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RANDOM SOLUTIONS FOR IMPROVED CONFORMABLE FRACTIONAL
DIFFERENTIAL EQUATIONS WITH RETARDATION AND

ANTICIPATION

ABDELKRIM SALIM1,2,∗, SALIM KRIM2,3, SAÏD ABBAS4 AND MOUFFAK BENCHOHRA2

Abstract. In this article, we present some results on existence, uniqueness, and Ulam-Hyers-
Rassias stability for a class of nonlinear improved conformable fractional differential equations
with Retardation and Anticipation. Our reasoning is based on some relevant fixed point theo-
rems.

1. Introduction

The fractional calculus has long been an intriguing study topic in functional space theory due
to its applications in the modeling and physical understanding of natural phenomenon. Indeed,
various applications in viscoelasticity and electrochemistry have been explored. Noninteger
derivatives of fractional order have been effectively applied to generalize the fundamental laws
of nature. For more details, we recommend [1, 3–5, 16, 20], and its references. More details
on differential equations and the different used methods to solve differential problems, see
[6, 7, 18, 19].

Recently in [13], Khalil et al. gave a novel definition of fractional derivative which is a natu-
ral extension to the standard first derivative. The conformable fractional derivative is natural
and it fulfills most of the properties that the classical integral derivative has such as product
rule, quotient rule, linearity, chain rule, power rule and when used to modeling various physical
problems, it brings us a lot of convenience. Indeed, since that time so many articles have been
written and numerous equations have been solved with that concept [2, 8, 14,15,17].
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Very recently in [10], F. Gao and C. Chi claimed that there are still shortcomings for the
conformable derivative and in order to overcome this difficulty, they proposed an improved
conformable fractional derivative. The benefit of the improved conformable fractional derivative
is that its physical behavior is closer than the conformable fractional derivative of Riemann-
Liouville and Caputo fractional derivative. This improved conformable fractional derivative
has a great potential to simulate various physical problems that typically employ the fractional
derivative of Riemann-Liouville or Caputo type.

In this paper, we study the existence of random solutions for the initial value problem
with nonlinear implicit fractional differential equation involving the improved Caputo-type
conformable fractional derivative with retarded and advanced arguments:

(1) C
0 T̃ϑy(t, α) = f

(
t, yt(·, α), C0 T̃ϑy(t, α), α

)
, t ∈ [0, T ],

(2) y(t, α) = ξ(t, α), t ∈ [−r, 0], r > 0,

(3) y(t, α) = ξ̃(t, α), t ∈ [T, T + δ], δ > 0,

where 0 < ϑ < 1, C0 T̃ϑ is the improved Caputo-type conformable fractional derivative defined
in [10], I := [0, T ], f : I × C([−r, δ],R)× R× Ψ→ R is a given function, ξ̃ ∈ C([T, T + δ],R)

and ξ ∈ C([−r, 0],R) with ξ(0) = 0, Ψ is the sample space in a probability space and α is a
random variable. By yt, we denote the element of C([−r, δ]) defined by:

yt(s, α) = y(t+ s, α), s ∈ [−r, δ], α ∈ Ψ.

This paper has the following structure: Section 2 presents certain notations and preliminaries
about the improved conformable fractional derivatives used throughout this manuscript. In
Section 3, we present two existence and uniqueness results for the problem (1)-(3) that are
based on Schauder fixed point theorem and Banach contraction principle. Section 4 deals with
the Ulam stability of our problem. In the last section, the results obtained are supported by
illustrated examples.

2. Preliminaries

First, we give the definitions and the notations used in this paper. We denote by C([−r, δ],R)

the Banach space of all continuous functions from [−r, δ] into R with the following norm

‖y‖[−r,δ] = sup
−r≤t≤δ

{|y(t)|}.

AC(I,R) is the space of absolutely continuous functions on I, and

AC1(I) := {y : I −→ R : y′ ∈ AC(I)},

where
y′(t) = t

d

dt
y(t), t ∈ I.

Also, define the following space:

C =

{
u : [−r, T + δ] 7−→ R : u |[−r,0]∈ C([−r, 0]),u |[0,T ]∈ AC1([0, T ])
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and u |[T,T+δ]∈ C([T, T + δ])

}
,

with the norm
‖u‖C = sup{|u(t)| : −r ≤ t ≤ T + δ}.

Consider the spaceXp
b (0, T ), (b ∈ R, 1 ≤ p ≤ ∞) of those complex-valued Lebesgue measurable

functions f on [0, T ] for which ‖f‖Xp
b
<∞, with:

‖f‖Xp
b

=

(∫ T

0

|tbf(t)|pdt
t

) 1
p

, (1 ≤ p <∞, b ∈ R).

Definition 2.1. ( [13]) The conformable fractional derivative of a given function ψ : [0,+∞) −→
R of order ϑ is defined by

Tϑ(ψ)(t) = lim
ε→0

ψ
(
t+ εt1−ϑ

)
− ψ(t)

ε
,

for t > 0 and ϑ ∈ (0, 1]. If ψ is ϑ-differentiable in some (0, a), a > 0, and lim
t→0+

Ta(ψ)(t) exists,

then define Tϑ(ψ)(0) = lim
t→0+

Tϑ(ψ)(t). If the conformable fractional derivative of ψ of order ϑ
exists, then we simply say that ψ is ϑ-differentiable. It is easy to see that if ψ is differentiable,
then Tϑ(ψ)(t) = t1−ϑψ′(t).

Definition 2.2. (The improved Caputo-type conformable fractional derivative [10]) The im-
proved Caputo-type conformable fractional derivative of a given function ψ : R −→ R of order
ϑ is defined by

C
a T̃ϑ(ψ)(t) = lim

ε→0

[
(1− ϑ)(ψ(t)− ψ(a)) + ϑ

ψ
(
t+ ε(t− a)1−ϑ

)
− ψ(t)

ε

]
,

where −∞ < a < t < +∞, a is a given number and ϑ ∈ [0, 1].

Definition 2.3. (The improved Riemann-Liouville-type conformable fractional derivative [10])
The improved Riemann-Liouville-type conformable fractional derivative of a given function ψ :

R −→ R of order ϑ is defined by

RL
a T̃ϑ(ψ)(t) = lim

ε→0

[
(1− ϑ)ψ(t) + ϑ

ψ
(
t+ ε(t− a)1−ϑ

)
− ψ(t)

ε

]
,

where −∞ < a < t < +∞, a is a given number and ϑ ∈ [0, 1].

Lemma 2.4. ( [10]) If ϑ ∈ [0, 1], f and g are two ϑ-differentiable functions at a point t and
m,n are two given numbers, then the improved conformable fractional derivatives satisfy the
following properties:

• C
a T̃ϑ(mf + ng) = mC

a T̃ϑ(f) + nCa T̃ϑ(g);
• RL
a T̃ϑ(mf + ng) = mRL

a T̃ϑ(f) + nRLa T̃ϑ(g);
• RL
a T̃ϑ(fg) = (1− ϑ)RLa T̃ϑ(f)g + fRLa T̃ϑ(g)− (1− ϑ)fg;
• RL
a T̃ϑ(f(g(t))) = (1− ϑ)f(g(t)) + ϑf ′(g(t))Tϑ(g(t)).

Definition 2.5. (The ϑ-fractional integral [10]) For ϑ ∈ (0, 1] and a continuous function f , let

(Iϑf) (t) =
1

ϑ

∫ t

0

f(s)

s1−ϑ
e(1−ϑ/ϑ

2)(sϑ−tϑ)ds.

When ϑ = 1, I1(f) =
∫ t
0
f(s)ds, the usual Riemann integral.
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Lemma 2.6. ( [10]) If ϑ ∈ [0, 1], ψ is ϑ-differentiable function at a point t and ψ(0) = 0, then
we have:

•
(
IϑC0 T̃ϑ(ψ)

)
(t) = C

0 T̃ϑ (Iϑψ) (t) = ψ(t);

•
(
IϑRL0 T̃ϑ(ψ)

)
(t) = RL

0 T̃ϑ (Iϑψ) (t) = ψ(t).

By BR, we denote the σ-algebra of Borel subsets of R. A mapping α : Ψ → R is said to be
measurable if for any D ∈ BRm , one has

α−1(D) = {y ∈ Ψ : α(y) ∈ D} ⊂ A.

Definition 2.7. A mapping N : Ψ × R → R is called jointly measurable if for any D ∈ BRm ,

one has
N−1(D) = {(y, x) ∈ Ψ× R : N(y, x) ∈ D} ⊂ A×BR,

where A×BR is the product of the σ-algebras A defined in Ψ and BR.

Definition 2.8. A function N : Ψ×R→ R is called jointly measurable if N(·, x) is measurable
for all x ∈ R and N(y, ·) is continuous for all y ∈ Ψ.

N is called a random operator if N(y, x) is measurable in y for all x ∈ R, and it expressed
as N(y)x = N(y, x). We also say in this situation that N(y) is a random operator on R. N(y)

is called continuous (resp. completely continuous, compact and totally bounded) if N(y, x) is
continuous (resp. completely continuous, compact and totally bounded) in x for all y ∈ Ψ.

The details and the properties of completely continuous random operators in Banach spaces
are available in Itoh [12].

Definition 2.9. ( [9]) Let D(X) be the family of all nonempty subsets of X and F be a mapping
from Ψ into D(X). A mapping N : {(y, x) : y ∈ Ψ, x ∈ F (y)} → X is called random operator
with stochastic domain F , if F is measurable (i.e., for all closed B ⊂ X, {y ∈ Ψ, F (y)∩B 6= ∅}
is measurable) and for all open D ⊂ X and all x ∈ X, {y ∈ Ψ : x ∈ F (y), N(y, x) ∈ D} is
measurable. N will be called continuous if every N(y) is continuous. For a random operator
N, a mapping x : Ψ → X is called a random (stochastic) fixed point of N if for P−almost all
y ∈ Ψ, x(y) ∈ F (y) and N(y)x(y) = x(y), and for all open D ⊂ X, {y ∈ Ψ : x(y) ∈ D} is
measurable.

Definition 2.10. A function g : I ×C([−r, δ],R)×R×Ψ→ R is called random Carathéodory
if the following conditions are met:

(i) The map (s, y)→ g(s, x, x̄, y) is jointly measurable for all x ∈ C([−r, δ],R) and x̄ ∈ R;

(ii) The map (x, x̄)→ g(s, x, x̄, y) is continuous for all s ∈ I and y ∈ Ψ.

Theorem 2.11. ( [12]) Let Y be a nonempty, closed convex bounded subset of the separable
Banach space E and let T : Ψ×Y 7−→ Y be a compact and continuous random operator. Then
the random equation T (y, x(y)) = x(y) has a random solution.

Considering now the Ulam stability for problem (1)-(3). Let x(·, α) ∈ C, ε > 0 and v :

I ×Ψ 7−→ [0,∞) be a jointly measurable function. For t ∈ I, we have the following inequality:

(4)
∣∣∣C0 T̃ϑy(t, α)− f

(
t, yt(·, α), C0 T̃ϑy(t, α), α

)∣∣∣ ≤ εv(t, α).

https://doi.org/10.28919/ejma.2024.4.8
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Definition 2.12. ( [4]) Problem (1)-(3) is Ulam-Hyers-Rassias (U-H-R) stable with respect to
v if there exists a real number af,v > 0 such that for each ε > 0 and for each solution x(·, α) ∈ C
of inequality (4) there exists a solution y(·, α) ∈ C of (1)-(3) with|x(t, α)− y(t, α)| ≤ εaf,vv(t, α), t ∈ I, α ∈ Ψ

|x(t, α)− y(t, α)| = 0, t ∈ [−r, 0] ∪ [T, T + δ], α ∈ Ψ.

Remark 2.13. A function x(·, α) ∈ C is a solution of inequality (4) if and only if there exist
σ(·, α) ∈ C such that

(1) |σ(t, α)| ≤ εv(t, α), t ∈ I,
(2) C

0 T̃ϑx(t, α) = f
(
t, xt(·, α), C0 T̃ϑx(t, α), α

)
+ σ(t, α).

3. Existence of Solutions

Lemma 3.1. Let 0 < ϑ < 1, ξ̃ ∈ C([T, T + δ],R) and ξ ∈ C([−r, 0],R) with ξ(0) = 0, and
h : I → R be a continuous function. Then problem

(5) C
0 T̃ϑy(t) = h(t), t ∈ I := [0, T ],

(6) y(t) = ξ(t), t ∈ [−r, 0], r > 0,

(7) y(t) = ξ̃(t), t ∈ [T, T + δ], δ > 0,

has the following solution

(8) y(t) =



ξ(t), if t ∈ [−r, 0],

1

ϑ

∫ t

0

h(s)

s1−ϑ
e

(1−ϑ)(sϑ−tϑ)

ϑ2 ds, if t ∈ I,

ξ̃(t), if t ∈ [T, T + δ].

Proof. To obtain the integral equation (8), we apply the ϑ-fractional integral to both sides of
(5), and by Lemma 2.6 we get

(9) y(t) =
1

ϑ

∫ t

0

h(s)

s1−ϑ
e

(1−ϑ)(sϑ−tϑ)

ϑ2 ds.

Now, we apply the improved Caputo-type conformable fractional derivative of order ϑ to
both sides of (9), for t ∈ I we obtain

C
0 T̃ϑy(t) = h(t).

Also, it is clear that y(0) = 0. �

https://doi.org/10.28919/ejma.2024.4.8
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Lemma 3.2. A function y(·, α) ∈ C is random solution of problem (1)-(3) if and only if y
satisfies the following integral equation

y(t, α) =



ξ(t, α), if t ∈ [−r, 0],

1

ϑ

∫ t

0

sϑ−1e
(1−ϑ)(sϑ−tϑ)

ϑ2 f
(
s, ys(·, α), C0 T̃ϑy(s, α), α

)
ds, if t ∈ I,

ξ̃(t, α), if t ∈ [T, T + δ].

In the sequel, the following hypotheses are used:

(H1): The function f : I × C([−r, δ],R)× R×Ψ −→ R, is random Carathéodory.
(H2): There exist continuous functions p1, p2 : I −→ L∞(Ψ,R+),

|f(t, β1, β̄1, α)− f(t, β2, β̄2, α)| ≤ p1(t, α)‖β1 − β2‖[−r,δ] + p2(t, α)|β̄1 − β̄2|,

for t ∈ I and β1, β2 ∈ C([−r, δ],R), and β̄1, β̄2 ∈ R, with

p∗1(α) = sup
t∈I

p(t, α) and p∗2(α) = sup
t∈I

p2(t, α) < 1, α ∈ Ψ.

(H3): There exist continuous functions k1, k2, k3 : I −→ L∞(Ψ,R+), such that

|f(t, β, β̄, α)| ≤ k1(t, α) + k2(t, α)
‖β‖[−r,δ]

1 + ‖β‖[−r,δ]
+ k3(t, α)|β̄|,

for t ∈ I, β ∈ C([−r, δ],R), β̄ ∈ R and α ∈ Ψ.

Set

k∗1(α) = sup
t∈I

k1(t, α), k∗2(α) = sup
t∈I

k2(t, α) and k∗3(α) = sup
t∈I

k3(t, α) < 1.

Now we declare and demonstrate our first existence result for problem (1)-(3) based on the
Banach contraction principle [11].

Theorem 3.3. Assume that (H1) and (H2) hold. If

(10)
p∗1(α)

(
1− e

(ϑ−1)Tϑ

ϑ2

)
(1− ϑ)(1− p∗2(α))

< 1,

then the problem (1)-(3) has a unique solution.

Proof. Let T : C ×Ψ 7−→ C be the operator defined by

(11) (Tx)(t, α) =



ξ(t, α), if t ∈ [−r, 0],

1

ϑ

∫ t

0

sϑ−1e
(1−ϑ)(sϑ−tϑ)

ϑ2 %(s, α)ds, if t ∈ I,

ξ̃(t, α), if t ∈ [T, T + δ],

where % is a function satisfying the following functional equation

%(t, α) = f
(
t, xt(·, α), %(t, α), α

)
.

https://doi.org/10.28919/ejma.2024.4.8
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According to Lemma 3.2, the fixed points of T are solutions of problem (1)-(3).
Let x1, x2 ∈ C. If t ∈ [−r, 0] or t ∈ [T, T + δ] then,

|(Tx1)(t, α)− (Tx2)(t, α)| = 0.

For t ∈ I, we have

|(Tx1)(t, α)− (Tx2)(t, α)| ≤ 1

ϑ

∫ t

0

sϑ−1e
(1−ϑ)(sϑ−tϑ)

ϑ2 |%1(s, α)− %2(s, α)|ds,(12)

where %1, %2 are the functions satisfying the following functional equations

%1(t, α) = f (t, xt1(·, α), %1(t, α), α) ,

%2(t, α) = f (t, xt2(·, α), %2(t, α), α) .

By (H2), we have

|%1(t, α)− %2(t, α)| = |f (t, xt1(·, α), %1(t, α), α)− f (t, xt2(·, α), %2(t, α), α) |
≤ p1(t, α)‖x1 − x2‖[−r,δ] + p2(t, α)|%1(t, α)− %2(t, α)|
≤ p∗1(α)‖x1 − x2‖[−r,δ] + p∗2(α)|%1(t, α)− %2(t, α)|.

Then,

|%1(t, α)− %2(t, α)| ≤ p∗1(α)

1− p∗2(α)
‖x1 − x2‖[−r,δ].

Therefore, for each t ∈ I, we get

|(Tx1)(t, α)− (Tx2)(t, α)| ≤ 1

ϑ

∫ t

0

sϑ−1e
(1−ϑ)(sϑ−tϑ)

ϑ2
p∗1(α)

1− p∗2(α)
‖x1 − x2‖[−r,δ]ds

≤

1− e
(ϑ−1)tϑ

ϑ2

1− ϑ

 p∗1(α)

1− p∗2(α)
‖x1 − x2‖[−r,δ].

Thus

‖Tx1(·, α)− Tx2(·, α)‖C ≤
p∗1(α)

(
1− e

(ϑ−1)Tϑ

ϑ2

)
(1− ϑ)(1− p∗2(α))

‖x1 − x2‖C.

Hence, by the Banach contraction principle, T has a unique fixed point which is a unique
random solution of the problem (1)-(3). �

Our second existence result for (1)-(3) is based on the fixed point theorem of Schauder [11].

Theorem 3.4. Assume that (H1) and (H3) hold. Then problem (1)-(3) has at least one solu-
tion.

Proof. We will establish the proof in various steps.
Step 1. T is continuous. Let {xn} be a sequence such that xn −→ x in C. If t ∈ [−r, 0] or
t ∈ [T, T + δ] then

|(Txn)(t, α)− (Tx)(t, α)| = 0.

For t ∈ I, we have

(13) |(Txn)(t, α)− (Tx)(t, α)| ≤ 1

ϑ

∫ t

0

sϑ−1e
(1−ϑ)(sϑ−tϑ)

ϑ2 |hn(s, α)− h(s, α)|ds,

where
hn(t, α) = f

(
t, xtn(·, α), hn(t, α), α

)
,

https://doi.org/10.28919/ejma.2024.4.8
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and

h(t, α) = f
(
t, xt(·, α), h(t, α), α

)
.

Since xn −→ x, and by (H1), we get hn(t, α) −→ h(t, α) as n −→∞ for each t ∈ I.
Then by Lebesgue dominated convergence theorem and (H1), equation (13) implies

|(Txn)(t, α)− (Tx)(t, α)| −→ 0 as n −→∞,

and hence

‖T (xn)− T (x)‖C −→ 0 as n −→∞.

As a result, T is continuous.
Let the constant R(α) be such that:

(14) R(α) ≥ max

{
k∗1(α)η

k∗2(α)(1− η)
, ‖ξ(·, α)‖[−r,0], ‖ξ̃(·, α)‖[T,T+δ]

}
,

with

η =

k∗2(α)

(
1− e

(ϑ−1)Tϑ

ϑ2

)
(1− k∗3(α))(1− ϑ)

< 1.

And, we define the following ball

BR(α) = {y ∈ Ψ : ‖y(·, α)‖C ≤ R(α)}.

Then, BR(α) is a convex, closed and bounded subset of C.

Step 2. T (BR(α)) ⊂ BR(α).

Let x ∈ BR(α) we show that Tx ∈ BR(α).
If t ∈ [−r, 0], then

|T (x)(t, α)| ≤ ‖ξ(·, α)‖[−r,0] ≤ R(α),

and if t ∈ [T, T + δ], then

|T (x)(t, α)| ≤ ‖ξ̃(·, α)‖[T,T+δ] ≤ R(α).

For t ∈ I, we have

(15) |(Tx)(t, α)| ≤ 1

ϑ

∫ t

0

sϑ−1e
(1−ϑ)(sϑ−tϑ)

ϑ2

∣∣∣f (s, ys(·, α), C0 T̃ϑy(s, α), α
)∣∣∣ ds.

By the hypothesis (H3), for t ∈ I, we have

|h(t, α)| =
∣∣f (t, xt(·, α), h(t, α), α

)∣∣
≤ k1(t, α) + k2(t, α)‖xt(·, α)‖[−r,δ] + k3(t, α)|h(t, α)|,

That means that

|h(t, α)| ≤ k∗1(α) + k∗2(α)‖xt(·, α)‖[−r,δ] + k∗3(α)|h(t, α)|,

then

|h(t, α)| ≤ k∗1(α) + k∗2(α)R(α)

1− k∗3(α)
:= Λ.

https://doi.org/10.28919/ejma.2024.4.8
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Thus for t ∈ I, from (15) we obtain

|(Tx)(t, α)| ≤
Λ

(
1− e

(ϑ−1)Tϑ

ϑ2

)
1− ϑ

≤ R(α),

then, for t ∈ [−r, T + δ], we have |Tx(t, α)| ≤ R(α), which implies that ‖(Tx)(·, α)‖C ≤ R(α).

Consequently,

T (BR(α)) ⊂ BR(α).

Step 3: T (BR(α)) is equicontinuous and bounded.
By Step 2 we have T (BR(α)) is bounded.
Let γ1, γ2 ∈ I = [0, T ], γ1 < γ2, and x(·, α) ∈ BR(α) then

|(Tx)(γ2, α)− (Tx)(γ1, α)|

≤
∣∣∣∣1ϑ
∫ γ2

0

sϑ−1e
(1−ϑ)(sϑ−γϑ2 )

ϑ2 h (s, α) ds− 1

ϑ

∫ γ1

0

sϑ−1e
(1−ϑ)(sϑ−γϑ1 )

ϑ2 h (s, α) ds

∣∣∣∣
≤ Λ

1− ϑ

[
2− 2e

(1−ϑ)(γϑ1 −γϑ2 )

ϑ2 + e
(ϑ−1)γϑ1

ϑ2 − e
(ϑ−1)γϑ2

ϑ2

]
.

As γ1 −→ γ2 the right hand side of the above inequality tends to zero. As a result of Step
1 to Step 3, together with the Arzela-Ascoli theorem, We can say that T is continuous and
completely continuous. From Schauder’s theorem, we conclude that T has a fixed point with
is a random solution of the problem (1)-(3). �

4. Ulam-Hyers-Rassias Stability

Theorem 4.1. Assume that in addition to (H1)-(H3), the following hypothesis hold.

(H4) There exist a nondecreasing function v(·, α) ∈ C and κv > 0, such that for t ∈ I, we
have

Iϑv(t, α) ≤ κvv(t, α).

(H5) There exists a continuous function q : I −→ L∞(Ψ,R+), such that for t ∈ I, we have

k1(t, α) + k2(t, α)

1− k3(t, α)
≤ q(t, α)v(t, α).

Then, problem (1)-(3) is U-H-R stable.

Set q∗ = sup
t∈I

q(t, α).

Proof. Let x(·, α) ∈ C be a solution if inequality (4), and assume that y is the unique solution
of the problem {

C
0 T̃ϑy(t, α) = f

(
t, yt(·, α), C0 T̃ϑy(t, α), α

)
, t ∈ I,

y(t, α) = x(t, α), t ∈ [−r, 0] ∪ [T, T + δ].
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By Lemma 3.2, we obtain

y(t, α) =



ξ(t, α), if t ∈ [−r, 0],

1

ϑ

∫ t

0

sϑ−1e
(1−ϑ)(sϑ−tϑ)

ϑ2 f
(
s, ys(·, α), C0 T̃ϑy(s, α), α

)
ds, if t ∈ I,

ξ̃(t, α), if t ∈ [T, T + δ].

Since x is a solution of the inequality (4), by Remark 2.13, for t ∈ I,we have

C
0 T̃ϑx(t, α) = f

(
t, xt(·, α), C0 T̃ϑx(t, α), α

)
+ σ(t, α).(16)

Clearly, the solution of (16) is given by

x(t, α) =



ξ(t, α), if t ∈ [−r, 0],

1

ϑ

∫ t

0

sϑ−1e
(1−ϑ)(sϑ−tϑ)

ϑ2

(
f
(
s, xs(·, α), C0 T̃ϑx(s, α), α

)
+ σ(s, α)

)
ds, if t ∈ I,

ξ̃(t, α), if t ∈ [T, T + δ].

Hence, for t ∈ [−r, 0] ∪ [T, T + δ], we have

|x(t)− y(t)| = 0.

And, for each t ∈ I, we have

|x(t)− y(t)| ≤ 1

ϑ

∫ t

0

sϑ−1e
(1−ϑ)(sϑ−tϑ)

ϑ2

∣∣∣f (s, xs(·, α), C0 T̃ϑx(s, α), α
)

− f
(
s, ys(·, α), C0 T̃ϑy(s, α), α

)∣∣∣ ds+
1

ϑ

∫ t

0

sϑ−1e
(1−ϑ)(sϑ−tϑ)

ϑ2 |σ(s, α)|ds.

By the hypothesis (H3), for t ∈ I, we have∣∣f (t, xt(·, α), h(t, α), α
)∣∣ ≤ k1(t, α) + k2(t, α) + k3(t, α)

∣∣f (t, xt(·, α), h(t, α), α
)∣∣ ,

which implies that ∣∣f (t, xt(·, α), h(t, α), α
)∣∣ ≤ k1(t, α) + k2(t, α)

1− k3(t, α)
.

Then, for each t ∈ I, we have

|x(t)− y(t)| ≤ εκvv(t, α) +
2

ϑ

∫ t

0

k1(t, α) + k2(t, α)

1− k3(t, α)
sϑ−1e

(1−ϑ)(sϑ−tϑ)

ϑ2 ds

≤ v(t, α)

εκv +

2q∗
(

1− e
(ϑ−1)Tϑ

ϑ2

)
1− ϑ

 .

Then for each t ∈ [−r, T + δ], we have

|x(t)− y(t)| ≤ af,vεv(t, α),

https://doi.org/10.28919/ejma.2024.4.8
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where

af,v = κv +

2q∗
(

1− e
(ϑ−1)Tϑ

ϑ2

)
ε(1− ϑ)

.

Hence, problem (1)-(3) is U-H-R stable. �

5. Examples

Example 5.1. We equip the space R∗− := (−∞, 0) with the standard σ-algebra, which consists
of Lebesgue measurable subsets of R∗−. Now, we consider the following problem involving the
improved Caputo-type conformable fractional derivative:

(17)



x(t, α) =
et

1 + α2
, t ∈ [1, 3

2
],

C
0 T̃ 1

2
x(t, α) =

cos(t)

64et+3(|α|+ 1)(1 + ‖x‖[−r,δ] + |C0 T̃ 1
2
x(t, α)|)

, t ∈ [0, 1],

x(t, α) = t2(1 + |α|3), t ∈ [−1
2
, 0].

Set

f(t, xt(·, α), C0 T̃ 1
2
x(t, α), α) =

cos(t)

64et+3(|α|+ 1)(1 + ‖x‖[−r,δ] + |C0 T̃ 1
2
x(t, α)|)

,

where ϑ = 1
2
, r = δ = 1

2
.

For each β1, β̄1 ∈ C([−r, δ]), β2, β̄2 ∈ R and t ∈ [0, 1], we have

|f(t, β1, β2, α)− f(t, β̄1, β̄2, α)| ≤ cos(t)

64et+3(|α|+ 1)

[
‖β1 − β̄1‖[−r,δ] + |β2 − β̄2|

]
.

Therefore, (H2) is verified with

p1(t, α) = p2(t, α) =
cos(t)

64et+3(|α|+ 1)
,

and
p∗1(α) = p∗2(α) =

1

64e3(|α|+ 1)
.

Also, for t ∈ I we have

p∗1(α)

(
1− e

(ϑ−1)Tϑ

ϑ2

)
(1− ϑ)(1− p∗2(α))

=
1− e−2

32e3(|α|+ 1)− 1
2

< 1.

Then, the condition (10) is satisfied. Hence, as all conditions of Theorem 3.3 are met, therefore,
the problem (17) admit a unique solution.

Example 5.2. Consider the following problem:

(18)


C
0 T̃ 1

4
x(t, α) = f(t, xt(·, α), C0 T̃ 1

4
x(t, α), α), t ∈ I = [0, 2],

x(t, α) = 0, t ∈ [−1, 0] ∪ [2, 3],
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Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2024.4.8 12

where

f(t, x, x̄, α) =
1

32 + 32e2−t(|α|3 + 2)

[
1 +

‖x‖[−r,δ]
2 + ‖x‖[−r,δ]

+
|x̄|

3 + |x̄|

]
,

for t ∈ [0, 2], x ∈ C([−1, 1]), x̄ ∈ R, ϑ = 1
4
and r = δ = 1.

All conditions of Theorem 3.4 are satisfied with

k1(t, α) = k2(t, α) = k3(t, α) =
1

32 + 32e2−t(|α|3 + 2)
,

k∗1(α) = k∗2(α) = k∗3(α) =
1

32 + 32(|α|3 + 2)
,

and

η =

k∗2(α)

(
1− e

(ϑ−1)Tϑ

ϑ2

)
(1− k∗3(α))(1− ϑ)

=
4− 4e

−4(2)
1
4

3

93 + 96(|α|3 + 2)
< 1.

Then, it follows that the problem (18) admit at least one random solution. Also, the hypothesis
(H4) and (H5) are satisfied with

v(t, α) = 3 and q(t, α) =
2

93 + 96e2−t(|α|3 + 2)
.

Hence, Theorem 4.1 implies that problem (18) is U-H-R stable.
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