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Cn-PSEUDO ALMOST PERIODIC SOLUTIONS UNDER THE LIGHT OF
MEASURE THEORY

MICAILOU NAPO AND ISSA ZABSONRE∗

Abstract. The aim of this work is study some properties and the existence of solution of
some Cn-(µ, ν)-pseudo almost periodic solutions of class r in a Banach space when the delay
is distributed using the variation of constants formula and the spectral decomposition of the
phase space.

1. Introduction

In this work, we study the existence and uniqueness of Cn-(µ, ν)-pseudo almost periodic
solutions of class r for the following neutral partial functional differential equation

(1.1)
d

dt
ut = Aut + L(ut) + f(t) for t ∈ R,

where A is a linear operator on a Banach space X satisfying the Hille-Yosida condition, that
is, there exist M0 ≥ 1 and β ∈ R such that ]β,+∞[⊂ ρ(A) and

|R(λ,A)n| ≤ M0

λ− β
for n ∈ N and λ > β,

where ρ(A) is the resolvent set of A and R(λ,A) = (λI−A)−1 for λ ∈ ρ(A). In sequel, without
lost of generality, we suppose that M0 = 1. C = C([−r, 0];X) denotes the space of continuous
functions from [−r, 0] to X endowed with the uniform norm topology. For every t ≥ 0, ut
denotes the history function of C defined by

ut(θ) = u(t+ θ) for − r ≤ θ ≤ 0.

L is a bounded linear operator from C into X and f : R→ X is a continuous function.
Some recent contributions concerning pseudo almost periodic solutions for abstract differential
equations similar to equation (1.1) have been made. For example in [10] the authors studied
the existence of Cn-almost periodic solutions and Cn-almost automorphic solutions (n ≥ 1), for
partial neutral functional differential equations. They proved that the existence of a bounded
integral solution on R+ implies the existence of Cn-almost periodic and Cn-almost automorphic
strict solutions. When the exponential dichotomy holds for the homogeneous linear equation,
they shown the uniqueness of Cn-almost periodic and Cn-almost automorphic strict solutions.
In [4], the authors proved the existence and uniqueness of Cn-almost periodic solutions to
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the nonautonomous ordinary differential equation x′(t) = A(t)x(t) + f(t), t ∈ R, where A(t)

generates an exponentially stable family of operators (U(t, s))t≥s and f is a Cn-almost periodic
function with values in a Banach space X. They also studied a Volterra-like equation with a
Cn-almost periodic solution.
In [5], the authors present new approach to study weighted pseudo almost periodic functions
using the measure theory. they present a new concept of weighted ergodic functions which
is more general than the classical one. Then they establish many interesting results on the
functional space of such functions like completeness and composition theorems. The theory of
their work generalizes the classical results on weighted pseudo almost periodic functions.
The aim of this work is to prove the existence of Cn-(µ, ν)-pseudo almost periodic solutions of
equation (1.1) when the delay is distributed on [−r, 0]. Our approach is based on the variation
of constants formula and the spectral decomposition of the phase space developed in [3] and a
new approach developped in [5].
This work is organised as follow, in section 2 we recall some prelimary results on variation of
constants formula and spectral decomposition. In section 3, we recall some prelimary results on
Cn-(µ, ν)-pseudo almost periodic functions and neutral partial functional differential equations
that will be used in this work. In section 4, we give some properties of Cn-(µ, ν)-pseudo almost
periodic functions of class r. In section 5, we discuss the main result of this paper. Using the
strict contraction principle we show the existence and uniqueness of Cn-(µ, ν)-pseudo almost
periodic solution of class r for equation (1.1). Finally, for illustration, we propose to study the
existence and uniqueness of Cn-(µ, ν)-pseudo almost periodic solution for some model arising
in the population dynamics.

2. Variation of constants formula and spectral decomposition

To equation (1.1), we associate the following initial value problem

(2.1)


d

dt
u(t) = Au(t) + L(ut) + f(t) for t ≥ 0

u0 = ϕ ∈ C = C([−r, 0];X),

where f : R+ → X is a continuous function.

Definition 2.1. We say that a continuous function u from [−r,+∞[ into X is an integral
solution of equation (2.1), if the following conditions hold:

i)

∫ t

0

u(s)ds ∈ D(A) for t ≥ 0,

ii) u(t) = ϕ(0) + A

∫ t

0

u(s)ds+

∫ t

0

(L(us) + f(s))ds for t ≥ 0,

iii) u0 = ϕ.

If D(A) = X, the integral solutions coincide with the known mild solutions.
One can see that if u(t) is an integral solution of equation (2.1), then u(t) ∈ D(A) for all t ≥ 0,
in particular ϕ(0) ∈ D(A).

https://doi.org/10.28919/ejma.2024.4.10
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Let us introduce the part A0 of the operator A in D(A) which defined by{
D(A0) = {x ∈ D(A) : Ax ∈ D(A)}
A0x = Ax ;for x ∈ D(A0)

We make the following assertion:

(H0) A satisfies the Hille-Yosida condition.

Lemma 2.2. [1] A0 generates a strongly continuous semigroup (T0(t))t≥0 on D(A).

Proposition 2.3. [2] Assume that (H0) holds, then for all ϕ ∈ C such that ϕ(0) ∈ D(A),
equation (2.1) has a unique integral solution u on [−r,+∞[. Moreover, u is given by

u(t) = T0(t)ϕ(0) + lim
λ→+∞

∫ t

0

T0(t− s)Bλ(L(us) + f(s))ds, for t ≥ 0,

where Bλ = λR(λ,A), for λ > ω.

The phase space C0 of equation (2.1) is defined by

C0 = {ϕ ∈ C : ϕ(0) ∈ D(A)}.

For each t ≥ 0, we define the linear operator U(t) on C0 by

U(t)ϕ = vt(., ϕ)

where v(., ϕ) is the solution of the following homogeneous equation
d

dt
v(t) = Av(t) + L(vt) for t ≥ 0

v0 = ϕ ∈ C.

Proposition 2.4. [3] (U(t))t≥0 is a strongly continuous semigroup of linear operators on C0.
Moreover, (U(t))t≥0 satisfies, for t ≥ 0 and θ ∈ [−r, 0], the following translation property

(U(t)ϕ)(θ) =


(U(t+ θ)ϕ)(0) for t+ θ ≥ 0

ϕ(t+ θ) for t+ θ ≤ 0.

Proposition 2.5. [3] Let AU defined on C0 by
D(AU) =

{
ϕ ∈ C1([−r, 0];X); ϕ(0) ∈ D(A), ϕ(0)′ ∈ D(A) and ϕ(0)′ = Aϕ(0) + L(ϕ)

}
AUϕ = ϕ′ for ϕ ∈ D(AU).

Then AU is the infinitesimal generator of the semigroup (U(t))t≥0 on C0.

Let 〈X0〉 be the space defined by

〈X0〉 = {X0c : c ∈ X}
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where the function X0c is defined by

(X0c)(θ) =


0 if θ ∈ [−r, 0[,

c if θ = 0.

The space C0 ⊕ 〈X0〉 equipped with the norm |φ + X0c| = |φ|C + |c| for (φ, c) ∈ C0 × X is a
Banach space and consider the extension AU defined on C0 ⊕ 〈X0〉 by{

D(ÃU) =
{
ϕ ∈ C1([−r, 0];X) : ϕ(0) ∈ D(A) and ϕ(0)′ ∈ D(A)

}
ÃUϕ = ϕ′ +X0(Aϕ(0) + L(ϕ)− ϕ(0)′).

Lemma 2.6. [3] Assume that (H0) holds. Then, ÃU satisfies the Hille-Yosida condition on
C0 ⊕ 〈X0〉 there exist M̃ ≥ 0, ω̃ ∈ R such that ]ω̃,+∞[⊂ ρ(ÃU) and

|(λI − ÃU)−n| ≤ M̃

(λ− ω̃)n
for n ∈ N and λ > ω̃.

Moreover, the part of ÃU on D(ÃU) = C0 is exactly the operator AU .

Now, we can state the variation of constants formula associated to equation (2.1).

Proposition 2.7. [3] Assume that (H0) holds. Then for all ϕ ∈ C0, the solution u of equation
(2.1) is given by the following formula

ut = U(t)ϕ+ lim
λ→+∞

∫ t

0

U(t− s)B̃λ(X0f(s))ds for t ≥ 0,

where B̃λ = λ(λI − ÃU)−1 for λ > ω̃.

Definition 2.8. We say a semigroup (U(t))t≥0 is hyperbolic if

σ(AU) ∩ iR =

For the sequel, we make the following assumption:

(H1) T0(t) is compact on D(A) for every t > 0.

Proposition 2.9. [3] Assume that (H0) and (H1). Then the semigroup (U(t))t≥0 is compact
for t > r.

From the compactness of the semigroup (U(t))t≥0, we get the following result on the spectral
decomposition of the phase space C0.

Proposition 2.10. [11] Assume that (H1) holds. If the semigroup (U(t))t≥0 is hyperbolic,
then the space C0 is decomposed as a direct sum

C0 = S ⊕ U

of two U(t) invariant closed subspaces S and U such that the restricted semigroup on U is a
group and there exist positive constants M and ω such that

|U(t)ϕ| ≤ Me−ωt|ϕ| for t ≥ 0 and ϕ ∈ S

|U(t)ϕ| ≤ Meωt|ϕ| for t ≤ 0 and ϕ ∈ U,

https://doi.org/10.28919/ejma.2024.4.10
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where S and U are called respectively the stable and unstable space, Πs and Πu denote respec-
tively the projection operator on S and U .

3. Cn-(µ, ν)-Pseudo almost periodic functions

In this section, we recall some properties about µ-pseudo almost periodic functions. The
notion of µ-pseudo almost periodicity is a generalization of the pseudo almost periodicity intro-
duced by Zhang [14–16]; it is also a generalization of weighted pseudo almost periodicity given
by Diagana [9]. Let BC(R;X) be the space of all bounded and continuous function from R to
X equipped with the uniform norm topology.
We denote by B the Lebesgue σ-field of R and by M the set of all positive measures µ on B
satisfying µ(R) = +∞ and µ([a, b]) <∞, for all a, b ∈ R (a ≤ b).

Definition 3.1. A bounded continuous function φ : R→ X is called almost periodic if for each
ε > 0, there exists a relatively dense subset of R denote byK(ε, φ,X) such that |φ(t+τ)−φ(t)| <
ε for all (t, τ) ∈ R×K(ε, φ,X).

We denote by AP (R;X), the space of all such functions.

Definition 3.2. Let X1 and X2 be two Banach spaces. A bounded continuous function
φ : R ×X1 → X2 is called almost periodic in t ∈ R uniformly in x ∈ X1 if for each ε > 0 and
all compact K ⊂ X1, there exists a relatively dense subset of R denote by K(ε, φ,K) such that
|φ(t+ τ, x)− φ(t, x)| < ε for all t ∈ R, x ∈ K, τ ∈ K(ε, φ,K).

We denote by AP (R×X1;X2), the space of all such functions.

The next lemma is also a characterization of almost periodic functions.

Lemma 3.3. A function φ ∈ C(R, X) is almost periodic if and only if the space of functions
{φτ : τ ∈ R}, where (φτ )(t) = φ(t+ τ), is relatively compact in BC(R;X).

Let Cn(R;X) be the space of all continuous function which have a continuous n-th derivative
on R and Cn

b (R;X) be the subspace of Cn(R;X) of functions satisfying

sup
t∈R

n∑
i=0

|h(i)(t)| <∞,

where h(i) denotes the i-th derivative of h. Then Cn
b (R;X) is a Banach space provided with

the following norm

|h|n = sup
t∈R

n∑
i=0

|h(i)(t)|.

Definition 3.4. [4] Let ε > 0 and h ∈ Cn
b (R;X). A number τ ∈ R is said to be a | . |n − ε

almost periodic of the function h if
|hτ − h|n < ε

We denote by E(n)(ε, h) the space of | . |n − ε almost periodic of the function h.

Definition 3.5. [4] A function h ∈ Cn
b (R;X) is said to be Cn-almost periodic functions if for

every ε > 0, the set E(n)(ε, h) is relatively dense in R.
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We denote by AP (n)(R;X) the space of the Cn-almost periodic functions. We can see that
AP (0)(R;X) = AP (R;X) and for all n ∈ N, AP (n+1)(R;X) ⊂ AP (n)(R;X)

Definition 3.6. Let X1 and X2 be two Banach spaces. A function φ ∈ Cn
b (R × X1;X2) is

said to be Cn-almost periodic functions in t ∈ R uniformly in x ∈ X1 if for each ε > 0 and all
compact K ⊂ X1, there exists a relatively dense subset of R denote by K(ε, φ,K) such that
|φτ (., x)− φ(., x)|n < ε for all t ∈ R, x ∈ K, τ ∈ K(ε, φ,K), φτ (., x)(t) = φ(t+ τ, x). Here

|φ(., x)|n = sup
t∈R

n∑
i=0

∣∣∣∂iφ
∂ti

(t, x)
∣∣∣.

We denote by AP (n)(R×X1;X2), the space of all such functions.

Since it is well known that for any almost periodic functions h1 and h2 and ε > 0, there
exists a relatively dense set of their common ε almost periodic. Consequently, we get the
following result.

Proposition 3.7. [4] h ∈ AP (n)(R;X) if and only if h(i) ∈ AP (R;X) for i = 1, ..., n.

Since AP (R;X) equipped with uniform norm topology is a Banach space, then we get the
following result.

Proposition 3.8. [4] AP (n)(R;X) provided with the norm | . |n is a Banach space.

Example 3.9. The following example of Cn-almost periodic function has been given in [7].
Let

g(t) = sin(αt) + sin(βt)

where (α/β) /∈ Q. Then the function h(t) = eg(t) is Cn-almost periodic function for any n ≥ 1.
In [7], one can find example of function which is Cn-almost periodic but not Cn+1-almost
periodic.

In the sequel, we use some preliminary results concerning the (µ, ν)-Pseudo almost periodic
functions which have been established recently in [5].
E(R;X,µ, ν) stands for the space of functions

E(R;X,µ) =
{
u ∈ BC(R;X) : lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ
|u(t)|dµ(t) = 0

}
.

To study delayed differential equations for which the history belong to C([−r, 0];X), we need
to introduce the space

E(R;X,µ, ν, r) =
{
u ∈ BC(R;X) : lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|u(θ)|

)
dµ(t) = 0

}
.

In addition to above-mentioned space, we consider the following spaces

E(R×X1, X2, µ, ν) =
{
u ∈ BC(R×X1;X2) : lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ
|u(t, x)|X2dµ(t) = 0

}
,

E(R×X1;X2, µ, ν, r) =
{
u ∈ BC(R×X1;X2) : lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|u(θ, x)|X2

)
dµ(t) = 0

}
.

https://doi.org/10.28919/ejma.2024.4.10
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where in both cases the limit (as τ → +∞) is uniform in compact subset of X1.

In view of previous definitions, it is clear that the spaces E(R;X,µ, ν, r) and E(R×X1;X2, µ, ν, r)

are continuously embedded in E(R;X,µ, ν) and E(R×X1, X2, µ, ν), respectively.
On the other hand, one can observe that a ρ-weighted pseudo almost periodic functions is
µ-pseudo almost periodic, where the measure µ is absolutely continuous with respect to the
Lebesgue measure and its Radon-Nikodym derivative is ρ:

dµ(t) = ρ(t)dt.

Example 3.10. [5] Let ρ be a nonnegative B-measurable function. Denote by µ the positive
measure defined by

(3.1) µ(A) =

∫
A

ρ(t)dt, for A ∈ B,

where dt denotes the Lebesgue measure on R. The function ρ which occurs in equation (3.1) is
called the Radon-Nikodym derivative of µ with respect to the Lebesgue measure on R.

Definition 3.11. A function h ∈ Cn
b (R;X) is said to be Cn-ergodic functions if h(i) ∈

E(R;X,µ) for i = 1, ..., n. We denote by E (n)(R;X,µ) the space of the Cn-ergodic functions.

Definition 3.12. A function h ∈ Cn
b (R;X) is said to be Cn-ergodic functions of class r if

h(i) ∈ E(R;X,µ) for i = 1, ..., n. We denote by E (n)(R;X,µ, r) the space of the Cn-ergodic
functions.

From µ, ν ∈M, we formulate the following hypothese.

(H2) Let µ, ν ∈M be such that lim sup
τ→+∞

µ([−τ, τ ])

ν([−τ, τ ])
= α <∞.

We have the following result.

Lemma 3.13. Asumme (H2) holds and let f ∈ Cn
b (R;X). Then f ∈ E (n)(R;X,µ, ν) if and

only if for any ε > 0 and for i = 1, ..., n,

lim
τ→+∞

µ(Mτ,ε(f
(i)))

ν([−τ, τ ]
= 0

where
Mτ,ε(f

(i)) = {t ∈ [−τ, τ ] : |f (i)(t)| ≥ ε}.

Proof. Suppose that f ∈ E (n)(R;X,µ, ν), then by Definition 3.11 f (i) ∈ E(R;X,µ, ν). We have

1

ν([−τ, τ ])

∫ +τ

−τ
|f (i)(t)|dµ(t) =

1

ν([−τ, τ ])

∫
Mτ,ε(f (i))

|f (i)(t)|dµ(t)

+
1

ν([−τ, τ ])

∫
[−τ,τ ]\Mτ,ε(f (i))

|f (i)(t)|dµ(t)

≥ 1

ν([−τ, τ ])

∫
Mτ,ε(f (i))

|f (i)(t)|dµ(t)

https://doi.org/10.28919/ejma.2024.4.10
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≥ ε

ν([−τ, τ ])
Mτ,ε(f

(i)).

Consequently

lim
τ→+∞

µ(Mτ,ε(f
(i)))

ν([−τ, τ ]
= 0.

Suppose that f ∈ Cn
b (R;X) such that for any ε > 0 and for i = 1, ..., n,

lim
τ→+∞

µ(Mτ,ε(f
(i)))

ν([−τ, τ ]
= 0

We can assume |f (i)(t)| ≤ N for all t ∈ R. Using (H2), we have

1

ν([−τ, τ ])

∫ +τ

−τ
|f (i)(t)|dµ(t)

=
1

ν([−τ, τ ])

∫
Mτ,ε(f (i))

|f (i)(t)|dµ(t)

+
1

ν([−τ, τ ])

∫
[−τ,τ ]\Mτ,ε(f (i))

|f (i)(t)|dµ(t)

≤ N

ν([−τ, τ ])

∫
Mτ,ε(f (i))

dµ(t) +
1

ν([−τ, τ ])

∫
[−τ,τ ]\Mτ,ε(f (i))

|f (i)(t)|dµ(t)

≤ N

ν([−τ, τ ])

∫
Mτ,ε(f (i))

dµ(t) +
ε

ν([−τ, τ ])

∫
[−τ,τ ]

dµ(t)

≤ N

ν([−τ, τ ])
Mτ,ε(f

(i)) +
εµ([−τ, τ ])

ν([−τ, τ ])
.

Which implies that

lim
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ
|f (i)(t)|dµ(t) ≤ αε for any ε > 0.

Therefore f (i) ∈ E(R;X,µ, ν) for i = 1, ..., n, which implies that f ∈ E (n)(R;X,µ, ν).�

Definition 3.14. Let µ ∈ M. A bounded continuous function φ ∈ Cn
b (R;X) is called Cn-

(µ, ν)-pseudo almost periodic if φ = φ1 +φ2, where φ1 ∈ AP (n)(R, X) and φ2 ∈ E (n)(R;X,µ, ν).

We denote by PAP (n)(R;X,µ, ν) the space of all such functions.

Definition 3.15. Let µ ∈ M and X1 and X2 be two Banach spaces. A bounded continuous
function φ ∈ Cn

b (R;X1 → X2) is called uniformly Cn-(µ, ν)-pseudo almost periodic if φ =

φ1 + φ2, where
φ1 ∈ AP (n)(R×X1;X2) and φ2 ∈ E (n)(R×X1, X2, µ).

We denote by PAP (n)(R×X1;X2, µ, ν), the space of all such functions.

Definition 3.16. µ ∈ M. A bounded continuous function φ ∈ Cn
b (R;X) is Cn-called (µ, ν)-

pseudo almost periodic of class r if φ = φ1+φ2, where φ1 ∈ AP (n)(R;X) and φ2 ∈ E(n)(R;X,µ, ν, r).

We denote by PAP (n)(R;X,µ, r), the space of all such functions.

https://doi.org/10.28919/ejma.2024.4.10
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Definition 3.17. µ ∈ M. Let X1 and X2 be two Banach spaces. A bounded continuous
function φ ∈ Cn

b (R;X1 → X2) is called uniformly Cn-(µ, ν)-pseudo almost periodic of class r if
φ = φ1 + φ2, where φ1 ∈ AP (n)(R×X1;X2) and φ2 ∈ E (n)(R×X1;X2, µ, r).

We denote by PAP (n)(R×X1;X2, µ, ν, r), the space of all such functions.

4. Properties of Cn-(µ, ν)-pseudo almost periodic functions of class r

Lemma 4.1. µ ∈M. The space PAP (n)(R;X,µ, ν, r) endowed with the |.|n norm is a Banach
space.

Proof. Let (xm)m be a sequence in PAP (n)(R;X,µ, ν, r) such that lim
m→∞

xm = x in BCn(R;X).

For each m, let xm = yn + zm with ym ∈ AP (n)(R;X) and zm ∈ E (n)(R;X,µ, ν, r). Since
ym ∈ AP (n)(R;X), then from Proposition 3.7 y

(i)
m ∈ AP (R;X) and by [12, Lemma 1.2],

(y
(i)
m )m converges to some y(i) ∈ AP (R;X) for i = 0, 1, ..., n. Consequently by Proposition

3.7 y ∈ AP (n)(R;X).

Since zm ∈ E (n)(R;X,µ, ν, r), Definition 3.12 implies that z(i)m ∈ E(R;X,µ, ν, r) and (z
(i)
m )m

converges to some z(i) ∈ BC(R;X) for i = 0, 1, ..., n. We have

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|z(i)(θ)|

)
dµ(t) ≤ 1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|z(i)m (θ)− z(i)(θ)|

)
dµ(t)

+
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|z(i)m (θ)|

)
dµ(t)

≤ 1

ν([−τ, τ ])

∫ +τ

−τ

(
sup
t∈R
|z(i)m (t)− z(i)(t)|

)
dµ(t)

+
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|z(i)m (θ)|

)
dµ(t)

≤ ‖z(i)m − z(i)‖+
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|z(i)m (θ)|

)
dµ(t).

Then we get z(i) ∈ E(R;X,µ, ν, r) for i = 0, 1, ..., n, i.e z ∈ E (n)(R;X,µ, ν, r). It follows that
x ∈ PAP (n)(R;X,µ, ν, r).�

Next result is a characterization of (µ, ν)-ergodic functions of class r.

Theorem 4.2. Assume that (H2) holds and let µ, ν ∈M and I be a bounded interval (eventu-
ally I = ). Assume that f ∈ Cn

b (R;X). Then the following assertions are equivalent:

i) f ∈ E (n)(R, X, µ, ν, r).
ii) lim

τ→+∞

1

ν([−τ, τ ] \ I)

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t) = 0 for i = 0, 1, ..., n.

iii) For any ε > 0, lim
τ→+∞

µ
({
t ∈ [−τ, τ ] \ I : sup

θ∈[t−r,t]
|f (i)(θ)| > ε

})
ν([−τ, τ ] \ I)

= 0 for i = 0, 1, ..., n.

Proof. i) ⇔ ii) Denote by A = ν(I), B =

∫
I

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t). We have A and B ∈ R,
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since the interval I is bounded and the function f (i) is bounded and continuous for i = 0, 1, ..., n.
For τ > 0 such that I ⊂ [−τ, τ ] and ν([−τ, τ ] \ I) > 0, we have

1

ν([−τ, τ ] \ I)

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t) =

1

ν([−τ, τ ])−A

[ ∫
[−τ,τ ]

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t)−B

]
=

ν([−τ, τ ])

ν([−τ, τ ])−A

[ 1

ν([−r, r])

∫
[−τ,τ ]

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t)− B

ν([−τ, τ ])

]
.

From above equalities and the fact that ν(R) = +∞, we deduce that ii) is equivalent to

lim
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t) = 0, for i = 0, 1, ..., n

and by Definition 3.11 that is i).

iii)⇒ ii) Denote by Aετ and Bε
τ the following sets

Aετ =
{
t ∈ [−τ, τ ] \ I : sup

θ∈[t−r,t]
|f (i)(θ)| > ε

}
and Bε

τ =
{
t ∈ [−τ, τ ] \ I) : sup

θ∈[t−r,t]
|f (i)(θ)| ≤ ε

}
.

Assume that iii) holds, that is

lim
τ→+∞

µ(Aετ )

ν([−τ, τ ] \ I)
= 0.(4.1)

From the equality∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t) =

∫
Aετ

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t) +

∫
Bετ

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t),

we deduce that for τ sufficiently large
1

ν([−τ, τ ] \ I)

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t) ≤ ‖f (i)‖∞

µ(Aετ )

ν([−τ, τ ] \ I)
+ ε

µ(Bε
τ )

ν([−τ, τ ] \ I)
.

By using (H2), it follows that

lim
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t) ≤ αε, for any ε > 0, for i = 0, 1, ..., n,

consequently (ii) holds.

ii)⇒ iii) Assume that ii) holds. From the following inequality∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t) ≥

∫
Aετ

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t)

1

ν([−τ, τ ] \ I)

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t) ≥ ε

µ(Aετ )

ν([−τ, τ ] \ I)

1

εν([−τ, τ ] \ I)

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (i)(θ)|

)
dµ(t) ≥ µ(Aετ )

ν([−τ, τ ] \ I)
, for i = 0, 1, ..., n

For τ sufficiently large, we obtain equation (4.1), that is iii).�

From µ ∈M, we formulate the following hypotheses.

(H3) For all a, b and c ∈ R, such that 0 ≤ a < b ≤ c, there exist δ0 and α0 > 0 such
that

|δ| ≥ δ0 ⇒ µ(a+ δ, b+ δ) ≤ α0µ(δ, c+ δ).
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(H4) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a+ τ : a ∈ A} ≤ βµ(A) when A ∈ B satisfies A ∩ I = .

We have the following results due to [5]

Lemma 4.3. [5] Hypothesis (H4) implies (H3).

Proposition 4.4. [5, 8] µ, ν ∈M satisfy (H3) and f ∈ PAP (R;X,µ, ν) be such that

f = g + h

where g ∈ AP (R, X) and h ∈ E(R, X, µ, ν). Then

{g(t), t ∈ R} ⊂ {f(t), t ∈ R} (the closure of the range of f).

Corollary 4.5. [8] Assume that (H3) holds. Then the decomposition of a (µ, ν)-pseudo almost
periodic function in the form f = g + φ where g ∈ AP (R;X) and φ ∈ E(R;X,µ, ν), is unique.

The following corollary is a consequence of Corollary 4.5.

Proposition 4.6. Let µ, ν ∈ M. Assume (H3) holds. Then the decomposition of a (µ, ν)-
pseudo-almost periodic function φ = φ1+φ2, where φ1 ∈ AP (n)(R;X) and φ2 ∈ E (n)(R;X,µ, ν, r),
is unique.

Proof. Let In fact φ = φ1 + φ2, where φ1 ∈ AP (n)(R;X) and φ2 ∈ E (n)(R;X,µ, ν, r), then
φ
(i)
1 ∈ AP (R;X) and φ(i)

2 ∈ E(R;X,µ, ν, r) for i = 0, 1, ..., n. Since as a consequence of Corollary
4.5, the decomposition of a (µ, ν)-pseudo-almost periodic function φ(i) = φ

(i)
1 + φ

(i)
2 , where

φ
(i)
1 ∈ AP (R;X) and φ(i)

2 ∈ E(R;X,µ, ν), is unique and PAP (R;X,µ, ν, r) ⊂ PAP (R;X,µ, ν),
then the decomposition of a (µ, ν)-pseudo-almost periodic function of class r, φ(i) = φ

(i)
1 + φ

(i)
2 ,

where φ(i)
1 ∈ AP (R;X) and φ2 ∈ E(R;X,µ, ν, r), is unique. Consequently, we get the desired

result.�

Definition 4.7. Let µ1, µ2 ∈M. We say that µ1 is equivalent to µ2, denoting this as µ1 ∼ µ2

if there exist constants α and β > 0 and a bounded interval I (eventually I = ) such that

αµ1(A) ≤ µ2(A) ≤ βµ1(A), when A ∈ B satisfies A ∩ I = .

From [5] ∼ is a binary equivalence relation on M. the equivalence class of a given measure
µ ∈M will then be denoted by

cl(µ) = {$ ∈M : µ ∼ $}.

Theorem 4.8. Let µ1, µ2, ν1, ν2 ∈ M. If µ1 ∼ µ2 and ν1 ∼ ν2, then PAP (n)(R;X,µ1, ν1, r) =

PAP (n)(R;X,µ2, ν2, r).

Proof. Since µ1 ∼ µ2 and ν1 ∼ ν2 there exist some constants α1, α2, β1, β2 > 0 and a bounded
interval I (eventually I = ) such that α1µ1(A) ≤ µ2(A) ≤ β1µ1(A) and α2ν1(A) ≤ ν2(A) ≤
β2ν1(A) for each A ∈ B satisfies A ∩ I = i.e

1

β2ν1(A)
≤ 1

ν2(A)
≤ 1

α2ν1(A)
.
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Let f ∈ Cn
b (R, X), since µ1 ∼ µ2 and B is the Lebesgue σ-field, we obtain for τ sufficiently

large, it follows that

α1µ1

({
t ∈ [−τ, τ ] \ I : sup

θ∈[t−r,t]
|f (i)(θ)| > ε

})
β2ν1([−τ, τ ] \ I)

≤
µ2

({
t ∈ [−τ, τ ] \ I : sup

θ∈[t−r,t]
|f (i)(θ)| > ε

})
ν2([−τ, τ ] \ I)

≤
β1µ1

({
t ∈ [−τ, τ ] \ I : sup

θ∈[t−r,t]
|f (i)(θ)| > ε

})
α2ν1([−τ, τ ] \ I)

By using Theorem 4.2 we deduce that E (n)(R, X, µ1, ν1, r) = E (n)(R, X, µ2, ν2, r). From the
definition of a (µ, ν)-pseudo almost periodic function, we deduce that PAP (n)(R;X,µ1, ν1, r) =

PAP (n)(R;X,µ2, ν2, r).�

Let µ, ν ∈M we denote by

cl(µ, ν) = {$1, $2 ∈M : µ ∼ $2 and ν ∼ $2}.

Proposition 4.9. [8] Let µ, ν ∈ M satisfy (H4). Then PAP (R, X, µ, ν) is invariant by
translation, that is f ∈ PAP (R, X, µ, ν) implies fα ∈ PAP (R, X, µ, ν) for all α ∈ R.

We can deduce the following result.

Corollary 4.10. Let µ, ν ∈M satisfy (H4). Then PAP (n)(R, X, µ, ν) is invariant by transla-
tion, that is f ∈ PAP (n)(R, X, µ, ν) implies fα ∈ PAP (n)(R, X, µ, ν) for all α ∈ R.

In what follows, we prove some preliminary results concerning the composition of (µ, ν)-
pseudo almost periodic functions of class r.

Theorem 4.11. Let µ, ν ∈M, φ ∈ PAP (n)(R×X1;X2, µ, ν, r) and h ∈ PAP (n)(R;X1, µ, ν, r).
Assume that there exists a function Lφ : R→ [0,+∞[ sastisfies

(4.2) |φ(t, x1)− φ(t, x2)| ≤ lφ(t)|x1 − x2| for t ∈ R and for x1, x2 ∈ X1.

If
(4.3)

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈[t−r,t]
Lφ(θ)

)
dµ(t) <∞ and lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
Lφ(θ)

)
ξ(t)dµ(t) = 0

for each ξ ∈ E (n)(R, µ, ν) and for almost τ > 0, then the function t → φ(t, h(t)) belongs to
PAP (n)(R;X2, µ, ν, r).

Proof. Assume that φ = φ1 + φ2, h = h1 + h2 where φ1 ∈ AP (n)(R × X1;X2), φ2 ∈
E (n)(R ×X1;X2, µ, ν, r) and h1 ∈ AP (n)(R;X1), h2 ∈ E (n)(R;X1, µ, ν, r), then φ

(i)
1 ∈ AP (R ×

X1;X2), φ
(i)
2 ∈ E(R × X1;X2, µ, ν, r) and h

(i)
1 ∈ AP (R;X1), h

(i)
2 ∈ E(R;X1, µ, ν, r) for i =

0, 1, ..., n. Consider the following decomposition

φ(i)(t, h(t)) = φ
(i)
1 (t, h

(i)
1 (t)) + [φ(i)(t, h(i)(t))− φ(i)(t, h

(i)
1 (t))] + φ

(i)
2 (t, h

(i)
1 (t)).

From [6, 13], φ(i)
1 (., h

(i)
1 (.)) ∈ AP (R;X2) for i = 0, 1, ..., n. It remains to prove that both

φ(i)(., h(i)(.))− φ(i)(., h
(i)
1 (.)) and φ(i)

2 (., h
(i)
1 (.)) belong to E(R;X2, µ, ν, r) for i = 0, 1, ..., n.
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Using equation (4.2), it follows that

µ
({
t ∈ [−τ, τ ] : sup

θ∈[t−r,t]
|φ(i)(θ, h(i)(θ))− φ(i)(θ, h

(i)
1 (θ))| > ε

})
ν([−τ, τ ])

≤
µ
({
t ∈ [−τ, τ ] : sup

θ∈[t−r,t]
(Lφ(θ)|h(i)2 (θ)|) > ε

})
ν([−τ, τ ])

≤
µ
({
t ∈ [−τ, τ ] :

(
sup

θ∈[t−r,t]
Lφ(θ)

)(
sup

θ∈[t−r,t]
|h(i)2 (θ)|

)
> ε
})

ν([−τ, τ ])
.

Since h(i)2 is (µ, ν)-ergodic of class r, Theorem 4.2 and equation (4.3) yield that for the above-
mentioned ε, we have

lim
τ→+∞

µ
({
t ∈ [−τ, τ ] :

(
sup

θ∈[t−r,t]
Lφ(θ)

)(
sup

θ∈[t−r,t]
|h(i)2 (θ)|

)
> ε
})

ν([−τ, τ ])
= 0,

and then we obtain

(4.4) lim
τ→+∞

µ
({
t ∈ [−τ, τ ] : sup

θ∈[t−r,t]
|φ(i)(θ, h(i)(θ))− φ(θ, h1(θ))| > ε

})
ν([−τ, τ ])

= 0,

By Theorem 4.2, equation (4.4) shows that t 7→ φ(i)(t, h(i)(t)) − φ(i)(t, h
(i)
1 (t)) is (µ, ν)-ergodic

of class r for i = 0, 1, ..., n.
Now to complete the proof, it is enough to prove that t 7→ φ2(t, h(t)) is (µ, ν)-ergodic of class
r. Since φ(i)

2 is uniformly continuous on the compact set Ki = {h(i)1 (t) : t ∈ R} with respect
to the second variable x, we deduce that for given ε > 0, there exists δ > 0 such that, for all
t ∈ R, ξ1 and ξ2 ∈ Ki, one has

‖ξ1 − ξ2‖ ≤ δ ⇒ ‖φ(i)
2 (t, ξ

(i)
1 (t))− φ(i)

2 (t, ξ
(i)
2 (t))‖ ≤ ε.

Therefore, there exist n(ε) and {z(i)k }
m(ε)
k=1 ⊂ K, such that

Ki ⊂
m(ε)⋃
k=1

Bδ(z
(i)
k , δ)

and then

‖φ(i)
2 (t, h

(i)
1 (t))‖ ≤ ε+

m(ε)∑
k=1

‖φ(i)
2 (t, zi)‖

Since
∀k ∈ {1, ...,m(ε)}, lim

τ→+∞

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈[t−r,t]
|φ(i)

2 (θ, z
(i)
k )|
)
dµ(t) = 0,

we deduce that

∀ε > 0, lim sup
τ→+∞

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈[t−r,t]
|φ(i)

2 (θ, h
(i)
1 (t))|

)
dµ(t) ≤ ε,

that implies

lim
τ→+∞

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈[t−r,t]
|φ(i)

2 (θ, h
(i)
1 (t))|

)
dµ(t) = 0.
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Consequently t 7→ φ
(i)
2 (t, h(i)(t)) is (µ, ν)-ergodic of class r for i = 0, 1, ..., n.

Using Proposition 3.7 and Definition 3.11 it follows that the function t→ φ(t, h(t)) belongs to
PAP (n)(R;X2, µ, ν, r).�

For µ ∈M and α ∈ R, we denote µα the positive measure on (R,B) defined by

(4.5) µα(A) = µ([a+ α : a ∈ A])

Lemma 4.12. [5] Let µ ∈ M satisfy (H3). Then the measures µ and µα are equivalent for
all α ∈ R.

Lemma 4.13. [5] (H3) implies

for all σ > 0 lim sup
τ→+∞

µ([−τ − σ, τ + σ])

µ([−τ, τ ])
< +∞.

We have the following result.

Theorem 4.14. Assume that (H3) holds. Let µ, ν ∈ M and φ ∈ PAP (n)(R;X,µ, ν, r), then
the function t→ φt belongs to PAP (n)(C([−r, 0];X), µ, ν, r).

Proof. Assume that φ = g + h where g ∈ AP (n)(R;X) and h(n) ∈ E(R;X,µ, ν, r). Then we
can see that, φt = gt + ht and for i = 0, 1, ..., n g

(i)
t is almost periodic, which implies that

gt ∈ AP (n)(C([−r, 0];X), µ, ν, r). For i = 0, 1, ..., n, tet us denote by

Mα(τ) =
1

να([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|h(i)(θ)|

)
dµα(t),

where µα and να are the positive measures defined by equation (4.5). By using Lemma 4.12, it
follows that µα and µ are equivalent and να and ν are also equivalent. hen by using Theorem
4.8 we have E (n)(R;X,µα, να, r) = E (n)(R;X,µ, ν, r), therefore h(i) ∈ E(R;X,µα, να, r), that is

lim
τ→+∞

Mα(τ) = 0, for all α ∈ R.

On the other hand, for r > 0 we have
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]

[
sup

ξ∈[−r,0]
|h(i)(θ + ξ)|

])
dµ(t) ≤ 1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−2r,t]
|h(i)(θ)|

)
dµ(t)

≤ 1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−2r,t−r]
|h(i)(θ)|+ sup

θ∈[t−r,t]
|h(i)(θ)|

)
dµ(t)

≤ 1

ν([−τ, τ ])

∫ +τ−r

−τ−r

(
sup

θ∈[t−r,t]
|h(i)(θ)|

)
dµ(t+ r) +

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|h(i)(θ)|

)
dµ(t)

≤ 1

ν([−τ, τ ])

∫ +τ+r

−τ−r

(
sup

θ∈[t−r,t]
|h(i)(θ)|

)
dµ(t+ r) +

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|h(i)(θ)|

)
dµ(t)

≤
[ν([−τ − r, τ + r])

ν([−τ, τ ])

]
× 1

ν([−τ − r, τ + r]

∫ +τ+r

−τ−r

(
sup

θ∈[t−r,t]
|h(i)(θ)|

)
dµ(t+ r)

+
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|h(i)(θ)|

)
dµ(t).
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Consequently

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]

[
sup

ξ∈[−r,0]
|h(i)(θ + ξ)|

])
dµ(t) ≤

[ν([−τ − r, τ + r])

ν([−τ, τ ])

]
×Mr(τ + r)

+
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈[t−r,t]
|h(i)(θ)|

)
dµ(t),

which shows using Lemma 4.12 and Lemma 4.13 that φ(i)
t belongs to PAP (C([−r, 0];X), µ, ν, r)

for i = 0, 1, ..., n. Thus, we obtain the desired result.�

5. Cn-(µ, ν)-Pseudo almost periodic solutions of class r

In what follows, we will be looking at the existence of bounded integral solutions of class r
of equation (1.1).

Proposition 5.1. [10] Assume that (H0) and (H1) hold and the semigroup (U(t))t≥0 is hy-
perbolic. If f ∈ BC(R;X), then there exists a unique bounded solution u of equation (1.1) on
R, given by

ut = lim
λ→+∞

∫ t

−∞
U s(t− s)Πs(B̃λX0f(s))ds+ lim

λ→+∞

∫ t

+∞
Uu(t− s)Πu(B̃λX0f(s))ds for t ∈ R,

where Πs and Πu are the projections of C0 onto the stable and unstable subspaces, respectively.

Proposition 5.2. [?] Let h ∈ AP (R;X) and Γ be the mapping defined for t ∈ R by

Γh(t) =
[

lim
λ→+∞

∫ t

−∞
U s(t− s)Πs(B̃λX0h(s))ds+ lim

λ→+∞

∫ t

+∞
Uu(t− s)Πu(B̃λX0h(s))ds

]
(0).

Then Γh ∈ AP (R, X).

Corollary 5.3. Let h ∈ AP (n)(R;X) and Γ be the mapping defined for t ∈ R by

Γh(t) =
[

lim
λ→+∞

∫ t

−∞
U s(t− s)Πs(B̃λX0h(s))ds+ lim

λ→+∞

∫ t

+∞
Uu(t− s)Πu(B̃λX0h(s))ds

]
(0).

Then Γh ∈ AP (n)(R, X).

Proof. In fact, since h ∈ AP (n)(R;X) then h(i) ∈ AP (R;X) and Γh(i) ∈ AP (R, X) for i =

0, 1, ..., n.�

Theorem 5.4. Let µ, ν ∈M satisfy (H3) and g ∈ E(n)(R;X,µ, ν, r). Then Γg ∈ E(n)(R;X,µ, ν, r).

Proof. In fact, since g ∈ E (n)(R;X,µ, ν, r) then g(i) ∈ E(R;X,µ, ν, r) for i = 0, 1, ..., n. For
τ > 0 we get
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∫ τ

−τ

(
sup

θ∈[t−r,t]
|Γg(i)(θ)|ds

)
dµ(t) ≤ MM̃

∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ θ

−∞
e−ω(θ−s)|Πs| |g(i)(s)|ds

)
dµ(t)

+MM̃

∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ +∞

θ

eω(θ−s)|Πu| |g(i)(s)|ds
)
dµ(t)

≤ MM̃ |Πs|
∫ τ

−τ

(
sup

θ∈[t−r,t]
eωr
∫ θ

−∞
e−ω(t−s)|g(i)(s)|ds

)
dµ(t)

+MM̃ |Πu|
∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ +∞

θ

eω(t−s)|g(i)(s)|ds
)
dµ(t).

On the one hand using Fubini’s theorem, we have∫ τ

−τ

(
sup

θ∈[t−r,t]
eωr
∫ θ

−∞
e−ω(t−s)|g(i)(s)|ds

)
dµ(t) ≤

∫ τ

−τ

(
sup

θ∈[t−r,t]
eωr
∫ t

−∞
e−ω(t−s)|g(i)(s)|ds

)
dµ(t)

≤ eωr
∫ τ

−τ

∫ t

−∞
e−ω(t−s)|g(i)(s)|dsdµ(t)

≤ eωr
∫ τ

−τ

∫ +∞

0

e−ωs|g(i)(t− s)|dsdµ(t)

≤ eωr
∫ +∞

0

e−ωs
∫ τ

−τ
|g(i)(t− s)|dµ(t)ds.

By using Corollary 4.10, we deduce that

lim
τ→+∞

e−ωs

ν([−τ, τ ])

∫ τ

−τ
|g(i)(t− s)|dµ(t)→ 0 for all s ∈ R+

and
e−ωs

ν([−τ, τ ])

∫ τ

−τ
|g(i)(t− s)|dµ(t) ≤ e−ωs|g|∞.

Since g(i) is a bounded function, then the function s 7→ e−ωs|g(i)|∞ belongs to L1([0,+∞[), in
view of the Lebesgue dominated convergence theorem, it follows that

eωr lim
τ→+∞

∫ +∞

0

e−ωs
1

ν([−τ, τ ])

∫ τ

−τ
|g(i)(t− s)|dµ(t)ds = 0.

On the other hand by Fubini’s theorem, we also have∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ +∞

θ

eω(t−s)|g(i)(s)|ds
)
dµ(t) ≤

∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ +∞

t−r
eω(t−s)|g(i)(s)|ds

)
dµ(t)

≤
∫ τ

−τ

∫ +∞

t−r
eω(t−s)|g(i)(s)|dsdµ(t)

≤
∫ τ

−τ

∫ r

−∞
eωs|g(i)(t− s)|dsdµ(t)

≤
∫ r

−∞
eωs
∫ τ

−τ
|g(i)(t− s)|dµ(t)ds.
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Since the function s 7→ eωs|g(i)|∞ belongs to L1(]−∞, r]), resoning like above, it follows that

lim
τ→+∞

∫ r

−∞
eωs

1

ν([−τ, τ ])

∫ τ

−τ
|g(i)(t− s)|dµ(t)ds = 0.

Consequently

lim
τ→+∞

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈[t−r,t]
|(Γg(i))(θ)|

)
dµ(t) = 0,

which implies that Γg(i) ∈ E (n)(R;X,µ, ν, r) for i = 0, 1, ..., n.. Thus, we obtain the desired
result.�

For the existence of Cn-(µ, ν)-pseudo almost periodic solution of class r, we make the fol-
lowing assumption.

(H5) f : R→ X is in Cn-(µ, ν)-pseudo almost periodic of class r.

Proposition 5.5. Assume (H0), (H1), (H3) and (H5) hold. Then equation (1.1) has a unique
Cn − cl(µ, ν)-pseudo almost periodic solution of class r.

Proof. Since f is a Cn-(µ, ν)-pseudo almost periodic function, f has a decomposition f = f1+f2
where f1 ∈ AP (n)(R;X) and f2 ∈ E (n)(R;X,µ, ν, r). Using Proposition 5.1, Corollary 5.3 and
Theorem 5.4, we get the desired result.�

Our next objective is to show the existence of Cn-(µ, ν)-pseudo almost periodic solutions of
class r for the following problem

(5.1) u′(t) = Au(t) + L(ut) + f(t, ut) for t ∈ R

where f : R× C → X is continuous.

For the sequel, we make the following assumption.

(H6) Let µ, ν ∈ M and f : R × C([−r, 0];X)) → X Cn-cl(µ, ν)-pseudo almost periodic of
class r such that there exists a continuous function Lf : R→ [0,+∞[ such that

|f(t, ϕ1)− f(t, ϕ2)| ≤ Lf (t)|ϕ1 − ϕ2| for all t ∈ R and ϕ1, ϕ2 ∈ C([−r, 0];X)

and Lf satisfies (4.3).

Theorem 5.6. Assume (H0), (H1), (H2), (H4) and (H6) hold. If

MM̃ sup
t∈R

(
|Πs|

∫ t

−∞
e−ω(t−s)Lf (s)ds+ |Πu|

∫ +∞

t

eω(t−s)Lf (s)ds
)
< 1.

Then equation (5.1) has a unique Cn-cl(µ, ν)-pseudo almost periodic solution of class r.

Proof. Let x be a function in PAP (n)(R;X,µ, ν, r), from Theorem 4.14 the function t → xt

belongs to PAP (C([−r, 0];X), µ, r). Hence Theorem 4.11 implies that the function g(.) :=

f(., x.) is in PAP (n)(R;X,µ, r). Consider the mapping

H : PAP (n)(R;X,µ, ν, r)→ PAP (n)(R;X,µ, ν, r)
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defined for t ∈ R by

(Hx)(t) =
[

lim
λ→+∞

∫ t

−∞
Us(t− s)Πs(B̃λX0f(s, xs))ds+ lim

λ→+∞

∫ t

+∞
Uu(t− s)Πu(B̃λX0f(s, xs))ds

]
(0).

From Proposition 5.1, Corollary 5.3 and Theorem 5.4, it suffices now to show that the operator
H has a unique fixed point in PAP (n)(R;X,µ, ν, r). Let x1, x2 ∈ PAP (n)(R;X,µ, ν, r). Then
for i = 0, 1, ..., n, we have

| Hx(i)1 (t)−Hx(i)2 (t)|

≤
∣∣∣ lim
λ→+∞

∫ t

−∞
U s(t− s)Πs(B̃λX0[f((s, x

(i)
1s ))− f((s, x

(i)
1s ))]ds

∣∣∣
+
∣∣∣ lim
λ→+∞

∫ t

+∞
U s(t− s)Πu(B̃λX0[f((s, x

(i)
2s ))− f((s, x

(i)
2s ))]ds

∣∣∣
≤ MM̃

(
|Πs|

∫ t

−∞
e−ω(t−s)Lf (s)|x(i)1s − x

(i)
2s |ds+ |Πu|

∫ +∞

t

eω(t−s)Lf (s)|x(i)1s − x
(i)
2s |ds

)

≤ MM̃ sup
t∈R

(
|Πs|

∫ t

−∞
e−ω(t−s)Lf (s)ds+ |Πu|

∫ +∞

t

eω(t−s)Lf (s)ds
)
|x(i)1 − x

(i)
2 |∞,

which implies that
n∑
i=0

| Hx(i)1 (t)−Hx(i)2 (t)|

≤MM̃ sup
t∈R

(
|Πs|

∫ t

−∞
e−ω(t−s)Lf (s)ds+ |Πu|

∫ +∞

t

eω(t−s)Lf (s)ds
)
|x1 − x2|n.

This means that H is a strict contraction. Thus by Banach’s fixed point theorem, H has a
unique fixed point u in PAP (n)(R;X,µ, ν, r). We conclude that equation (5.1), has one and
only one Cn-cl(µ, ν)-pseudo almost periodic solution of class r.�

Proposition 5.7. Assume (H0), (H1), (H2) and, (H4) and f is lipschitz continuous with
respect the second argument. If

Lip(f) <
ω

MM̃(|Πs|+ |Πu|)

then equation (5.1) has a unique Cn-cl(µ, ν)-pseudo almost periodic solution of class r, where
Lip(f) is the lipschitz constant of f .

Proof. Let us pose k = Lip(f), for i = 0, 1, ..., n, we have

| Hx(i)1 (t)−Hx(i)2 (t)| ≤ MM̃
(
|Πs|

∫ t

−∞
e−ω(t−s)k|x(i)1s − x

(i)
2s |ds+ |Πu|

∫ +∞

t
eω(t−s)k|x(i)1s − x

(i)
2s |ds

)

≤ kMM̃(|Πs|+ |Πu|)
ω

|x(i)1 − x
(i)
2 |∞,

which implies that
n∑
i=0

| Hx(i)1 (t)−Hx(i)2 (t)| ≤ kMM̃(|Πs|+ |Πu|)
ω

|x1 − x2|n.
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Consequently H is a strict contraction if k <
ω

MM̃(|Πs|+ |Πu|)
.�

6. Application

For illustration, we propose to study the existence of solutions for the following model

(6.1)



∂

∂t
z(t, x) =

∂2

∂x2
z(t, x) +

∫ 0

−r
G(θ)z(t+ θ, x))dθ + exp(sin t+ sin(

√
2t)) + cos(t)

+

∫ 0

−r
h(θ, z(t+ θ, x))dθ for t ∈ R and x ∈ [0, π]

z(t, 0) = z(t, π) = 0 for t ∈ R,

where G : [−r, 0] → R is a continuous function and h : [−r, 0] × R → R is continuous and
lipschitzian with respect to the second argument. To rewrite equation (6.1) in the abstract form,
we introduce the space X = C0([0, π];R) of continuous function from [0, π] to R+ equipped with
the uniform norm topology. Let A : D(A)→ X be defined by{

D(A) = {y ∈ X ∩ C2([0, π],R) : y′′ ∈ X}
Ay = y′′.

Then A satisfied the Hille-Yosida condition in X. Moreover the part A0 of A in D(A) is the
generator of strongly continuous compact semigroup (T0(t))t≥0 on D(A). It follows that (H0)

and (H1) are satisfied.
We define f : R× C → X and L : C → X as follows

f(t, ϕ)(x) = exp(sin t+ sin(
√

2t)) + cos(t) +

∫ 0

−r
h(θ, ϕ(θ)(x))dθ for x ∈ [0, π] and t ∈ R,

L(ϕ)(x) =

∫ 0

−r
G(θ)ϕ(θ)(x))dθ for − r ≤ θ ≤ 0 and x ∈ [0, π].

Let us pose v(t) = z(t, x). Then equation (6.1) takes the following abstract form

(6.2) v′(t) = Av(t) + L(vt) + f(t, vt) for t ∈ R.

Consider the measures µ and ν where its Radon-Nikodym derivative are respectively ρ1, ρ2 :

R→ R defined by

ρ1(t) =


1 for t > 0

et for t ≤ 0.

and
ρ2(t) = |t| for t ∈ R

i.e dµ(t) = ρ1(t)dt and dν(t) = ρ2(t)dt where dt denotes the Lebesgue measure on R and

µ(A) =

∫
A

ρ1(t)dt for ν(A) =

∫
A

ρ2(t)dt for A ∈ B.
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From [5] µ, ν ∈M, µ, ν satisfy Hypothesis (H4) and exp(sin t+sin(
√

2t)) is Cn-almost periodic.
We have

lim sup
τ→+∞

µ([−τ, τ ])

ν([−τ, τ ])
= lim sup

τ→+∞

∫ 0

−τ
etdt+

∫ τ

0

dt

2

∫ τ

0

tdt

= lim sup
τ→+∞

1− e−τ + τ

τ 2
= 0 <∞,

which implies that (H2) is satisfied.

For all t ∈ R, | cos(i) t| ≤ 1 for i = 0, 1, ..., n, which implies that:

lim
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ
sup

θ∈[t−r,t]
| cos(i)(θ)|dµ(t) = lim

τ→+∞

( 1

ν([−τ, τ ])

∫ 0

−τ
sup

θ∈[t−r,t]
| cos(i)(θ)|etdt

+
1

ν([−τ, τ ])

∫ τ

0

sup
θ∈[t−r,t]

| cos(i)(θ)|dt
)

≤ lim
τ→+∞

( 1

ν([−τ, τ ])

∫ 0

−τ
etdt+

1

ν([−τ, τ ])

∫ τ

0

dt
)

≤ lim
τ→+∞

1− e−τ + τ

τ 2
= 0.

It follows that t 7→ cos(i) t belongs to E (n)(R;X,µ, ν, r), consequently, f ∈ PAP (n)(R;X,µ, ν, r).
Moreover, L is a bounded linear operator from C to X.
Let k be the lipschiz constant of h, then for every ϕ1, ϕ2 ∈ C and t ≥ 0, we have

|f(t, ϕ1)− f(t, ϕ2)| = r sup
0≤x≤π

|h(t, ϕ1)(x)− h(t, ϕ2)(x)|

≤ kr sup
−r<θ≤0
0≤x≤π

|ϕ1(θ)(x)− ϕ2(θ)(x)|.

Consequently, we conclude that f is Lipschitz continuous.
For the hyberbolicity, we suppose that

(H7)

∫ 0

−r
|G(θ)|dθ < 1.

Lemma 6.1. [10] Assume that (H7) holds. Then the semigroup (U(t))t≥0 is hyperbolic.

Then by Proposition 5.7 we deduce the following result.

Theorem 6.2. Under the above assumptions, if Lip(h) is small enough, then equation (6.2)
has a unique Cn-cl(µ, ν)-pseudo almost periodic solution v of class r.
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