥∥

+M

∥∥∥∥p(0, v(n)ρ(0,v
(n)
0 )

)
− p

(
0, vρ(0,v0)

)∥∥∥∥+ ∥∥∥p(t, v(n)ρ(t,v
(n)
t )

)
− p

(
t, vρ(t,vt)

)∥∥∥
+ Nας(0)

∫ t

0

$

(∥∥∥v(n)
ρ(s,v

(n)
s )
− vρ(s,vs)

∥∥∥
Ξ

)
ds+

√
tNα (ς(0) + LB) ‖uv(n) − uv‖L2 .(14)
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For the control function, using the hypothesis H5 and the Hölder inequality, we get:

‖uv(n) − uv‖L2

≤ LΘ
{
‖v(n) − v‖ −M

∥∥g(β(v(n)), v(n))(0)− g(β(v), v)(0)∥∥
+M

∥∥∥∥p(0, v(n)ρ(0,v
(n)
0 )

)
− p

(
0, vρ(0,v0)

)∥∥∥∥+ ∥∥∥∥p(t1, v(n)ρ(t1,v
(n)
t1

)

)
− p

(
t1, vρ(t1,vt1 )

)∥∥∥∥
+Nα

∫ t1

0

ς(0)

[
$

(∥∥∥v(n)
ρ(s,v

(n)
s )
− vρ(s,vs)

∥∥∥
Ξ

)
+ ‖uv(n)(s)− uv(s)‖U

]
ds

+NαLB

∫ t1

0

‖uv(n)(s)− uv(s)‖U ds

}
≤ LΘ

{
‖v(n) − v‖ −M

∥∥g(β(v(n)), v(n))(0)− g(β(v), v)(0)∥∥
+M

∥∥∥∥p(0, v(n)ρ(0,v
(n)
0 )

)
− p

(
0, vρ(0,v0)

)∥∥∥∥+ ∥∥∥∥p(t1, v(n)ρ(t1,v
(n)
t1

)

)
− p

(
t1, vρ(t1,vt1 )

)∥∥∥∥
+Nας(0)

∫ t1

0

$

(∥∥∥v(n)
ρ(s,v

(n)
s )
− vρ(s,vs)

∥∥∥
Ξ

)
ds

+
√
t1Nα (ς(0) + LB) ‖uv(n)(s)− uv(s)‖L2

}
≤ LΘ

1− LΘ
√
t1Nα (ς(0) + LB)

{
‖v(n) − v‖ −M

∥∥g(β(v(n)), v(n))(0)− g(β(v), v)(0)∥∥
+M

∥∥∥∥p(0, v(n)ρ(0,v
(n)
0 )

)
− p

(
0, vρ(0,v0)

)∥∥∥∥+ ∥∥∥∥p(t1, v(n)ρ(t1,v
(n)
t1

)

)
− p

(
t1, vρ(t1,vt1 )

)∥∥∥∥
+Nας(0)

∫ t1

0

$

(∥∥∥v(n)
ρ(s,v

(n)
s )
− vρ(s,vs)

∥∥∥
Ξ

)
ds

}
(15)

Substituing (15) in (14), and using the Lebesgue dominated convergence theorem, we
get ‖(Λv(n))(t)− (Λv)(t)‖ −−−→

n→∞
0, for t ∈ [0, t1].

Similary, for t ∈ (si, ti+1], we get:

‖(Λv(n))(t)− (Λv)(t)‖

≤ ‖Rα(t− si)‖L(X)
∥∥∥hi (t, v(n)

ρ(t,v
(n)
t )

)
− hi

(
t, vρ(t,vt)

)∥∥∥
+ ‖Rα(t− si)‖L(X)

∥∥∥∥p(si, v(n)ρ(si,v
(n)
si

)

)
− p

(
si, vρ(si,vsi )

)∥∥∥∥+ ∥∥∥p(t, v(n)ρ(t,v
(n)
t )

)
− p

(
t, vρ(t,vt)

)∥∥∥
+

∫ t

si

∥∥(t− s)α−1Sα(t− s)∥∥L(X) ∥∥∥ζ (s, v(n)ρ(s,v
(n)
s )
, uv(n)(s)

)
− ζ

(
s, vρ(s,vs), uv(s)

)∥∥∥ ds
+

∫ t

si

∥∥(t− s)α−1Sα(t− s)∥∥L(X) ‖Buv(n)(s)−Buv(s)‖ ds
≤ M

∥∥∥hi (t, v(n)
ρ(t,v

(n)
t )

)
− hi

(
t, vρ(t,vt)

)∥∥∥
+M

∥∥∥∥p(si, v(n)ρ(si,v
(n)
si

)

)
− p

(
si, vρ(si,vsi )

)∥∥∥∥+ ∥∥∥p(t, v(n)ρ(t,v
(n)
t )

)
− p

(
t, vρ(t,vt)

)∥∥∥
+ Nας(0)

∫ t

si

$

(∥∥∥v(n)
ρ(s,v

(n)
s )
− vρ(s,vs)

∥∥∥
Ξ

)
ds+ Nας(0)

∫ t

si

‖uv(n)(s)− uv(s)‖U ds

+ NαLB

∫ t

si

(t− s)α−1 ‖uv(n)(s)− uv(s)‖U ds
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≤ M
∥∥∥hi (t, v(n)

ρ(t,v
(n)
t )

)
− hi

(
t, vρ(t,vt)

)∥∥∥+M

∥∥∥∥p(si, v(n)ρ(si,v
(n)
si

)

)
− p

(
si, vρ(si,vsi )

)∥∥∥∥
+
∥∥∥p(t, v(n)

ρ(t,v
(n)
t )

)
− p

(
t, vρ(t,vt)

)∥∥∥+ Nας(0)

∫ t

si

$

(∥∥∥v(n)
ρ(s,v

(n)
s )
− vρ(s,vs)

∥∥∥
Ξ

)
+
√
t− siNα (ς(0) + LB) ‖uv(n) − uv‖L2 .(16)

For the control function, using hypothesis H5 and the Hölder inequality, we get:

‖uv(n) − uv‖L2 ≤
LΘ

1− LΘ
√
ti+1 − siNα (ς(0) + LB)

{
‖v(n) − v‖

−M
∥∥∥∥hi(ti+1, v

(n)

ρ
(
ti+1,v

(n)
ti+1

)
)
− hi

(
ti+1, vρ(ti+1,vti+1)

)∥∥∥∥
+M

∥∥∥∥p(si, v(n)ρ
(
si,v

(n)
si

)
)
− p

(
si, vρ(si,vsi)

)∥∥∥∥
+

∥∥∥∥p(ti+1, v
(n)

ρ
(
ti+1,v

(n)
ti+1

)
)
− p

(
ti+1, vρ(ti+1,vti+1)

)∥∥∥∥
+Nας(0)

∫ ti+1

si

$

(∥∥∥∥v(n)ρ
(
s,v

(n)
s

) − vρ(s,vs)
∥∥∥∥
Ξ

)
ds

}
(17)

Substituing (17) in (16), and using the Lebesgue dominated convergence theorem, we
have ‖(Λv(n))(t)− (Λv)(t)‖ −−−→

n→∞
0, for t ∈ (si, ti+1],

The same conclusion hold for t ∈ (ti, si].

This mean the continuity of the operator Λ on Br.

Step 3: The operator Λ is equicontinuous.

Let ξ1, ξ2 ∈ [0, t1], such that ξ1 < ξ2 and v ∈ Br.

‖(Λv)(ξ2)− (Λv)(ξ1)‖

≤ ‖Rα(ξ2)− Rα(ξ1)‖L(X)
∥∥g(β(v), v)(0)− p (0, vρ(0,v0))∥∥

+
∥∥∥p(ξ2, vρ(ξ2,vξ2 ))− p(ξ1, vρ(ξ1,vξ1 ))∥∥∥

+

∫ ξ1

0

∥∥(ξ2 − s)α−1Sα(ξ2 − s)− (ξ1 − s)α−1Sα(ξ1 − s)
∥∥
L(X)

∥∥ζ (s, vρ(s,vs), uv(s))∥∥ ds
+

∫ ξ1

0

∥∥(ξ2 − s)α−1Sα(ξ2 − s)− (ξ1 − s)α−1Sα(ξ1 − s)
∥∥
L(X) ‖Buv(s)‖ ds

+

∫ ξ2

ξ1

∥∥(ξ2 − s)α−1Sα(ξ2 − s)∥∥L(X) ∥∥ζ (s, vρ(s,vs), uv(s))∥∥ ds
+

∫ ξ2

ξ1

∥∥(ξ2 − s)α−1Sα(ξ2 − s)∥∥L(X) ‖Buv(s)‖ ds(18)

By the norm continuity of (Rα(t))t≥0 and (tα−1Sα(t))t≥0, we deduce that the right hand
of the above inequality tends to 0 as ξ1 → ξ2.

For ξ1, ξ2 ∈ (ti, si], such that ξ1 < ξ2 and v ∈ Br, we have:

‖(Λv)(ξ2)− (Λv)(ξ1)‖ ≤
∥∥∥hi (ξ2, vρ(ξ2,vξ2 ))− hi (ξ1, vρ(ξ1,vξ1 ))∥∥∥ −−−→ξ1→ξ2

0.(19)
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Let ξ1, ξ2 ∈ (si, ti+1], i ∈ J1, nK, such that ξ1 < ξ2 and v ∈ Br.

‖(Λv)(ξ2)− (Λv)(ξ1)‖

≤
∥∥∥Rα(ξ2 − si)hi (ξ2, vρ(ξ2,vξ2 ))− Rα(ξ1 − si)hi

(
ξ1, vρ(ξ1,vξ1 )

)∥∥∥
+ ‖Rα(ξ2 − si)− Rα(ξ1 − si)‖L(X)

∥∥p (si, vρ(si,vsi ))∥∥
+
∥∥∥p(ξ2, vρ(ξ2,vξ2 ))− p(ξ1, vρ(ξ1,vξ1 ))∥∥∥

+

∫ ξ1

si

∥∥(ξ2 − s)α−1Sα(ξ2 − s)− (ξ1 − s)α−1Sα(ξ1 − s)
∥∥
L(X)

∥∥ζ (s, vρ(s,vs), uv(s))∥∥ ds
+

∫ ξ1

si

∥∥(ξ2 − s)α−1Sα(ξ2 − s)− (ξ1 − s)α−1Sα(ξ1 − s)
∥∥
L(X) ‖Buv(s)‖ ds

+

∫ ξ2

ξ1

∥∥(ξ2 − s)α−1Sα(ξ2 − s)∥∥L(X) ∥∥ζ (s, vρ(s,vs), uv(s))∥∥ ds
+

∫ ξ2

ξ1

∥∥(ξ2 − s)α−1Sα(ξ2 − s)∥∥L(X) ‖Buv(s)‖ ds(20)

By the norm continuity of (Rα(t))t≥0 and (tα−1Sα(t))t≥0, we deduce that the right hand
of the above inequality tends to 0 as ξ1 → ξ2.

Therefore, the operator Λ is equicontinuous on [0,T].

Step 4: The conditions of Mönch hold. Let D ⊆ Br be a countable set such that D ⊆
conv({0} ∪ Λ(D)). We will show that the set D is relatively compact. In fact, we only need to
show that the Kuratowski measure of noncompactness of the set D is null; that is, µ(D) = 0.

Suppose that D = {v(n)}∞n=1 ⊆ Br is a equicontinuous set. We have:

For t ∈ [0, t1],

µU ({uv(n)}∞n=1(t))

= µ

(
Θ−1i

{
v − Rα(t1)

[
g(β(v(n)), v(n))(0)− p

(
0, v

(n)

ρ(0,v
(n)
0 )

)]
− p

(
t1, v

(n)

ρ(t1,v
(n)
t1

)

)
−
∫ t1

0

(t1 − s)α−1Sα(t1 − s)
[
ζ
(
s, v

(n)

ρ(s,v
(n)
s )
, uv(n)(s)

)]
ds

}
(t)

)
≤ δΘ(t)

{
µ({v(n)}∞n=1) +Mδgµ({v(n)(0)}∞n=1) +Mδp(0)µ

({
v
(n)

ρ(0,v
(n)
0 )

}∞
n=1

)
+δp(t1)µ

({
v
(n)

ρ(t,v
(n)
t )

}∞
n=1

)
+ 2

∫ t1

0

Nαδζ(s)µ

({
v
(n)

ρ(s,v
(n)
s )

}∞
n=1

)
ds

}
≤ δΘ(t)

{
µ({v(n)}∞n=1) +Mδgµ({v(n)(0)}∞n=1) +Mδp(0)×

× sup
θ∈[−τ,0]

µ
({
v(n)

(
ρ(0, v

(n)
0 ) + θ

)}∞
n=1

)
+ δp(t1) sup

θ∈[−τ,0]
µ
({
v(n)

(
ρ(t1, v

(n)
t1 ) + θ

)}∞
n=1

)
+ 2

∫ t

0

Nαδζ(s) sup
θ∈[−τ,0]

µ
({
v(n)

(
ρ(s, v(n)s ) + θ

)}∞
n=1

)
ds

}

≤ δΘ(t)

{
µ({v(n)}∞n=1) +Mδgµ({v(n)(0)}∞n=1) +Mδp(0) sup

s∈[0,T]
µ
({
v(n) (s)

}∞
n=1

)
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+δp(t1) sup
s∈[0,T]

µ
({
v(n) (s)

}∞
n=1

)
+ 2

∫ t1

0

Nαδζ(s) sup
s∈[0,T]

µ
({
v(n) (s)

}∞
n=1

)
ds

}

≤ δΘ(t)

{
1 +Mδg +Mδp(0) + δp(t1) + 2t1Nα sup

s∈[0,T]
δζ(s)

}
sup
s∈[0,T]

µ
({
v(n) (s)

}∞
n=1

)
(21)

Similary, for t ∈ (si, ti+1], i ∈ J1, nK we get:

µU ({uv(n)}∞n=1(t))

=µ

(
Θ−1i

{
v(n) − Rα(ti+1 − si)

[
hi

(
ti+1, v

(n)

ρ(ti+1,v
(n)
ti+1

)

)
− p

(
si, v

(n)

ρ(si,v
(n)
si

)

)]
−p
(
ti+1, v

(n)

ρ(ti+1,v
(n)
ti+1

)

)
−
∫ ti+1

si

(ti+1 − s)α−1Sα(ti+1 − s)
[
ζ
(
s, v

(n)

ρ(s,v
(n)
s )
, uv(s)

)]
ds

}
(t)

)
≤δΘ(t)

{
1 +Mδhi(si) +Mδp(si) + δp(ti+1) + 2(ti+1 − si)Nα sup

s∈[0,T]
δζ(s)

}
×

× sup
s∈[0,T]

µ
({
v(n) (s)

}∞
n=1

)
(22)

Using (21), we have:

For t ∈ [0, t1],

µ
({
Λv(n)

}∞
n=1

(t)
)

=µ

({
Rα(t)

[
g(β(v(n)), v(n))(0)− p

(
0, v

(n)

ρ(0,v
(n)
0 )

)]
+ p

(
t, v

(n)

ρ(t,v
(n)
t )

)
+

∫ t

0

(t− s)α−1Sα(t− s)
[
ζ
(
s, v

(n)

ρ(s,v
(n)
s )
, uv(n)(s)

)
+Buv(n)(s)

]
ds

}∞
n=1

)
≤Mδgµ({v(n)(0)}∞n=1) +Mδp(0)µ

({
v
(n)

ρ(0,v
(n)
0 )

}∞
n=1

)
+ δp(t)µ

({
v
(n)

ρ(t,v
(n)
t )

}∞
n=1

)
+ 2

∫ t

0

Nαδζ(s)µ

({
v
(n)

ρ(s,v
(n)
s )

}∞
n=1

)
ds

+ 2

∫ t

0

NαδBµU ({uv(n)(s)}∞n=1) ds

≤

{
Mδg +Mδp(0) + δp(t) + 2tNα sup

s∈[0,T]
δζ(s) + 2tNαδBδΘ(t)

(
1 +Mδg +Mδp(0)

+δp(t1) + 2t1Nα sup
s∈[0,T]

δζ(s)

)}
sup
s∈[0,T]

µ
({
v(n) (s)

}∞
n=1

)
(23)

Similary, using (22), we get for t ∈ (si, ti+1], i ∈ J1, nK,

µ
({
Λv(n)

}∞
n=1

(t)
)

=µ

({
Rα(t− si)

[
hi

(
t, v

(n)

ρ(t,v
(n)
t )

)
− p

(
si, v

(n)

ρ(si,v
(n)
si

)

)]
+ p

(
t, v

(n)

ρ(t,v
(n)
t )

)
+

∫ t

si

(t− s)α−1Sα(t− s)
[
ζ
(
s, v

(n)

ρ(s,v
(n)
s )
, uv(n)(s)

)
+Buv(n)(s)

]
ds

}∞
n=1

)
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≤

{
Mδhi(si) +Mδp(si) + δp(t) + 2(t− si)Nα sup

s∈[0,T]
δζ(s) + 2(t− si)NαδBδΘ(t)

(
1 +Mδhi(si)

+Mδp(si) + δp(ti+1) + 2(ti+1 − si)Nα sup
s∈[0,T]

δζ(s)

)}
sup
s∈[0,T]

µ
({
v(n) (s)

}∞
n=1

)(24)

By (23) and (24) and Lemma 2.1, we conclude that for t ∈ (si, ti+1], i ∈ J0, nK,

µ
({
Λv(n)

}∞
n=1

(t)
)

≤

{
max (Mδhi(si);Mδg) +Mδp(si) + δp(t) + 2(t− si)Nα sup

s∈[0,T]
δζ(s) + 2(t− si)NαδBδΘ(t)×

×
(
1 + max (Mδhi(si);Mδg) +Mδp(si) + δp(ti+1) + 2(ti+1 − si)Nα sup

s∈[0,T]
δζ(s)

)}
sup
s∈[0,T]

µ
({
v(n) (s)

}∞
n=1

)
≤ Πiµ

({
v(n)
}∞
n=1

)
.

In the same way, for t ∈ (ti, si], i ∈ J1, nK, we get:

µ
({
Λv(n)

}∞
n=1

(t)
)
≤ δhi(si) sup

s∈[0,T]
µ
({
v(n)(s)

}∞
n=1

)
≤ Πiµ

({
v(n)
}∞
n=1

)
.(25)

Thus,

(26) µ(D) ≤ conv ({0} ∪ Λ(D)) = µ (Λ(D)) ≤ Πiµ(D).

As Πi < 1, for i ∈ J0, nK (Hypothesis H6), we conclude that µ(D) = 0.

By the Mönch fixed point theorem (Theorem 2.5), the operator Λ has at least one fixed on
Br and this fixed point is a mild solution for the state dependent delay, non-instantaneaous
impulsive integrodifferential system (1). Clearly, for any i ∈ J0, nK, (Λv)(ti+1) = v which
implies that the system (1) is controllable on I. This completes the proof. �

4. Application

As an application, we consider the following state-dependent delay, fractional order, neutral
integrodifferential system with non-instantaneous impulses and non-local conditions.

+
∂α

∂tα
[x(t− ρ(t), z)− a (t, x(t− ρ(t), z))] = ∂2

∂z2
[x(t− ρ(t), z)− a (t, x(t− ρ(t), z))]

+

∫ t

0

e
−(t−s)
τ

∂2

∂z2
[x(t− ρ(t), z)− a (t, x(t− ρ(t), z))] ds+ f (t, x(t− ρ(t), z), u(t, z))

+m(z)u(t, z), t ∈ I =
n⋃
i=0

Ii :=
n⋃
i=0

(si, ti+1]

x(t, z) = Hi (t, x(t− ρ(t), z)) , t ∈
n⋃
i=1

(ti, si]

x0(t, z) = l
(
xη(x)(θ, z)

)
, θ ∈ [−r, 0], z ∈ [0, π],

(27)

where α ∈ (0, 1).
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To represent this system in the abstract form, let U = H = L2([0, π]). In the sequel, A :

D(A) ⊂ H → H is the operator given by: Av = ∆ =
∂2

∂t2
v, with domain D(A) = {v ∈ H :

∂2

∂t2
v ∈ H, v(0) = v(T) = 0}.

It is well known that ∆v = v′′ is the infinitesimal generator of an analytic semigroup (T (t))t≥0
on H. Hence, A is sectorial of type and A1 is satisfied. We also consider the operator γ(t) :

D(A) ⊆ H→ H, t ≥ 0, γ(t)v = e−
t
τ∆v for v ∈ D(A). Moreover, it is easy to see that conditions

A2 and A3 are satisfied with b(t) = e−
t
τ and D = C∞0 ([0,T]), where C∞0 ([0,T]) is the space of

infinitely differentiable functions that vanish at z = 0 and z = T.

Moreover, we set:

f (t, x(t− ρ(t), z), u(t, z)) := sin (x(t− ρ(t))u(t))

a (t, x(t− ρ(t), z)) := cos (x(t− ρ(t)))

Hi (t, x(t− ρ(t), z)) := cos (ix(t− ρ(t)))

(Bu)(z) := m(z)u(t, z), z ∈ [0, π]

Under the above conditions we can represent the system (27) in the abstract form (1).
By these above functions, the assumptions (H1)-(H5) are satisfied. Moreover, we choose

the appropriate parameters to make (H6) hold. Therefore, all the conditions in Theorem 3.1
have been satisfied. Thus, the fractional order, non-instantaneous impulsive integrodifferential
system (27) admits at least one mild solution which is controllable on I.

5. Conclusion

In this paper, we investigate the controllability of a class of state-dependent delay fractional
order, neutral integrodifferential system with non-instantaneous impulses and nonlocal con-
ditions. It is very important to point out that in the considered integrodifferential system,
the nonnlinear function depend on the control function. Clearly, we use the theory of the
α−resolvent operator developped by J. P. C. Dos Santos in [7] and the theory of measures
of noncompactness, combinated with the fixed point theory, to derive a set of conditions that
guarantee the existence and the controllability of mild solutions for the aformentionned system.
At the end, we gave an application to illustrate our results.

For future works, it will be very interesting to consider approximate controllability and
optimal control problem for this system. It will also be very good to consider the stochastic
case.
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