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EXISTENCE OF POSITIVE WEAK SOLUTION FOR A WEIGHTED
SYSTEM OF AUTOCATALYTIC REACTION STEADY STATE TYPE

SALAH A. KHAFAGY1,∗ AND Z. SADEGHI2

Abstract. We establish the existence results of positive weak solution for the weighted p-
Laplacian autocatalytic reaction problem −∆P,pu = λm(x)[νa(x)uα− υuβ ] in Ω, u = 0 on ∂Ω,
where ∆P,p with p > 1 and P = P (x) is a weight function, denotes the weighted p-Laplacian
defined by ∆P,pu ≡ div[P (x)|∇u|p−2∇u],m(x), a(x) are weight functions, λ, ν, υ are positive
parameters, α + 1 ≤ p < β + 1, and Ω ⊂ Rn is a bounded domain with smooth boundary
∂Ω. We establish that there exists positive constant λ∗(Ω) such that the above system has a
positive weak solution for λ ≥ λ∗. We use the method of sub-supersolutions to establish our
results.

1. Introduction

In this paper, we are concerned with the existence and nonexistence results of positive weak
solution for the weighted p-Laplacian autocatalytic reaction problem

(1)

{
−∆P,pu = λm(x)[νa(x)uα − υuβ] in Ω

u = 0 on ∂Ω.

where ∆P,p with p > 1 and P = P (x) is a weight function, denotes the weighted p-Laplacian
which is defined by ∆P,pu ≡ div[P (x)|∇u|p−2∇u], λ is a positive parameter, m(x), a(x) are
weight function and that there exist positive constant m0 such that m(x) ≥ m0, λ, ν, υ are
positive parameters, α+1 ≤ p < β+1 and Ω ⊂ Rn is a bounded domain with smooth boundary
∂Ω. We establish that there exists positive constant λ∗(Ω) such that the above system have a
positive weak solution for λ ≥ λ∗. We use the method of sub-supersolutions to establish our
results (see e.g. [4] and [6]).

When P (x) = m(x) = 1, problems of the form given by (1) arise from many branches of pure
mathematics as in the theory of quasiregular and quasiconformal mappings (see [29]) as well as
from various problems in mathematical physics notably the flow of non-Newtonian fluids. In the
latter case, the quantity p is a characteristic of the medium. The situation p > 2 corresponds
to dilatant fluids, while the situation 1 < p < 2 describes pseudo-plastic fluid (see [2]). The
case p = 2 describes Newtonian fluid (see [30]).
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Systems of type (1), with certian values for P (x), p, α, β, have received considerable attention
in the last decade (see, e.g., [12, 21, 22, 24] and the references therein). It has been shown that
for some certian values of α, β, the system (1) has a rich mathematical structure. In [7], the
system (1) is considered under the conditions P (x) = λ = 1, p = 2 and f(u) = uα,where α ≥ 1

is called the polytropic index. This corresponds to the Emden-Fowler nonlinear steady-state
problem. While in [8], system (1) is considered under the hypothesis P (x) = λ = 1, p = 2 and
f(u) = u − uβ,where u is the population denisty. This corresponds to the Logestic nonlinear
steady-state problem. In [9], system (1) is considered under the hypothesis P (x) = λ = 1, and
f(u) = uα − uβ, with 1 ≤ α < β. This corresponds to the p-autocatalytic reaction nonlinear
steady-state problem. Additionally, in [22], system (1) is considered under the conditions
P (x) = 1, λ = k and f(u) = ku(1 − u2) which corresponds to the p-Fisher–Kolmogoroff
nonlinear steady-state problem. Due to the appearance of weighted p-Laplacian operator in (1)
and the particular cases; the extensions are challenging and nontrivial.

On the other hand, the existence of weak solutions for nonlinear elliptice systems involving p-
Laplacian operators with different weights has been studied using an approximation method (see
[25]), the theory of nonlinear monotone operators method (see [26]) and the sub-supersolutions
method (see [10, 11, 14, 19, 20]). Recently, the behaviours and properties of the weak solution
for some nonlinear systems have received considerable attention (see [1, 15–18])

This paper is organized as follows:
In section 2, we introduce some technical results and notations, that are established in [5].

In section 3, we prove the existence of a positive weak solution for system (1) using the method
of sub-supersolutions. Additionally, we consider the nonexistence result.

2. Technical results

Now, we introduce some technical results [5] concerning the degenerated homogeneous eigen-
value problem

(2)
−∆P,pu = −div[P (x)|∇u|p−2∇u] = λa(x)|u|p−2u in Ω,

u = 0 on ∂Ω,

}
where P (x) and a(x) are measurable functions satisfying

(3)
ν(x)

c1

≤ P (x) ≤ c1ν(x),

for a.e. x ∈ Ω with some constant c1 ≥ 1, where ν(x) is a weight function in Ω satisfying
the conditions

(4) ν, ν−
1
p−1 ∈ L1

Loc(Ω), ν−s ∈ L1(Ω), with s ∈ (
n

p
,∞) ∩ [

1

p− 1
,∞),

and

(5) ‖a(x)‖∞ = a, 0 ≤ a(x) ∈ L
k
k−p (Ω) for a.e. x ∈ Ω,

with some k satisfies p < k < p∗s where p∗s = nps
n−ps with ps = ps

s+1
< p < p∗s and meas

{x ∈ Ω : a(x) > 0} > 0. Examples of functions satisfying (4) are mentioned in [5].

Lemma 2.1. There exists the least( i.e. the first or principal ) eigenvalue λ1 > 0 and precisely
one corresponding eigenfunction φ1 ≥ 0 a.e. in Ω (φ1 not identical to 0) of the eigenvalue
problem (2). Moreover, it is characterized by
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(6) λ1

∫
Ω

a(x)φp1 ≤
∫
Ω

P (x)|∇φ1|p.

Lemma 2.2. Let φ1 ∈ W 1,p
0 (P,Ω), φ1 ≥ 0 a.e. in Ω, be the eigenfunction corresponding to the

first eigenvalue λ1 > 0 of the eigenvalue problem (2). Then φ1 ∈ L∞(Ω).

Now, let us introduce the weighted Sobolev spaceW 1,p(ν,Ω) which is the set of all real valued
functions u defined in Ω for which (see [5])

(7) ‖u‖1,p,ν =

∫
Ω

|u|p +

∫
Ω

ν(x)|∇u|p
 1
p

<∞.

Since we are dealing with the Dirichlet problem, we introduce also the space W 1,p
0 (ν,Ω) as

the closure of C∞0 (Ω) in W 1,p(ν,Ω) with respect to the norm

(8) ‖u‖1,p,ν =

∫
Ω

ν(x)|∇u|p
 1
p

<∞,

which is equivalent to the norm given by (7). Both spaces W 1,p(ν,Ω) and W 1,p
0 (ν,Ω) are well

defined reflexive Banach Spaces.
In this paper, we shall take c1 = 1 in (3) i. e. ν(x) = P (x).

3. Existence and nonexistence results

In this section, we shall prove the existence of positive weak solution for system (1) by
constructing a positive weak subsolution ψ ∈ W 1,p

0 (P,Ω) and supersolution z ∈ W 1,p
0 (P,Ω) of

(1) such that ψ ≤ z. That is, ψ satisfies ψ = 0 on ∂Ω and

(9)
∫
Ω

P (x)|∇ψ|p−2∇ψ∇ζdx ≤ λm(x)

∫
Ω

[νa(x)ψα − υψβ]ζdx,

and z satisfies z = 0 on ∂Ω and

(10)
∫
Ω

P (x)|∇z|p−2∇z∇ζdx ≥ λm(x)

∫
Ω

[νa(x)zα − υzβ]ζdx,

for all test function ζ ∈ W 1,p
0 (P,Ω) with ζ ≥ 0.

Then the following result holds:

Lemma 3.1. (see [3,23]) Suppose there exist a weak subsolution ψ and a weak supersolution z
of (1) such that ψ ≤ z; then there exists a weak solution u of (1) such that ψ ≤ u ≤ z.

Our main results of this paper are the following theorems.

Theorem 3.2. There exists positive constant λ∗ = λ∗(Ω) such that system (1) has a positive
weak solution u for λ ≥ λ∗.
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Proof. Let λ1 be the first eigenvalue of the eigenvalue problem (2) and φ1 the corresponding
positive eigenfunction satisfying φ1 > 0 in Ω and |∇φ1| > 0 on ∂Ω with ‖φ1‖∞ = 1. Then we
have

(11)

{
−∆P,pφ1 = λ1a(x)φp−1

1 in Ω

φ1 = 0 on ∂Ω.

Also, let k, δ, σ > 0 be such that P (x)|∇φ1|p−λ1a(x)φp1 ≥ k on Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ}
and φ1 ≥ σ.

We shall verify that ψ = m
1
p−1

0 (p−1
p

) φ
p
p−1

1 is a weak subsolution of (1). Let ζ ∈ W 1,p
0 (P,Ω)

with ζ ≥ 0.

A calculation shows that∫
Ω

P (x)|∇ψ|p−2∇ψ · ∇ζdx = m0

∫
Ω

P (x)φ1|∇φ1|p−2∇φ1 · ∇ζdx

= m0

∫
Ω

(P (x)|∇φ1|p−2∇φ1∇(φ1ζ)− P (x)|∇φ1|pζ)dx

= m0

∫
Ω

(λ1a(x)φp1 − P (x)|∇φ1|p)ζdx.

Now , in Ωδ we have λ1a(x)φp1 − P (x)|∇φ1|p ≤ −k. We choose υ such that −k ≤ −υλuβ ≤
λ[νa(x)ψα − υψβ], for all x∈ Ωδ. Then we have∫

Ωδ

P (x)|∇ψ|p−2∇ψ∇ζdx ≤ −m0k ≤ λm(x)

∫
Ωδ

[νa(x)ψα − υψβ]ζdx.

Next, in Ω− Ωδ we have λ1a(x)φp1 − P (x)|∇φ1|p ≤ λ1 and φ1 ≥ σ. Now if we take

(12) λ ≥ λ∗ =
m0λ1

a0ν[m
1
p−1

0 (p−1
p

)σ
p
p−1 ]α − υ[m

1
p−1

0 (p−1
p

)σ
p
p−1 ]β

,

then we have∫
Ω−Ωδ

P (x)|∇ψ|p−2∇ψ · ∇ζdx = m0

∫
Ω−Ωδ

(λ1a(x)φp1 − P (x)|∇φ1|p)ζdx

≤ m0λ

∫
Ω−Ωδ

a0ν[m
1
p−1

0 (
p− 1

p
)σ

p
p−1 ]αζdx

− m0λυ

∫
Ω−Ωδ

[m
1
p−1

0 (
p− 1

p
)σ

p
p−1 ]βζdx

≤ λm(x)

∫
Ω−Ωδ

[νa(x)ψα − υψβ]ζdx

So, equation (9) is satisfy and ψ is a weak subsolution of (1).
Next, we construct a weak supersolution z of system (1). Let ep = ep(x) be the positive weak

solution of (see [25])
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(13)
−∆P,pep = 1 in Ω,

ep = 0 on ∂Ω.

}
We denote z(x) = Aep where the constant A > 0 is sufficiently large and to be chosen later.

We shall verify that z is the weak supersolution of (1). To do this, let ζ ∈ W 1,p
0 (P,Ω) with

ζ ≥ 0. Then, using (13), we have∫
Ω

P (x)|∇z|p−2∇z · ∇ζdx = Ap−1

∫
Ω

P (x)|∇ep|p−2∇ep · ∇ζdx

= Ap−1

∫
Ω

ζdx.

Since 0 < α ≤ p − 1 < β, then it is easy to prove that there exists positive large constant A
such that

Ap−1−α = λm(νaeαp − υAβ−αeβp ),

where m = ‖m(x)‖∞ . Hence, we have

∫
Ω

P (x)|∇z|p−2∇z · ∇ζdx = Ap−1

∫
Ω

ζdx =

∫
Ω

λmνaAαeαp ζdx

≥ λm(x)

∫
Ω

(νa(x)zαζdx

> λm(x)

∫
Ω

[νa(x)zα − υzβ]ζdx

So, equation (10) is satisfy and z is the weak supersolution of (1). Thus, there exists a weak
solution u of (1) with ψ ≤ u ≤ z. This completes the proof of Theorem 3.1.
Finally, we discuss the case in which there exists no positive weak solution for system through
the following theorem.

Theorem 3.3. When mνλ ≤ λ1, system (1) has no positive weak solution.

Proof. Suppose u(x) ∈ W 1,p
0 (P,Ω) be a positive weak solution of (1). We prove Theorem

3.2 by arriving at a contradiction.
Multiplying (1) by u, we have∫

Ω

P (x)|∇u|pdx = λm(x)

∫
Ω

(νa(x)uα+1 − υuβ+1)dx

< λm(x)

∫
Ω

νa(x)uα+1 ≤ λm

∫
Ω

νa(x)updx.(14)

Also, we have

(15) λ1

∫
Ω

a(x)up ≤
∫
Ω

P (x)|∇u|p.
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Combining (14) and (15), we obtain

(λ1 −mνλ)

∫
Ω

a(x)up ≤ 0,

which is a contradiction if mνλ ≤ λ1. Thus system (1) has no positive weak solution for
mνλ ≤ λ1, and we finish the proof of Theorem 3.2.

4. Conclusion

In this paper, on the one hand, we have proved the existence of positive weak solution for
autocatalytic reaction steady state problem involving the weighted p-Laplacian operator using
the sub-super solutions method. On the other hand, we discussed the case in which there exists
no positive weak solution for the considered system.

Acknowledgement. The author would like to express his gratitude to Professor H. M. Serag
(Mathematics Department, Faculty of Science, AL- Azhar University, Cairo, Egypt) for con-
tinuous encouragement during the development of this work.
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