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ON A DISCRETE WIENER–HOPF EQUATION

M.S. SGIBNEV

Abstract. We prove the existence of a solution to the discrete inhomogeneous Wiener–Hopf
equation whose kernel is an arithmetic probability distribution which generates a random walk
drifting to −∞. We establish some asymptotic properties of the solution, depending on the
corresponding properties of both the inhomogeneous term of the equation and its kernel.

1. Introduction

Let Z be the set of all integers, Z+ be the set of all nonnegative integers and Z− := Z \ Z+.
The classical Wiener–Hopf equation is

(1) z(x) =

∫ ∞
0

k(x− y)z(y) dy + g(x), x ≥ 0.

Its discrete analog is the following infinite systems of equations

(2)
∞∑
k=0

aj−k zk = gj, j ∈ Z+,

where {aj}∞j=−∞ and {gj}∞j=0 are known number sequences, and {zj}∞j=0 is the sequence sought.
Moreover, the coefficients aj satisfy the condition

∑∞
j=−∞ |aj| <∞ (see [6, § 13, Subsection 1]).

The system (2) can be written in the form similar to (1):

zj =
∞∑
k=0

fj−k zk + gj, j ∈ Z+,

where f0 = 1− a0, fj = −aj, j = ±1, ±2, . . . ; or, equivalently, in the form

(3) zj =

j∑
k=−∞

zj−k fk + gj, j ∈ Z+,

The sequence {fj}∞j=−∞ is a discrete analog of the kernel k(x) in the classical Wiener–Hopf
equation (1). We call the sequence {fj}∞j=−∞ the kernel of equation (3). We shall consider
equation (3) whose kernel is an arithmetic probability distribution F = {fj}∞j=−∞ with span one,
which generates a random walk drifting to+∞. Recall (see [1, Chapter V, § 2, Definition 3]) that
a probability destribution F on R is called arithmetic if it is concentrated on a set of points of the
form 0, ±λ, ±2λ,. . . The greatest such λ is called the span of F . Let Xk, k ≥ 1, be independent
random variables with the same distribution F not concentrated at zero: P(Xk = j) = fj,
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j ∈ Z. These variables generate the random walk S0 = 0, Sn = X1 + . . . + Xn, n ≥ 1.
According to Theorem 1 in [1, Chapter XII, § 2], there exist only two types of random walks:
1) the oscillating type (Sn oscillates with probability one between −∞ and +∞); 2) the drifting
type (with probability one Sn tends either to −∞ or to +∞). The random walk {Sn} drifts to
−∞ if and only if

∞∑
n=1

1

n
P(Sn > 0) <∞

(see [1, Chapter XII, § 7, Theorem 2]). If there exists EX1 :=
∑∞

j=−∞ jfj < 0 (E stands for
“expectation”), then the random walk drifts to −∞ according to the law of large numbers:
limn→∞ Sn/n = EX1 almost surely [9, Proposition IV.7.1].

Denote by l1 the space of summable sequences a = {an}∞n=−∞ ⊂ C. Define the convolution
a ∗ b of sequences a = {an}∞n=−∞ and b = {bn}∞n=−∞ from l1 as the sequence c = {cn}∞n=−∞ ∈ l1,
where

cn := (a ∗ b)n :=
∞∑

j=−∞

an−jbj, n ∈ Z.

This definition will also be used even when the sequences a and b do not belong to l1, provided
the sum makes sense for all n ∈ Z. Since complex-valued measures concentrated on Z, may
be regarded as sequences, their convolutions will be understood as convolutions of the corre-
sponding sequences. We shall not distinguish such measures and the corresponding sequences.
Is is sometimes convenient to denote a sequence as a function of an integer argument. To each
sequence a = {an}∞n=−∞ ∈ l1, let correspond the series â(s) :=

∑∞
n=−∞ ans

n which absolutely
converges on the circle {s ∈ C : |s| = 1}. In particular, F̂ (s) =

∑∞
n=−∞ fns

n. Denote by δ0 the
atomic measure of unit mass concentrated at zero. We have δ0(n) = 0 for n 6= 0 and δ0(0) = 1.
The space l1 is a Banach algebra with norm ‖a‖1 =

∑∞
n=−∞ |an| and with convolution a ∗ b as

its multiplication. The addition, subtraction and multiplication of sequences by numbers are
carried out term by term: a± b = {an± bn}, αa = {αan}, α ∈ C. The measure δ0 is the unit of
the algebra l1 (see [5, Supplement, § 1, Subsection 1, Example 4]). For c ∈ C we set c/∞ = 0.

2. Existence of solution

Denote by F n∗ the nth fold convolution of the distribution F :

F 1∗ := F, F (n+1)∗ := F n∗ ∗ F, n ≥ 1, F 0∗ := δ0.

Definition 1. Let F be an arithmetic probability ddistribution with span 1. The discrete
measure

U :=
∞∑
k=0

F k∗ = {U({n})}∞n=−∞ =: {un}∞n=−∞

is called the renewal measure generated by F .

Definition 2. A probability distribution F (and the generated random walk) is called transient
if U(I) <∞ for all finite intervals I, and recurring otherwise.

If the distribution F is transient, then the number of times the random walk {Sn} hits each
finite interval I is finite with probability one and the expectation of the number of such hits is
equal to U(I). If F is a recurring arithmetic distribution with span 1, then the number of times
the random walk {Sn} hits every point k, k ∈ Z, is infinite with probability one [1, Chapter VI,
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§ 10, Theorem 3]). Therefore, the random walk {Sn} of drifting type is transient. Hence
un <∞ for all n ∈ Z.

Consider equation (3). Define the sequence g = {gj}∞j=0 for negative values of j by putting
gj = 0, j ∈ Z−.

Theorem 1. Let F be an arithmetic probability distribution with span 1 of drifting to −∞ type,
U be the corresponding renewal measure and let g ∈ l1. Then there exists a solution z = {zj}∞j=0

to equaiton (3) such that
sup
n≥0
|zn| ≤

√
2(u−1 + u0 + u1)‖g‖1.

Proof. It suffices to establish existence for nonnegative sequences g; in case of real sequences use
the representation gj = g+j − g−j , where g+j := max(gj, 0), g−j := −min(gj, 0), and for complex
g use gj = <gj + i=gj. Then for real sequences, z = z+− z−, where z± are the solutions of (3)
for g± instead of g. Parallel with (3) consider the discrete renewal equation

(4) ζj =
∞∑

k=−∞

ζj−k fk + gj, j ∈ Z.

Let us construct solutions to equations (3) and (4) by the successive approximations:

z
(0)
j = gj, z

(n)
j =

j∑
k=−∞

z
(n−1)
j−k fk + gj, j ∈ Z+, n = 1, 2, . . . ;(5)

ζ
(0)
j = gj, ζ

(n)
j =

∞∑
k=−∞

ζ
(n−1)
j−k fk + gj, j ∈ Z, n = 1, 2, . . .(6)

Clearly, z(n)j ↑ and ζ
(n)
j ↑ as n ↑. Thus, the limits

zj := lim
n→∞

z
(n)
j , j ∈ Z+, ζj := lim

n→∞
ζ
(n)
j , j ∈ Z,

exist with zj ≤ ζj, j ∈ Z+. Let us show that the elements of the sequence ζ are finite. The
inequality

sup
n∈Z

un ≤ u−1 + u0 + u1

holds true (see [1, Chapter VI, § 10, Theorem 1]). Since ζ(n) =
∑n

k=0 F
k∗ ∗ g, the sequence

ζ = {ζj}∞j=−∞ can be represented in the form ζ = U ∗ g. Therefore,

ζn =
∞∑

j=−∞

un−jgj ≤ (u−1 + u0 + u1)
∞∑
j=0

gj = (u−1 + u0 + u1)‖g‖1.

By Beppo Levi’s theorem [5, Chapter 5, § 5, Subsection 5], we can pass to the limit under the
summation sign in equalities (5) and (6), and the sequences z and ζ are solutions to equations
(3) and (4), respectively. In addition, the following estimate holds true:

sup
n≥0
|zn| ≤ (u−1 + u0 + u1)‖g‖1.

The inequality is also valid when the inhomogeneous term of the equation is a real sequence.
This follows from the relations z = z+− z− and ‖g‖1 = ‖g+‖1 + ‖g−‖1. For complex sequences
g, the supremum is estimated by

√
2(u−1 + u0 + u1)‖g‖1. �
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3. Wiener–Hopf factorization and explicit form of solution

Put T + := min
{
n ≥ 1 : Sn ≥ 0

}
. The random variable H + := ST +

is called the first
weak ascending ladder height. Similarly, T − := min

{
n ≥ 1 : Sn < 0

}
and H − := ST −

is the
first strong descending ladder height. We have the following factorization identity: for |ξ| ≤ 1,
<s = 0,

(7) 1− ξE(esX1) =
[
1− E

(
ξT −esH −

)][
1− E

(
ξT +esH +

)]
.

Note that (4) was deduced in [11, Section 2] from an analogous identity in [1, § XVIII.3] for
another collection of ladder variables. Denote by F+ := {f+

j }∞j=0 and F− := {f−j }−1j=−∞ the
distributions of the random variables H + and H −, respectively. It is convenient to define
these sequences on the whole set Z as follows: f+

j = 0 for j < 0 and f−j = 0 for j ≥ 0. Then
the distributions F+ := {f+

j }∞j=−∞ and F− := {f−j }∞j=−∞ are elements of the Banach algebra l1.
It follows from (7) that

(8) δ0 − F = (δ0 − F−) ∗ (δ0 − F+).

Let

U± :=
∞∑
k=0

F k∗
± = {U±({n})}∞n=−∞ =: {u±n }∞n=−∞

be the renewal measures generated by the distributions F±, respectively. Denote by 1Z− the
indicator of the subset Z− in Z: 1Z−(j) = 1 for j ∈ Z− and 1Z−(j) = 0 for j ∈ Z+. A similar
meaning has the notation 1Z+ .

The following result was proved in [11, Section 3, Theorem 1]. Let F be an arithmetic
probability distribution with span 1 and let g ∈ l1. Then the sequence

(9) zj =
{
U+ ∗

[
(U− ∗ g)1Z+

]}
j
, j ∈ Z+,

is the solution to equation (3) coinciding with the solution obtained by successive approxima-
tions.

4. An asymptotic property of the solution

First, mention the following auxiliary result. Let F = {fj}∞j=−∞ be an arithmetic probability
distribution with span 1 such that

µ := EX1 =
∞∑

j=−∞

jfj ∈ [−∞, 0),

and let {an}∞n=−∞ ∈ l1. Then (U ∗ a)j → 0 as j → +∞. In fact, according to the discrete
renewal theorem, un → 1/|µ| as n→ −∞ and un → 0 as n→ +∞. (a symmetrical variant of
Theorem 1 in [1, Chapter XI, § 1]). Therefore, the sequence {un} is bounded by some number
C > 0, and the expression under the summation sign in the equality

(U ∗ a)j =
∞∑

n=−∞

uj−nan

is majorized by the corresponding elements of the summable sequence {C|aj|}∞j=−∞. So we
may pass to the limit under the summation sign as j → +∞, see [3, Chapter V, Section 26,
Theorem D], where the space with measure (X,S, ν) has the following form: X = Z, S is the
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collection of all subsets in Z, ν is the counting measure, that is, ν(A) is the number of of the
elements of the subset A ⊂ Z if A is a finite set and ν(A) =∞ if A is an infinite set.

We go to an asymptotic property of the solution.

Theorem 2. Let be an arithmetic probability distribution with span 1 which generates a random
walk drifting to −∞, and let g ∈ l1. Then the solution z = {zj}∞j=0 to equation (3), obtained
by successive approximations (5), satisfies the following relation:

zj → 0 as j →∞.

Proof. Turn to equality (9). As shown in the proof of Lemma 1 below, the span of F− is
equal to 1. Hence, by the discrete renewal theorem, u−n → 1/|µ−| as n → −∞, where µ− :=

EH − ∈ [−∞, 0). Applying the above auxiliary result, we get U− ∗ g(j)→ 0 as j →∞, whence
maxj≥0 |U− ∗ g(j)| < ∞. As mentioned in [1, Chapter XVIII, § 4, Example a)], drifting of
{Sn} to +∞ takes place when the distribution of the random variable H− := ST− is defect;
here T− := min

{
n ≥ 1 : Sn ≤ 0

}
. In our case, i.e., when {Sn} drifts to −∞, this means —

by symmetry reasons — that the distribution F+ is defect: F+(Z) < 1. Hence U+ is a finite
measure and we have by the majorized convergence theorem

zj =
{
U+ ∗

[
(U− ∗ g)1Z+

]}
j
=
∞∑
k=0

[
(U− ∗ g)1Z+

]
j−ku

+
k

=

j∑
k=0

(U− ∗ g)j−ku+k → 0 as j →∞. �

5. Rate of convergence

Definition 3. A sequence {αn}∞n=−∞ of positive numbers is called submultiplicative if

(10) αk+l ≤ αkαl.

The following relations are valid [2, Chapter III, § 19]:

ρ1 = sup
n>0

1
n
√
α−n

= lim
n→+∞

1
n
√
α−n

;

ρ2 = inf
n>0

n
√
αn = lim

n→+∞
n
√
αn;

0 < ρ1 ≤ ρ2 < +∞.

Denote by W<α> the collection of all formal series x =
∑∞

n=−∞ anX
n for which

‖x‖ :=
∞∑

n=−∞

|an|αn <∞.

Inequality (10) implies that together with all pairs x =
∑∞

n=−∞ anX
n and y =

∑∞
n=−∞ bnX

n

in W<α>, their formal product
∞∑

n=−∞

cnX
n =

∞∑
n=−∞

( ∞∑
m=−∞

an−mbm

)
Xn

also belongs toW<α> and ‖xy‖ ≤ ‖x‖‖y‖. Thus,W<α> is a normed ring (Banach algebra) with
respect to the introduced norm and multiplication, and to the usual operations of addition and
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multiplication by numbers for formal series. With each element x =
∑∞

n=−∞ anX
n ∈ W<α>,

associate the series â(w) :=
∑∞

n=−∞ anw
n, which is absolutely convergent in the annulus

R := {w ∈ C : ρ1 ≤ |w| ≤ ρ2}.

It is convenient to identify the formal series x =
∑∞

n=−∞ anX
n with the sequence {an}∞n=−∞

which may be regarded as the measure on the set of all integers Z taking the value an on the
one-point set {n}. If an = 0 for all n < 0, then â(w), |w| ≤ ρ2, is the generating function of the
sequence {an}∞n=0. Under this interpretation of the elements of the algebra W<α>, its unity is
the measure δ0 of unit mass concentrated at zero.

Recall the invertibility condition for elements in the Banach algebra W<α>. Let M be the
space of maximal ideals of the algebra W<α>. The following facts are well known [2, Chapter I,
§ 4]. Each maximal ideal M ∈ M generates some homomorphism h : W<α> → C and M is
the kernel of this homomorphism. Denote by ν(M) the value of h at ν ∈ W<α>. An element
ν ∈ W<α> if invertible if and only if ν does not belong to any maximal ideal M ∈ M . In
other words, ν is invertible if and only if ν(M) 6= 0 for each M ∈ M . Furhter, let M be a
maximal ideal of the algebra W<α>. Then there exists w ∈ R such that x(M) =

∑∞
n=−∞ anw

n

for all x =
∑∞

n=−∞ anX
n ∈ W<α>. Thus, the element x =

∑∞
n=−∞ anX

n ∈ W<α> is invertible
if
∑∞

n=−∞ anw
n 6= 0 for each w ∈ R (see [2, Chapter III, § 19]).

We shall need the following renewal theorem for arithmetic distributions (see, for example,
the symmetrical variant of Lemma 1 in [10], where the case µ > 0 was considered).

Theorem 3. Let F = {fj}∞j=−∞ be an arithmetic probability distribution with span 1 such that

µ =
∞∑

j=−∞

jfj < 0,
∞∑

j=−∞

j2fj <∞.

Then the renewal measure U generated by the distribution F can be represented in the following
form:

U =
1

|µ|
1Z−∪{0} +R,

where R ∈ l1.

We now formulate a result about rate of convergence of the solution.

Theorem 4. Let {αn}∞n=−∞ be a nondecreasing submultiplicative sequence such that αn ≡ 1 for
n < 0. Let F = {fj}∞j=−∞ be an arithmetic probability distribution with span 1. Suppose that

µ =
∞∑

j=−∞

jfj < 0,
∞∑

j=−∞

j2fj <∞,
∞∑
j=1

jαjfj <∞.

If ρ2 > 1, then suppose also that F̂ (ρ2) < 1. Moreover, let

αn

∞∑
j=n

gj → 0, as n→∞.

Then the solution z of equation (3) satisfies the following asymptotic relation:

zj = o

(
1

αj

)
as j →∞.

The proofs of the following lemmas will be given after the proof of Theorem 4.
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Lemma 1. Let the hypotheses of Theorem 4 be fulfilled. Then the distribution F− satisfies the
conditions of Theorem 3.

Lemma 2. Let the hypotheses of Theorem 4 be fulfilled. Then F+ ∈ W<α>.

Lemma 3. Let the hypotheses of Theorem 4 be fulfilled. Then U+ ∈ W<α>.

Proof of Theorem 4 . First, we prove that

(11) (U− ∗ g)j = o

(
1

αj

)
as j →∞.

We have

αngn = αn

∞∑
j=n

gj − αn
∞∑

j=n+1

gj = αn

∞∑
j=n

gj −
αn
αn+1

αn+1

∞∑
j=n+1

gj → 0

as n→∞. By Lemma 1 and Theorem 3

U− =
1

|µ−|
1Z−∪{0} +R−, R− = {r−n }0n=−∞ ∈ l1,

where µ− = EH −. For j > 0, we have

|αj(U− ∗ g)j| = αj

∣∣∣∣ 0∑
n=−∞

u−n gj−n

∣∣∣∣ = αj

∣∣∣∣ 1

|µ−|

0∑
n=−∞

gj−n +
0∑

n=−∞

r−n gj−n

∣∣∣∣
≤ αj
|µ−|

∣∣∣∣ ∞∑
k=j

gk

∣∣∣∣+ 0∑
n=−∞

αn|r−n |αj−n|gj−n| → 0 as j →∞,

since the first sum on the right tends to zero by assumption and the second one tends to zero
by the majorized convergence theorem. Relation (11) is proved. The assertion of the theorem
now follows from the relation

|αjzj| = αj
∣∣{U+ ∗

[
(U− ∗ g)1Z+

]}
j

∣∣ = αj

∣∣∣∣ j∑
k=0

u+k
[
(U− ∗ g)j−k

∣∣∣∣
≤

j∑
k=0

αku
+
k αj−k|(U− ∗ g)j−k| → 0 as j →∞,

by the majorized convergence theorem (see (11) and Lemma 3). �

Proof of Lemma 1. A discrete probability distribution is calle lattice if its points of discontinuity
form an arithmetic progression, that is, a set of points of the form a+ jd, where a, d are fixed
numbers and j takes integer values [8, Section 1.2]. It is well known [8, Theorem 2.1.4] that F is
a lattice distribution if and anly if there exists a real number t0 6= 0 such that |F (it0)| = 1; here
F (s) :=

∫
R e

sx F (dx) is the Laplace transform (moment generating function) of F . Perusing
the proof of Theorem 2.1.4 in [8], we see that F is an arithmetic distribution if and only if there
exist a real number t0 6= 0 such that F (it0) = 1. The span λ of a l attice distribution F is
determined by the following relations [7, Chapter IV, Exercise 7]: |F (it)| < 1 for 0 < |t| < 2π/λ

(t real) and |F (2πi/λ)| = 1. If F is an arithmetic distribution, then its span λ is determined
by the following relations: F (it) 6= 1 for 0 < |t| < 2π/λ (t real) and F (2πi/λ) = 1. Thus,
the distribution F− of the random variable H − is an arithmetic distribution with span 1.
This follows from the above criterion of arithmeticity and factorization identity (8) for ξ = 1.
Further, µ− = EH − ≤ EX1 < 0, since H − ≤ X1. Finally, let us prove that EH

2

− < ∞.

https://doi.org/10.28919/ejma.2024.4.7
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Let {βn}∞n=−∞ be a submultiplicative sequence such that βn = 1 + n2 for n < 0 and βn ≡ 1

for n ≥ 0. Then F ∈ W<β> by assumption. The distribution F+ is defective. Therefore,
‖F+‖1 = F+(Z+) < 1. It follows that the element δ0 − F+ ∈ l1 is invertible in the Banach
algebra l1: U+ = {u+n }∞n=−∞ = (δ0 − F+)

−1 ∈ l1, where u+n ≡ 0 for n < 0. Obviously,
U+ ∈ W<β>. Equality (9) implies

δ0 − F− = (δ0 − F ) ∗ U+ ∈ W<β>.

Consequently, F− ∈ W<β>, that is,
∑−1

n=−∞ n
2f−n <∞, as was to be proved. �

Proof of Lemma 2. Put w = es and ξ ∈ (0, 1) in (7). We obtain

1− ξF̂ (w) = [1− F̂ξ−(w)][1− F̂ξ+(w)], 0 < ξ < 1, |w| = 1,

where Fξ± are positive measures concentrated on the sets Z± respectively; moreover, Fξ+(Z+) ≤
F+(Z+) < 1 and Fξ−(Z−) ≤ ξ < 1. We have

δ0 − Fξ+ = Uξ− ∗ (δ0 − ξF ),

where Uξ− :=
∑∞

n=0 F
n∗
ξ− is a finite measure. Therefore,

Fξ+({j}) = ξ(Uξ− ∗ F )({j})

for integer j > 0. Letting ξ ↑ 1, we get f+
j = (U− ∗ F )({j}) for positive j ∈ Z+. Show that

the distribution F− satisfies the hypotheses of Theorem 3. Put βn = (1 + |n|)2 for n ∈ Z− and
βn = 1 for n ∈ Z+. Clearly, {βn} is a submultiplicative sequence. The underlying distribution
F certainly belongs to the algebraW<β>. The defect distribution F+ on Z+, being a summable
sequence, also belongs to W<β>, and so is the finite renewal measure U+. Equality (8) implies
that

δ0 − F− = (δ0 − F ) ∗ (δ0 − F+)
−1 = (δ0 − F ) ∗ U+ ∈ W<β>,

whence F− ∈ W<β>. Obviously, µ− ≤ µ < 0, so that Theorem 3 is applicable to F−. By
Theorem 3 for F−,

∞∑
n=1

αnf
+
n =

∞∑
n=1

αn

0∑
k=−∞

fn−ku
−
k

≤
0∑

k=−∞

u−k

∞∑
n=1

αn−kfn−k =
0∑

k=−∞

u−k

∞∑
l=1−k

αlfl

=
0∑

k=−∞

1

|µ−|

∞∑
l=1−k

αlfl +
0∑

k=−∞

r−k

∞∑
l=1−k

αlfl =: I1 + I2.

The following estimates hold true:

I1 =
∞∑
l=1

αlfl

0∑
1−l

1

|µ−|
=

1

|µ−|

∞∑
l=1

lαlfl <∞,

I2 ≤ ‖R−‖
∞∑
l=1

αlfl <∞,

that is, F+ ∈ W<α>. The proof of Lemma 2 is complete. �
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Proof of Lemma 3. In our case, R = {w ∈ C : 1 ≤ |w| ≤ ρ2} By Lemma 2, F+ ∈ W<α>.
Let ρ2 > 1. It follows from the assumption F̂ (ρ2) < 1 and (8) that F̂+(ρ2) < 1. Therefore,
F̂+(w) < 1 for all w ∈ R, whence δ̂0(w) − F̂+(w) = 1 − F̂+(w) 6= 0 for all w ∈ R. This means
that the element δ0 − F+ ∈ W<α> is invertible: U+ = (δ0 − F+)

−1 ∈ W<α>. If ρ2 = 1, then
|F̂+(w)| ≤ F+(Z) < 1 for all w ∈ R. Therefore, the element δ0 − F+ ∈ W<α> is also invertible
in W<α>. Relation U+ ∈ W<α> is proved. �

6. Homogeneous equation. Solutions with arbitrary limits

The solution z of equation (3) obtained by successive approximations in Theorem 1 is not
unique. Consider the homogeneous equation

(12) Zj =
∞∑
k=0

fj−k Zk, j ∈ Z+,

where Z = {Zj}∞j=0 is an unknown sequence and F = {fj}∞j=−∞ is an arithmetic probability
distribution with span 1 which generates a random walk {Sn} with drift to −∞. The random
variable S := supn≥0 Sn is finite with probability one. Denote by Mj = P(S ≤ j), j ∈ Z+, the
distribution function of the discrete random variable S. The sequence M = {Mj}∞j=0 satisfies
equation (12) (see [1, Chapter XII, § 3, Example c]); moreover, Mj → 1 as j → ∞. The
sequence Zc = {Zc(j)}∞j=0 := z+ cM , where c ∈ C, is also a solution to equation (3). It is clear
that if the conditions of Theorem 2 are satisfied, then Zc(j)→ c as j →∞. Let us give a rate
of convergence.

Theorem 5. Let the hyptheses of Theorem 4 be fulfilled. Then

Zc(j)− c = o

(
1

αj

)
as j →∞.

Proof. Let us show that the distribution of the supremum S coincides with the renewal measure
U+, up to a constant factor. Lemma 1 in [1, Chapter XVIII, § 3], applied to the symmetrical
random walk {−Sn}, asserts that for |ξ| < 1

log
1

1− E
(
ξT −esH −

) =
∞∑
n=1

ξn

n

∫ 0−

−∞
esx F n∗(dx),

since in our case the point (T −,−H −) is the point of the first hit by the random walk {−Sn}
of the open interval (0,∞). Similarly, according to Lemma 2 in [1, Chapter XVIII, § 3]

(13) log
1

1− E
(
ξT +esH +

) =
∞∑
n=1

ξn

n

∫ ∞
0−

esx F n∗(dx),

By Theorem 2 in [1, Chapter XVIII, § 5],

EesS = exp

{ ∞∑
n=1

1

n

∫ ∞
0

(esx − 1)F n∗(dx)

}
.

Put ξ = 1 in (13). We have∫ ∞
0−

esx U+(dx) =

[
1−

∫ ∞
0−

esx F+(dx)

]−1
= exp

[ ∞∑
n=1

1

n

∫ ∞
0

esx F n∗(dx)

]
.
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Take a = exp{
∑∞

n=1 P(Sn ≥ 0)/n}. Then

aEesS =

∫ ∞
0−

esx U+(dx), <s = 0,

that is, the distribution of the random variable S coincides with the measure U+/a. The
assertion of the theorem now follows from the available estimates:

|Zc(j)− c| = |zj + cMj − c| ≤ |zj|+ |c||Mj − c|

= |zj|+ |c|P(S > j) = |zj|+
|c|
a

∞∑
k=j+1

u+k

≤ |zj|+
|c|
a
· 1
αj

∞∑
k=j+1

αku
+
k = o

(
1

αj

)
as j →∞,

since zj = o(1/αj) as j → ∞ by Theorem 4 and U+ = {u+n }∞n=−∞ ∈ W<α> according to
Lemma 3; here u+n ≡ 0 for n < 0. �
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