MODIFIED MONOTONE HYBRID INERTIAL ALGORITHM FOR GENERALIZED NONEXPANSIVE MAPS, MAXIMAL MONOTONE OPERATORS AND GENERALIZED MIXED EQUILIBRIUM PROBLEMS

LAWAL UMAR ${ }^{1, *}$, YUSUF IBRAHIM ${ }^{2}$ AND TAFIDA. M. KABIR ${ }^{1}$

Abstract

The aim of this article is to Propose a modified monotone hybrid inertial algorithm for approximating a common fixed point of a family of generalized nonexpansive maps, maximal monotone operators and a solution of a system of generalized mixed equilibrium problems in Banach spaces. Strong convergence of sequences generated by the propose algorithm has been establish in respect to this problems. Our theorems are significant improvement of some recent results.

1. Introduction

Let E be a real Banach space and C be a nonempty closed convex subset of a real Banach space E with $\|$.$\| and E^{*}$ as a norm and dual space of E respectively. A mapping $T: C \longrightarrow C$ is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C . F(T)=\{x \in C: T x=x\}$ denote the set of fixed point of T and \mathbb{R} denote the set of real number. We present GMEP [1] as the generalized mixed equilibrium problem: find an element $x \in C$ such that

$$
B(x, y)+\langle A x, y-x\rangle+\varphi(y)-\varphi(x) \geq 0, \forall y \in C
$$

where $B: C \times C \longrightarrow \mathbb{R}$ is a bifunction, $A: C \longrightarrow E^{*}$ is a nonlinear mapping and $\varphi: C \longrightarrow \mathbb{R}$ is a real valued function. The set of solutions of generalized mixed equilibrium problem is giving by

$$
G M E P(B, A, \varphi)=\{x \in C: B(x, y)+\langle A x, y-x\rangle+\varphi(y)-\varphi(x) \geq 0, \forall y \in C\} .
$$

Notice that if $A \equiv 0$ and $\varphi \equiv 0$, then the generalized mixed equilibrium problem (GMEP) reduces to equilibrium problem, denoted by $E P[3]$: find an element $x \in C$ such that

$$
B(x, y) \geq 0, \forall y \in C
$$

The solutions set of equilibrium problems is given by

$$
E P(B)=\{x \in C: B(x, y) \geq 0, \forall y \in C\} .
$$

[^0]Received 04/11/2023.

Many problems arising in physics, economics and optimization can be reduced to finding solutions of some equilibrium problems which is cornerstone in the field of search in science and engineering (for details see Blum and Oettli [3], Combettes and Hirstoage [7]).

Incorporating an inertial term in the iterative procedure accelerate the rate of convergence of the sequence generated by the algorithm, which was first suggested and studied by Polyak [22] for solving a smooth convex minimization problems (for details see $[6,8,9]$).
An operator $M \subset E \times E^{*}$ is called monotone if $\left\langle q-p, q^{*}-p^{*}\right\rangle \geq 0$, whenever $\left(q, q^{*}\right),\left(p, p^{*}\right) \in M$. A monotone M is called maximal if its graph $G(M)=\{(q, p): p \in M q\}$ is not properly contained in the graph of any other monotone operator. Recall that if M is a maximal monotone operator, $M^{-1} 0=\{q \in D(M): 0 \in M q\}$ is closed and convex, where $D(M)=\{q \in E: M q \neq \emptyset\}$. For each $r>0$, suppose that M is monotone, then we consider $J_{r}: R(I+r M) \longrightarrow D(M)$ defined by $J_{r}=(I+r M)^{-1}$ as nonexpansive mapping, where J_{r} is denoted as the resolvent of M (See for example, Browder [4] and Minty [13]). Furthermore, the monotone operators in Banach space can be formulated as follows: find $q \in E$ such that $0 \in M q$. We denote $M^{-1} 0$ as the set of all point $q \in E$ such that $0 \in M q$.
In 2003 Nakajo and Takahashi [25], consider T as nonexpansive self mappings of a nonempty closed convex subset of C and established strong convergence theorem using modified Mann iterative procedure in Hilbert spaces. In 2006 Martinez-Yanes and Xu [20], presented modified Ishikawa iterative algorithm and proved strong convergence results by considering T as a nonexpansive self mapping and C as a nonempty, closed convex subset of a Hilbert space H. In 2008 Qin and Su [23], suggested a modified iterative procedure for approximating nonexpansive mapping in Hilbert space. A strong convergence results have been proved using monotone hybrid method.
In 2012 Klin-eam et al [16], consider the following monotone hybrid algorithm for solving family of generalized nonexpansive mapping in a Banach space:

$$
\left\{\begin{array}{l}
x_{1}=x \in C, C_{0}=Q_{0}=C \text { arbitrarily } \\
v_{n}=\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) T_{n} x_{n} \\
C_{n}=\left\{v \in C_{n-1} \cap Q_{n-1}: \phi\left(v_{n}, v\right) \leq \phi\left(x_{n}, v\right)\right\} \\
Q_{n}=\left\{v \in C_{n-1} \cap Q_{n-1}:\left\langle x-x_{1}, J x_{n}-J v\right\rangle \geq 0\right\} \\
x_{n+1}=R_{C_{n} \cap Q_{n}} x, \forall n \in \mathbb{N}
\end{array}\right.
$$

They established strong convergence of the sequence $\left\{x_{n}\right\}$ generated by the above algorithm.
In 2020 Chidume et al [6], approximated the set of zeros of maximal monotone operators and common fixed point of a countable family of relatively nonexpansive mappings in Banach spaces by considering hybrid inertial procedure as follows:

$$
\left\{\begin{array}{l}
x_{0}, x_{1} \in K, K_{0}=K ; \\
\mu_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) ; \\
y_{n}=J^{-1}\left((1-\sigma) J \mu_{n}+\sigma J S J_{r_{n}} \mu_{n}\right) ; \\
z_{n}=J^{-1}\left((1-\vartheta) J \mu_{n}+\vartheta J T y_{n}\right) ; \\
C_{n+1}=\left\{\mu \in C_{n}: \phi\left(\mu, z_{n}\right) \leq \phi\left(\mu, \mu_{n}\right) ;\right. \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \forall n \in \mathbb{N} \cup\{0\} .
\end{array}\right.
$$

It has been proved that the sequence $\left\{x_{n}\right\}$ converges strongly to $\Pi_{\Gamma} x_{0}$.

Recently, Umar et al [19], introduced and studied the following inertial algorithm of generalizedf - projection technique for approximating a solution of a system of generalized mixed equilibrium problems, and maximal monotone operators in Banach space

$$
\left\{\begin{array}{l}
x_{0} \in C_{0}=E ; \\
\vartheta_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right) ; \\
u_{n}=J^{-1}\left(\theta_{n} J \vartheta_{n}+\left(1-\theta_{n}\right) J J_{r_{n}} \vartheta_{n}\right) ; \\
z_{n} \in C \text { such that } f\left(z_{n}, y\right)+\left\langle\Psi z_{n}, y-z_{n}\right\rangle+\Theta(y)-\Theta\left(z_{n}\right) \\
+\frac{1}{r_{n}}\left\langle y-z_{n}, J z_{n}-J u_{n}\right\rangle \geq 0, \forall y \in C ; \\
C_{n+1}=\left\{v \in C_{n}: G\left(v, J z_{n}\right) \leq G\left(v, J \vartheta_{n}\right)\right\}: \\
x_{n+1}=\Pi_{C_{n+1}}^{f} x_{0}, \forall n \in \mathbb{N} \cup\{0\} .
\end{array}\right.
$$

The authors prove that $\left\{x_{n}\right\}$ converges strongly $\Pi_{\Gamma}^{f} x_{0}$
Very recently, Alizadeh and Morudlou [2], consider the following $C Q$ algorithm for finding a family of non-self generalized nonexpansive mapping in Banach spaces, using monotone hybrid method

$$
\left\{\begin{array}{l}
x_{1}=x_{0} \in C, C_{0}=Q_{0}=C \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T_{n} x_{n} \\
u_{n}=\theta_{n} y_{n}+\left(1-\theta_{n}\right) T_{n} x_{n} \\
C_{n}=\left\{z \in C_{n-1} \cap Q_{n-1}: \phi\left(u_{n}, z\right) \leq \phi\left(x_{n}, z\right)\right\} \\
Q_{n}=\left\{z \in C_{n-1} \cap Q_{n-1}:\left\langle x-x_{n}, J x_{n}-J z\right\rangle\right\} \\
x_{n+1}=R_{C_{n} \cap Q_{n}} x, \forall n \in \mathbb{N} .
\end{array}\right.
$$

It has been proved that the sequence $\left\{x_{n}\right\}$ converges strongly to $R_{F(\Gamma)} x$.
Motivated by the study of the class of a family of generalized nonexpansive mappings using monotone hybrid algorithm, it is our purpose to propose and study a modified monotone hybrid inertial algorithm for finding a common fixed point of a family of generalized nonexpansive mappings, maximal monotone operators and a solution of a system generalized mixed equilibrium problems in Banach spaces. Furthermore, a strong convergence theorem in respect to this problems has been establish. Also, our results improve and extend the result of Chidume et al [6], Umar et al [19], Alizadeh, Morudlou [2] and some recent results announced in the literature.

2. Preliminaries

Let E be a real Banach space with its dual space denoted by E^{*}, suppose that \mathbb{R} and \mathbb{N} denotes the set of real number and positive integer respectively. For any $\left\{x_{n}\right\} \subset E$ and a point $x \in E$, we consider $x_{n} \longrightarrow x$ and $x_{n} \rightharpoonup x$ as strong and weak convergences respectively. Furthermore, for any $\left\{x_{n}\right\} \subset E$, then E is said to satisfies Kadec - Klee property if $x_{n} \rightharpoonup x$ and $\left\|x_{n}\right\| \longrightarrow\|x\|$ which led to $x_{n} \longrightarrow x, \forall x \in E$. A mapping $J: E \longrightarrow 2^{E^{*}}$ is said to be normalized duality if:

$$
J(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|\left\|x^{*}\right\|,\left\|x^{*}\right\|=\|x\|\right\}, \forall x \in E .
$$

Let $G:=\{x \in E:\|x\|=1\}$ be the unit sphere of E. Then E is said to be smooth if the $\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ exists for all $x, y \in G$, it is also said to be uniformly smooth if the limit exists uniformly in $x, y \in G$. A Banach space E said to be strictly convex if $\frac{\|x+y\|}{2}<1$ for
all $x, y \in G$ with $\|x\|=\|y\|=1$ and $x \neq y$ and E is said to be uniformly convex if for each $\varepsilon \in(0,2]$, there exists $\delta>0$ such that $\frac{\|x+y\|}{2} \leq 1-\delta$ for all $x, y \in G$ with $\|x\|=\|y\|=1$ and $\|x-y\| \geq \varepsilon$.
The function $\rho_{E}:[0, \infty) \longrightarrow[0, \infty)$ defined by

$$
\rho_{E}(t)=\sup \left\{\frac{\|x+y\|+\|x-y\|}{2}-1 ;\|x\|=1: x \in G,\|y\| \leq t\right\} .
$$

is called the modulus of smoothness of E. Also, the function $\delta:[0,2] \longrightarrow[0,1]$ defined by

$$
\delta(\varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|: x, y \in G,\|x\|=\|y\|=1,\|x-y\| \geq \varepsilon\right\}
$$

is called modulus of convexity of E. Now, consider E as a smooth Banach space, then a map $\phi: E \times E \longrightarrow \mathbb{R}$ is said to be Lyapunov functional if :

$$
\begin{equation*}
\phi(y, x)=\|y\|^{2}-2\langle y, J x\rangle+\|x\|^{2}, \forall x, y \in E . \tag{2.1}
\end{equation*}
$$

Recall that by the framework of Hilbert space H, (2.1) reduces to $\phi(x, y)=\|x-y\|^{2}, \forall x, y \in H$. Also for all $x, y, \in E$, it has been observe from (2.1) that the following properties hold:

$$
\begin{gather*}
(\|y\|-\|x\|)^{2} \leq \phi(x, y) \leq(\|y\|+\|x\|)^{2}, \tag{2.2}\\
\phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z, J z-J y\rangle, \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\phi(x, y) \leq\|x\|\|J x-J y\|+\|y\|\|x-y\| . \tag{2.4}
\end{equation*}
$$

Let C be denote as the closed subset of a Banach space E, a mapping $T: C \longrightarrow E$ is said to be generalized nonexpansive if $F(T) \neq \emptyset$ and $\phi\left(T x, v^{*}\right) \leq \phi\left(x, v^{*}\right)$ for all $x \in C, v^{*} \in F(T)$. If $x_{n} \longrightarrow x$ and $T x_{n} \longrightarrow y$ whenever $T x=y$, then a mapping T in E is said to be closed. A mapping $R: E \longrightarrow C$ defined by $R((R x+t(x-R x))=R, \forall x \in E, t \geq 0$ is called Sunny, also is called retraction [2,12] if $R x=x, \forall x \in C$. The retraction R which is sunny and nonexpansive is called sunny nonexpansive retraction from E onto C. Consider C as a nonempty closed subset of a smooth Banach space E, suppose that there exists a sunny generalized retraction R from E onto C, then C is called sunny generalized nonexpansive retract of $E[10]$.

Lemma 2.1. ([14]) Let E be a smooth and uniformly convex Banach space and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in E such that either $\left\{x_{n}\right\}$ or $\left\{y_{n}\right\}$ is bounded. If $\lim _{n \rightarrow \infty} \phi\left(x_{n}, y_{n}\right)=0$, then $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

Remark 2.2. Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded, then by considering (2.4) it is observe that the converse of Lemma 2.1 is also true.

Lemma 2.3. ([11]) Let C be a nonempty closed subset of a smooth and strictly convex Banach space E such that there exists a sunny generalized nonexpansive retraction R from E onto C, let $z \in C$ and $x \in E$. Then the following hold
(i) $z=R x$ if and only if $\langle x-z, J y-J z\rangle \leq 0$ for all $y \in C$;
(ii) $\phi(x, R x)+\phi(R x, z) \leq \phi(x, z)$.

Lemma 2.4. ([17]) Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E.Then the following are equivalent:
(i) C is a sunny generalized nonexpansive retract of E;
(ii) JC is closed and convex.

Lemma 2.5. ([5]) Let E be a uniformly convex Banach space. For arbitrary $r>0$, let $B_{r}(0):=\{\|x \in E:\| x \| \leq r\}$. Then for any given sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset B_{r}(0)$ and for any given sequence $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ of positive numbers such that $\sum_{n=1}^{\infty} \gamma_{n}=1$, there exists a continuous strictly increasing convex function

$$
g:[0,2 r] \longrightarrow \mathbb{R}, g(0)=0
$$

such that for any positive integers i, j with $i<j$, the following inequality holds:

$$
\left\|\sum_{n=1}^{\infty} \gamma_{n} x_{n}\right\|^{2} \leq \sum_{n=1}^{\infty} \gamma_{n}\left\|x_{n}\right\|^{2}-\gamma_{i} \gamma_{j} g\left(\left\|x_{i}-x_{j}\right\|\right)
$$

Lemma 2.6. ([14]) Let E be a u uniformly convex and smooth Banach space and let $r>0$. Then there exists a strictly increasing, continuous and convex function $g:[0, \infty) \longrightarrow[0, \infty)$ such that $g(0)=0$ with

$$
g(\|x-y\|) \leq \phi(x, y)
$$

for all $x, y \in B_{r}(0)=\{z \in E:\|z\| \leq 1\}$,
Lemma 2.7. ([12]) Let E be a smooth and strictly convex Banach space, let $z \in E$ and $\left\{t_{i}\right\}_{i=1}^{m} \subset(0,1)$ with $\sum_{i=1}^{m} t_{i}=1$. If $\left\{x_{i}\right\}_{i=1}^{m}$ is a finite sequence in E such that

$$
\phi\left(\sum_{i=1}^{m}\left(t_{i} x_{i}, z\right)\right)=\sum_{i=1}^{m} t_{i} \phi\left(x_{i}, z\right),
$$

then $x_{1}=x_{2}=\ldots=x_{m}$.
Lemma 2.8. ([15]) Let E be a smooth, strictly convex and reflexive Banach space and let $M \subset E \times E^{*}$ be a monotone operator. Then M is maximal if and only if $R(J+r M)=E^{*}$ for all $r>0$.

Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E with $M \subset E \times E^{*}$ as a monotone operator satisfying

$$
D(M) \subset C \subset J^{-1}\left(\cap_{r>0} R(J+r M)\right)
$$

Then, the resolvent $J_{r}: C \longrightarrow D(M)$ of M can be define by

$$
J_{r} x=\{z \in D(M): J x \in J z+r M z\}, \forall x \in C .
$$

Recall that $J_{r} x$ consists of one point. Now, for $r>0$, the Yosida approximation $M_{r}: C \longrightarrow E^{*}$ is defined by

$$
M_{r} x=\left(J x-J J_{r} x\right) / r, \forall x \in C .
$$

Lemma 2.9. ([15, $\left.\left.1^{7}\right]\right)$ Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E and let $M \subset E \times E^{*}$ be a monotone operator satisfying

$$
D(M) \subset C \subset J^{-1}(\underset{r>0}{\cap} R(J+r M)) .
$$

Observe that for $r>0$, let J_{r} and M_{r} be the resolvent and the Yosida approximation of M, respectively. Then, the following hold:
(i) $\phi\left(u, J_{r} x\right)+\phi\left(J_{r} x, x\right) \leq \phi(u, x)$, for all $x \in C, u \in M^{-1} 0$;
(ii) $\phi\left(J_{r} x, M_{r} x\right) \in M$, for all $x \in C$; where $\left(x, x^{*}\right) \in M$ denotes the value of x^{*} at $x\left(x^{*} \in M x\right)$.
(iii) $F\left(J_{r}\right)=M^{-1} 0$.

Assumption B: The bifunction $B: C \times C \longrightarrow \mathbb{R}$ satisfies the following assumptions [3]:
$\left(B_{1}\right) B(x, x)=0, \forall x \in C$;
$\left(B_{2}\right) B$ is monotone, 1.e, $B(x, y)+B(y, x) \leq 0, \forall x, y \in C$;
$\left(B_{3}\right)$ for each $x, y, z \in C, \limsup _{\lambda \rightarrow 0} B(\lambda z+(1-\lambda) x, y) \leq B(x, y)$;
$\left(B_{4}\right)$ for each $x \in C, y \mapsto \stackrel{\lambda \rightarrow 0}{B(x, y)}$ is convex and lower semicontinuous.

Lemma 2.10. ($[3,24])$ Let E be a smooth, strictly convex and reflexive Banach space, and C be a nonempty closed convex subset of E. Let $B: C \times C \longrightarrow \mathbb{R}$ be a bifunction satisfying the conditions $\left(B_{1}\right)-\left(B_{4}\right)$. For any given number $r>0$ and any given point $x \in E$, then there exists $z \in C$ such that

$$
B(z, y)+\frac{1}{r}\langle y-z, J z-J x\rangle \geq 0, \forall y \in C
$$

Substituting x with $J^{-1}(J x-r A x)$, then there exists $z \in C$ such that

$$
B(z, y)+\langle y-z, A z\rangle+\frac{1}{r}\langle y-z, J z-J x\rangle \geq 0 . \forall y \in C
$$

where A is a monotone mapping from C into E^{*}.
Lemma 2.11. ([24, 26]) Let C be a nonempty closed convex subset of a uniformly smooth, strictly convex and reflexive Banach space E. Let $A: C \longrightarrow E^{*}$ be a continuous and monotone mapping, $\varphi: C \longrightarrow \mathbb{R}$ be a proper convex and lower semi-continuous function and $B: C \times C \longrightarrow$ \mathbb{R} be a bifunction satisfying the conditions $\left(B_{1}\right)-\left(B_{4}\right)$. For any given number $r>0$ and any given point $x \in E$, a mapping $T_{r}: E \longrightarrow C$ is define by
$T_{r}(x)=\left\{z \in C: B(z, y)+\varphi(y)-\varphi(z)+\langle y-z, A z\rangle+\frac{1}{r}\langle y-z, J z-J x\rangle \geq 0, \forall y \in C\right\}, \forall x \in E$,
for all $x \in C$. The mapping T_{r} has the following properties:
$\left(m_{1}\right) T_{r}$ is single-valued;
$\left(m_{2}\right) T_{r}$ is a firmly nonexpansive - type mapping, for all $x \in E, y \in C$

$$
\left\langle T_{r} x-T_{r} y, J T_{r} x-J T_{r} y\right\rangle \leq\left\langle T_{r} x-T_{r} y, J x-J y\right\rangle
$$

$\left(m_{3}\right) F\left(T_{r}\right)=G M E P(B, A, \varphi)$;
$\left(m_{4}\right) \operatorname{GMEP}(B, A, \varphi)$ is a closed convex set of C.
$\left(m_{5}\right) \phi\left(v^{*}, T_{r} x\right)+\phi\left(T_{r} x, x\right) \leq \phi\left(v^{*}, x\right), \forall v^{*} \in F\left(T_{r}\right), x \in E$.

3. NST - Condition

Let C be a nonempty subset of a real Banach space E. Consider $\left\{T_{n}\right\}$ ans Υ as two families of the generalized nonexpansive mappings of C onto E such that $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\Upsilon) \neq \emptyset$, where $F\left(T_{n}\right)$ is the set of all fixed points of T_{n} and the set of all common fixed point of Υ is denoted by $F(\Upsilon)$. Then, the sequence $\left\{T_{n}\right\}$ satisfies $N S T$ - condition [25] with Υ if for each bounded sequence $\left\{x_{n}\right\}$ in C such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0 \Longrightarrow \lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0, \forall T \in \Upsilon .
$$

Notrice that, if $\Upsilon=\left\{T_{n}\right\}$, that is if Υ possess one mapping T, then $\left\{T_{n}\right\}$ satisfies the NSTcondition with $\{T\}$. For all $n \in \mathbb{N}$, putting $T_{n}=T$ satisfies $N S T$ - condition with $\Upsilon=\{T\}$.

Lemma 3.1. Let C be a subset of a uniformly smooth and uniformly convex Banach space E and $S_{1}, S_{2}, \ldots, S_{N}$ are generalized nonexpansive mappings of C into E such that $\cap_{j=1}^{N} F\left(S_{j}\right) \neq \emptyset$. Notice that the sequence $\left\{\gamma_{j, n}\right\} \subset[0,1]$ satisfying:
(a) $\sum_{j=0}^{N} \gamma_{j, n}=1$
(b) $\liminf _{n \rightarrow \infty} \gamma_{0, n} \gamma_{j, n}>0$, for all $j \in\{1,2,, \ldots, N\}$.

Consider $T_{n}: C \longrightarrow E$ as a mapping, for each $n \in \mathbb{N}$ defined by

$$
T_{n} x=\gamma_{0, n} x+\sum_{j=1}^{N} \gamma_{j, n} S_{j} x, \forall x \in C
$$

Then, $\left\{T_{n}\right\}$ is a countable family of generalized nonexpansive mappings satisfies $N S T$ - condition with $\Upsilon=\left\{S_{1}, S_{2} \ldots, S_{N}\right\}$.

Proof. First, we show that $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\Upsilon), T_{n}$ are generalized nonexpansive mappings for all $n \in \mathbb{N}$. Observe that

$$
F(\Upsilon)=\cap_{j=1}^{N} F\left(S_{j}\right) \subset \cap_{n=1}^{\infty} F\left(T_{n}\right)
$$

Suppose that $v^{*} \in \cap_{j=1}^{N} F\left(S_{j}\right)$, then by Lemma 2.5 we obtain the following estimates:

$$
\begin{aligned}
\phi\left(T_{n} x, v^{*}\right) & =\phi\left(\gamma_{0, n} x+\sum_{j=1}^{N} \gamma_{j, n} S_{j} x, v^{*}\right) \\
& =\left\|\gamma_{0, n} x+\sum_{j=1}^{N} \gamma_{j, n} S_{j} x\right\|^{2}-2\left\langle\gamma_{0, n} x+\sum_{j=1}^{N} \gamma_{j, n} S_{j} x, J v^{*}\right\rangle+\left\|v^{*}\right\|^{2} \\
& \leq \gamma_{0, n}\|x\|^{2}+\sum_{j=1}^{N} \gamma_{j, n}\left\|S_{j} x\right\|^{2}-2 \gamma_{0, n}\left\langle x, J v^{*}\right\rangle-2 \sum_{j=1}^{N} \gamma_{j, n}\left\langle S_{j} x, J v^{*}\right\rangle+\left\|v^{*}\right\|^{2} \\
& =\gamma_{0, n} \phi\left(x, v^{*}\right)+\sum_{j=1}^{N} \gamma_{j, n} \phi\left(S_{j} x, v^{*}\right) \\
& \leq \gamma_{0, n} \phi\left(x, v^{*}\right)+\sum_{j=1}^{N} \gamma_{j, n} \phi\left(x, v^{*}\right) \\
& =\left(\gamma_{0, n}+\sum_{j=1}^{N} \gamma_{j, n}\right) \phi\left(x, v^{*}\right)
\end{aligned}
$$

$$
=\phi\left(x, v^{*}\right)
$$

Also, for all $v \in F\left(T_{n}\right)$, we get

$$
\begin{aligned}
\phi\left(v, v^{*}\right) & =\phi\left(T_{n} v, v^{*}\right) \\
& =\phi\left(\gamma_{0, n} v+\sum_{j=1}^{N} \gamma_{j, n} S_{j} v, v^{*}\right) \\
& =\left\|\gamma_{0, n} v+\sum_{j=1}^{N} \gamma_{j, n} S_{j} v\right\|^{2}-2\left\langle\gamma_{0, n} v+\sum_{j=1}^{N} \gamma_{j, n} S_{j} v, J v^{*}\right\rangle+\left\|v^{*}\right\|^{2} \\
& \leq \gamma_{0, n}\|v\|^{2}+\sum_{j=1}^{N} \gamma_{j, n}\left\|S_{j} v\right\|^{2}-2 \gamma_{0, n}\left\langle v, J v^{*}\right\rangle-2 \sum_{j=1}^{N} \gamma_{j, n}\left\langle S_{j} v, J v^{*}\right\rangle+\left\|v^{*}\right\|^{2} \\
& =\gamma_{0, n} \phi\left(v, v^{*}\right)+\sum_{j=1}^{N} \gamma_{j, n} \phi\left(S_{j} v, v^{*}\right) \\
& \leq \gamma_{0, n} \phi\left(v, v^{*}\right)+\sum_{j=1}^{N} \gamma_{j, n} \phi\left(v, v^{*}\right) \\
& =\left(\gamma_{0, n}+\sum_{j=1}^{N} \gamma_{j, n}\right) \phi\left(v, v^{*}\right) \\
& =\phi\left(v, v^{*}\right)
\end{aligned}
$$

Thus, by Lemma 2.7, we obtain $v=T_{n} v=S_{1} v=S_{2} v=\ldots, S_{N} v$. Therefore $F\left(T_{n}\right) \subset$ $\cap_{j=1}^{N} F\left(S_{j}\right), \forall n \in \mathbb{N}$. Hence $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\Upsilon)$.
Next, we show that $\left\{T_{n}\right\}$ satisfies $N S T$ - condition with $\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}$. To show this, we presume that the sequence $\left\{x_{n}\right\}$ is bounded in C such that $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0$. Now based on lemma 2.5 and for all $v^{*} \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$, we get the following estimate:

$$
\begin{aligned}
\phi\left(T_{n} x_{n}, v^{*}\right) & =\phi\left(\gamma_{0, n} x_{n}+\sum_{j=1}^{N} \gamma_{j, n} S_{j} x_{n}, v^{*}\right) \\
& =\left\|\gamma_{0, n} x_{n}+\sum_{j=1}^{N} \gamma_{j, n} S_{j} x_{n}\right\|^{2}-2\left\langle\gamma_{0, n} x_{n}+\sum_{j=1}^{N} \gamma_{j, n} S_{j} x_{n}, J v^{*}\right\rangle+\left\|v^{*}\right\|^{2} \\
& \leq \gamma_{0, n}\left\|x_{n}\right\|^{2}+\sum_{j=1}^{N} \gamma_{j, n}\left\|S_{j} x_{n}\right\|^{2}-2 \gamma_{0, n}\left\langle x_{n}, J v^{*}\right\rangle \\
& -2 \sum_{j=1}^{N} \gamma_{j, n}\left\langle S_{j} x_{n}, J v^{*}\right\rangle+\left\|v^{*}\right\|^{2}-\gamma_{0, n} \gamma_{j, n} g\left(\left\|x_{n}-S_{j} x_{n}\right\|\right) \\
& =\gamma_{0, n} \phi\left(x_{n}, v^{*}\right)+\sum_{j=1}^{N} \gamma_{j, n} \phi\left(S_{j} x_{n}, v^{*}\right)-\gamma_{0, n} \gamma_{j, n} g\left(\left\|x_{n}-S_{j} x_{n}\right\|\right) \\
& \leq \gamma_{0, n} \phi\left(x_{n}, v^{*}\right)+\sum_{j=1}^{N} \gamma_{j, n} \phi\left(x_{n}, v^{*}\right)-\gamma_{0, n} \gamma_{j, n} g\left(\left\|x_{n}-S_{j} x_{n}\right\|\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\gamma_{0, n}+\sum_{j=1}^{N} \gamma_{j, n}\right) \phi\left(x_{n}, v^{*}\right)-\gamma_{0, n} \gamma_{j, n} g\left(\left\|x_{n}-S_{j} x_{n}\right\|\right) \\
& =\phi\left(x_{n}, v^{*}\right)-\gamma_{0, n} \gamma_{j, n} g\left(\left\|x_{n}-S_{j} x_{n}\right\|\right) .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\gamma_{0, n} \gamma_{j, n} g\left(\left\|x_{n}-S_{j} x_{n}\right\|\right) \leq \phi\left(x_{n}, v^{*}\right)-\phi\left(T_{n} x_{n}, v^{*}\right) \tag{3.1}
\end{equation*}
$$

Let $\left\{\left\|x_{n_{k}}-S_{j} x_{n_{k}}\right\|\right\}$ be an arbitrary subsequence of $\left\{\left\|x_{n}-S_{j} x_{n}\right\|\right\}$. From the boundedness of $\left\{x_{n_{k}}\right\}$, there exists a subsequence $\left\{x_{n_{i}^{\prime}}\right\}$ of $\left\{x_{n_{k}}\right\}$ such that

$$
\lim _{i \rightarrow \infty} \phi\left(x_{n_{i}^{\prime}}, v^{*}\right)=\lim _{k \rightarrow \infty} \sup \phi\left(x_{n_{k}}, v^{*}\right)=a .
$$

If follows from the properties (2.3) and (2.4) of ϕ that

$$
\begin{align*}
\phi\left(x_{n_{i}^{\prime}}, v^{*}\right) & =\phi\left(x_{n_{i}^{\prime}}, T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}\right)+\phi\left(T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}, v^{*}\right)+2\left\langle x_{n_{i}^{\prime}}-T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}, J T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}-J v^{*}\right\rangle \\
& \leq \phi\left(T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}, v^{*}\right)+\left\|x_{n_{i}^{\prime}}\right\|\left\|J x_{n_{i}^{\prime}}-J T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}\right\|+\left\|T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}-x_{n_{i}^{\prime}}\right\|\left\|T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}\right\| \tag{3.2}\\
& +2\left\|x_{n_{i}^{\prime}}-T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}\right\|\left\|J T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}-J v^{*}\right\| .
\end{align*}
$$

Following the fact that $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0$ and J is uniformly norm-to-norm continuous on bounded subsets of E, get

$$
\lim _{n \rightarrow \infty}\left\|J x_{n}-J T_{n} x_{n}\right\|=0
$$

Taking the advantage of limit inferior on (3.2), we have

$$
a=\liminf _{i \rightarrow \infty} \phi\left(x_{n_{i}^{\prime}}, v^{*}\right) \leq \liminf _{i \rightarrow \infty} \phi\left(T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}, v^{*}\right) .
$$

Furthermore, since T_{n} is generalized nonexpansive mapping and $\phi\left(T_{n} x_{n}, v^{*}\right) \leq \phi\left(x_{n}, v^{*}\right), \forall n \in$ \mathbb{N}. Hence, we obtain

$$
\limsup _{i \rightarrow \infty} \phi\left(T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}, v^{*}\right) \leq \limsup _{i \rightarrow \infty} \phi\left(x_{n_{i}^{\prime}}, v^{*}\right)=a
$$

Therefore

$$
\lim _{i \rightarrow \infty} \phi\left(x_{n_{i}^{\prime}}, v^{*}\right)=\lim _{i \rightarrow \infty} \phi\left(T_{n_{i}^{\prime}} x_{n_{i}^{\prime}}, v^{*}\right)=a .
$$

Taking the advantage of $\lim _{n \rightarrow \infty} \gamma_{0, n} \gamma_{j, n}>0$ and (4.1), we conclude that

$$
\lim _{n \rightarrow \infty} g\left(\left\|x_{n_{i}^{\prime}}-S_{j} x_{n_{i}^{\prime}}\right\|\right)=0 .
$$

It follows from the properties of the function g that

$$
\lim _{i \rightarrow \infty}\left\|x_{n_{i}^{\prime}}-S_{j} x_{n_{i}^{\prime}}\right\|=0 .
$$

This lead to

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-S_{j} x_{n}\right\|=0, \forall j \in\{1,2, \ldots, N\}
$$

4. Main Results

Theorem 4.1. Let C be a nonempty closed and convex subset of a uniformly smooth and uniformly convex Banach space E such that JC is closed convex. Let $\left\{B_{j}\right\}_{j=1}^{\infty}: C \times C \longrightarrow$ \mathbb{R} be a sequence of bifunctions satisfying assumptions $\left(B_{1}\right)-\left(B_{4}\right)$, let a nonlinear mapping $\left\{A_{j}\right\}_{j=1}^{\infty}: C \longrightarrow E^{*}$ be a sequence of continuous and monotone, and $\left\{\varphi_{j}\right\}_{j=1}^{\infty}: C \longrightarrow \mathbb{R}$ be a sequence of convex and lower semi-continuous function. Let $\left\{M_{j}\right\}_{j=1}^{\infty} \subset E \times E^{*}$ be a sequence of maximal monotone operators satisfying $D\left(M_{j}\right) \subset C$ and $J_{r}=\left(J+r M_{j}\right)^{-1} J$, for all $r>0$. Let $\left\{T_{n}\right\}: C \longrightarrow E$ be a countable family of generalized nonexpansive mappings and Υ be a family of closed generalized nonexpansive mappings from C into E such that $\Gamma:=$ $\left(\cap_{n=1}^{\infty} F\left(T_{n}\right)\right) \cap\left(\cap_{j=1}^{\infty} M_{j}^{-1} 0\right) \cap\left(\cap_{j=1}^{\infty} G M E P\left(B_{j}, A_{j}, \varphi_{j}\right)\right) \neq \emptyset$, where $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\Upsilon) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by the following algorithm:

$$
\left\{\begin{array}{l}
x_{1}=x \in E, C_{0}=Q_{0}=E ; \tag{4.1}\\
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) ; \\
y_{n}=\rho_{n} w_{n}+\left(1-\rho_{n}\right) T_{n} J_{r_{n}} w_{n} ; \\
z_{n}=\sigma_{n} y_{n}+\left(1-\sigma_{n}\right) T_{n} J_{r_{n}} w_{n} ; \\
u_{n} \in C \text { such that } B_{j}\left(u_{n}, y\right)+\left\langle A_{j} u_{n}, y-u_{n}\right\rangle+\varphi_{j}(y)-\varphi_{j}\left(u_{n}\right) \\
+\frac{1}{r_{j, n}}\left\langle y-u_{n}, J u_{n}-J z_{n}\right\rangle \geq 0, \forall y \in C ; \\
C_{n}=\left\{u \in C_{n-1} \cap Q_{n-1}: \phi\left(u_{n}, u\right) \leq \phi\left(w_{n}, u\right)\right\} ; \\
Q_{n}=\left\{u \in C_{n-1} \cap Q_{n-1}:\left\langle x-x_{n}, J x_{n}-J u\right\rangle \geq 0\right\} ; \\
x_{n+1}=R_{C_{n} \cap Q_{n}} x, \forall n \in \mathbb{N},
\end{array}\right.
$$

where $\theta_{n} \subset(0,1)$ and $\left\{\rho_{n}\right\},\left\{\sigma_{n}\right\}$ are sequence in $[0,1]$ such that $\liminf _{n \rightarrow \infty}\left(1-\rho_{n}\right)>0, \liminf _{n \rightarrow \infty}(1-$ $\left.\sigma_{n}\right)>0$ and $\left\{r_{j, n}\right\} \subset[a, \infty)$ for some $a>0, \forall j \geq 1$ Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $R_{\Gamma} x$, where R_{Γ} is the sunny generalized nonexpansive retraction of E onto Γ.

Proof. Let $\Phi_{j}: C \times C \longrightarrow \mathbb{R}$ and $T_{j, r}: E \longrightarrow C$ be two functions defined by

$$
\Phi_{j}(z, y)=B_{j}(z, y)+\left\langle A_{j} z, y-z\right\rangle+\varphi_{j}(y)-\varphi_{j}(z), \forall z, y \in C
$$

and

$$
\begin{aligned}
T_{j, r}(x)=\left\{z \in C: \Phi_{j}(z, y)+\frac{1}{r_{j, n}}\langle y-z, J z-J x\rangle\right. & \geq 0, \forall y \in C\} \\
& \forall j \geq 1, x \in E
\end{aligned}
$$

respectively. Notice that the two functions Φ_{j} and $T_{j, r}$ satisfies Assumptions $(B 1)-(B 4)$ and properties $\left(m_{1}\right)-\left(m_{5}\right)$ (see [24, 26]) respectively.

The proof is consider in several steps as follows:
Step 1 : we show that for each $n \in \mathbb{N}, J C_{n}$ and $J Q_{n}$ are closed and convex. Taking the advantage of the definition of C_{n} and Q_{n} that $J C_{n}$ is closed and $J Q_{n}$ is closed and convex for all $n \in \mathbb{N}$. Now from the definition of C_{n}, we have $\phi\left(u_{n}, u\right) \leq \phi\left(w_{n}, u\right)$ which is equivalent to

$$
\left\|w_{n}\right\|^{2}-\left\|u_{n}\right\|^{2}-2\left\langle w_{n}-u_{n}, J u\right\rangle \geq 0, \forall u \in J C_{n}
$$

implies that $J C_{n}$ is convex. Since J is one-to-one and for each $n \in \mathbb{N}$, it follows that $J\left(C_{n} \cap\right.$ $\left.Q_{n}\right)=J C_{n} \cap J Q_{n}$ is closed and convex. Using Lemma 2.4, it can be observe that $C_{n} \cap Q_{n}$ is a sunny generalized nonexpansive retract of E. It is obvious that $\Gamma \subset C=C_{0} \cap Q_{0}$.

Step 2: we show that $\Gamma \subset C_{n} \cap Q_{n}$ for all $n \in \mathbb{N}$. Suppose that $\Gamma \subset C_{n-1} \cap Q_{n-1}$ for some $n \in \mathbb{N}$. Let $v^{*} \in \Gamma, u_{n}=T_{r_{n}} z_{n}$ and $\mu_{n}=J_{r_{n}} w_{n}$. Since $\left\{T_{n}\right\}$ are generalized nonexpansive mappings for all $n \in \mathbb{N}$, then we obtain the following estimate:

$$
\begin{aligned}
\phi\left(y_{n}, v^{*}\right) & =\phi\left(\rho_{n} w_{n}+\left(1-\rho_{n}\right) T_{n} \mu_{n}, v^{*}\right) \\
& =\left\|\rho_{n} w_{n}+\left(1-\rho_{n}\right) T_{n} \mu_{n}\right\|^{2}-2\left\langle\rho_{n} w_{n}+\left(1-\rho_{n}\right) T_{n} \mu_{n}, J v^{*}\right\rangle+\left\|v^{*}\right\|^{2} \\
& \leq \rho_{n}\left\|w_{n}\right\|^{2}+\left(1-\rho_{n}\right)\left\|T_{n} \mu_{n}\right\|^{2}-2 \rho_{n}\left\langle w_{n}, J v^{*}\right\rangle-2\left(1-\rho_{n}\right)\left\langle T_{n} \mu_{n}, J v^{*}\right\rangle \\
& +\left\|v^{*}\right\|^{2} \\
& =\rho_{n} \phi\left(w_{n}, v^{*}\right)+\left(1-\rho_{n}\right) \phi\left(T_{n} \mu_{n}, v^{*}\right) \\
& \leq \rho_{n} \phi\left(w_{n}, v^{*}\right)+\left(1-\rho_{n}\right) \phi\left(\mu_{n}, v^{*}\right) \\
& =\rho_{n} \phi\left(w_{n}, v^{*}\right)+\left(1-\rho_{n}\right) \phi\left(J_{r_{n}} w_{n}, v^{*}\right) \\
& \leq \rho_{n} \phi\left(w_{n}, v^{*}\right)+\left(1-\rho_{n}\right) \phi\left(w_{n}, v^{*}\right),
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\phi\left(y_{n}, v^{*}\right) \leq \phi\left(w_{n}, v^{*}\right) \tag{4.3}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\phi\left(u_{n}, v^{*}\right) & =\phi\left(T_{r_{n}} z_{n}, v^{*}\right) \\
& \leq \phi\left(z_{n}, v^{*}\right) \\
& =\phi\left(\sigma_{n} y_{n}+\left(1-\sigma_{n}\right) T_{n} \mu_{n}, v^{*}\right) \\
& =\left\|\sigma_{n} y_{n}+\left(1-\sigma_{n}\right) T_{n} \mu_{n}\right\|^{2}-2\left\langle\sigma_{n} y_{n}+\left(1-\sigma_{n}\right) T_{n} \mu_{n}, J v^{*}\right\rangle+\left\|v^{*}\right\|^{2} \\
& \leq \sigma_{n}\left\|y_{n}\right\|^{2}+\left(1-\sigma_{n}\right)\left\|T_{n} \mu_{n}\right\|^{2}-2 \sigma_{n}\left\langle y_{n}, J v^{*}\right\rangle-2\left(1-\sigma_{n}\right)\left\langle T_{n} \mu_{n}, J v^{*}\right\rangle \\
& +\left\|v^{*}\right\|^{2} \\
& =\sigma_{n} \phi\left(y_{n}, v^{*}\right)+\left(1-\sigma_{n}\right) \phi\left(T_{n} \mu_{n}, v^{*}\right) \\
& \leq \sigma_{n} \phi\left(y_{n}, v^{*}\right)+\left(1-\sigma_{n}\right) \phi\left(\mu_{n}, v^{*}\right) \\
& =\sigma_{n} \phi\left(y_{n}, v^{*}\right)+\left(1-\sigma_{n}\right) \phi\left(J_{r_{n}} w_{n}, v^{*}\right) \\
& \leq \sigma_{n} \phi\left(y_{n}, v^{*}\right)+\left(1-\sigma_{n}\right) \phi\left(w_{n}, v^{*}\right) \\
& =\phi\left(w_{n}, v^{*}\right)
\end{aligned}
$$

implies that $v^{*} \in C_{n}, \forall n \in \mathbb{N}$. Therefore $\Gamma \subset C_{n}$. Now since $x_{n}=R_{C_{n-1} \cap Q_{n-1}}$, the it follows from Lemma 2.3(i) that

$$
\begin{equation*}
\left\langle x-x_{n}, J x_{n}-J v^{*}\right\rangle \geq 0, \forall v^{*} \in C_{n-1} \cap Q_{n-1} \tag{4.5}
\end{equation*}
$$

Also, since $\Gamma \in C_{n-1} \cap Q_{n-1}$, we obtain

$$
\left\langle x-x_{n}, J x_{n}-J v^{*}\right\rangle \geq 0, \forall v^{*} \in \Gamma
$$

Moreover, by definition of Q_{n}, we conclude that $\Gamma \subset Q_{n}$. Hence $\Gamma \subset C_{n} \cap Q_{n}, \forall n \in \mathbb{N}$. Implies that $\left\{x_{n}\right\}$ is well defined.

Step 3 : we show that $\left\{x_{n}\right\}$ is Cauchy and $x_{n} \longrightarrow \vartheta$ (as $\left.n \rightarrow \infty\right)$. Now, taking the advantage
of the definition of Q_{n}, we observe that $x_{n}=R_{Q_{n}} x$. Also, based on Lemma 2.3, we get

$$
\begin{align*}
\phi\left(x, x_{n}\right)=\phi\left(x, R_{Q_{n}} x\right) \leq \phi\left(x, v^{*}\right)-\phi\left(R_{Q_{n}} x, v^{*}\right) & \leq \phi\left(x, v^{*}\right), \tag{4.6}\\
\forall v^{*} & \in \Gamma \subset Q_{n} .
\end{align*}
$$

Implies that $\left\{\phi\left(x, x_{n}\right)\right\}$ is bounded and so $\left\{x_{n}\right\},\left\{w_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\},\left\{u_{n}\right\}$ and $\left\{T_{n} x_{n}\right\}$ It follows from the definition of $R_{Q_{n}}$ that

$$
\begin{equation*}
\phi\left(x, x_{n}\right) \leq\left(x, x_{n+1}\right), \forall n \in \mathbb{N} . \tag{4.7}
\end{equation*}
$$

Since $x_{n+1}=R_{C_{n} \cap Q_{n}} x \in C_{n} \cap Q_{n} \subset Q_{n}$ and $x_{n}=R_{Q_{n}} x$. Therefore $\lim _{n \rightarrow \infty}\left\{\phi\left(x, x_{n}\right)\right\}$ exists.
We notice that for each $n \in \mathbb{N}$ and for every positive integer k, using Lemma 2.3 and $x_{n}=R_{Q_{n}} x$, we obtain

$$
\begin{align*}
\phi\left(x_{n}, x_{n+k}\right) & =\phi\left(R_{Q_{n}} x, x_{n+k}\right) \\
& \leq \phi\left(x, x_{n+k}\right)-\phi\left(x, R_{Q_{n}} x\right) \\
& =\phi\left(x, x_{n+k}\right)-\phi\left(x, x_{n}\right) \tag{4.8}
\end{align*}
$$

By taking the limit in (4.8) implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{n+k}\right)=0 . \tag{4.9}
\end{equation*}
$$

This lead to

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{n+1}\right)=0 \tag{4.10}
\end{equation*}
$$

Since E is uniformly convex and smooth, using Lemma 2.1 and (4.10), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0 \tag{4.11}
\end{equation*}
$$

It follows from Lemma 2.6 that for $m, n \in \mathbb{N}$ with $m>n$, there exists a strictly increasing, convex and continuous function $g:[0, \infty) \longrightarrow[0, \infty)$ with $g(0)=0$ such that

$$
g\left(\left\|x_{n}-x_{m}\right\|\right) \leq \phi\left(x_{n}, x_{m}\right) \leq \phi\left(x, x_{m}\right)-\phi\left(x, x_{n}\right)
$$

It can be observe that from the properties of g we conclude that the sequence $\left\{x_{n}\right\}$ is Cauchy. Therefore there exists a point $\vartheta \in C$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=\vartheta \tag{4.12}
\end{equation*}
$$

Step 4 : we show that $\vartheta \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$. It can be observe from the definition of w_{n} that

$$
\left\|w_{n}-x_{n}\right\|=\left\|\theta_{n}\left(x_{n}-x_{n-1}\right)\right\| \leq\left\|x_{n}-x_{n-1}\right\|
$$

By (4.11), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-x_{n}\right\|=0 \tag{4.13}
\end{equation*}
$$

Using (4.12) and (4.13), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} w_{n}=\vartheta \tag{4.14}
\end{equation*}
$$

We notice from (4.11) and (4.13) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-w_{n}\right\|=0 \tag{4.15}
\end{equation*}
$$

Since $\left\{w_{n}\right\}$ is bounded and by (4.15) and Remark 2.2, we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(w_{n}, x_{n+1}\right)=0 . \tag{4.16}
\end{equation*}
$$

By considering the definition of C_{n} and $x_{n+1}=R_{C_{n} \cap Q_{n}} x \in C_{n}$, we have

$$
\begin{equation*}
\phi\left(u_{n}, x_{n+1}\right) \leq \phi\left(w_{n}, x_{n+1}\right), \forall n \in \mathbb{N} . \tag{4.17}
\end{equation*}
$$

Using (4.16) in (4.17), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(u_{n}, x_{n+1}\right)=0 \tag{4.18}
\end{equation*}
$$

Since E is uniformly convex and smooth, using (4.18) and Lemma 2.1, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n+1}\right\|=0 \tag{4.19}
\end{equation*}
$$

Taking into account that

$$
\begin{equation*}
\left\|x_{n}-u_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-u_{n}\right\| \tag{4.20}
\end{equation*}
$$

Putting (4.11) and (4.19) in (4.20), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{4.21}
\end{equation*}
$$

Using (4.12) and (4.21), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n}=\vartheta \tag{4.22}
\end{equation*}
$$

It follows from the definition of C_{n} and $x_{n+1}=R_{C_{n} \cap Q_{n}} x \in C_{n}$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(z_{n}, x_{n+1}\right) \leq \phi\left(w_{n}, x_{n+1}\right), \forall n \in \mathbb{N} \tag{4.23}
\end{equation*}
$$

By putting (4.16) in (4.23), we observe that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(z_{n}, x_{n+1}\right)=0 \tag{4.24}
\end{equation*}
$$

Taking the advantage of uniformly convexity and smoothness of E, (4.24) and Lemma 2.1, we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n+1}\right\|=0 \tag{4.25}
\end{equation*}
$$

From the triangular inequality, we have

$$
\begin{equation*}
\left\|z_{n}-x_{n}\right\| \leq\left\|z_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| . \tag{4.26}
\end{equation*}
$$

Using (4.11) and (4.25) in (4.26), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 \tag{4.27}
\end{equation*}
$$

By (4.12) and (4.27), implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\vartheta \tag{4.28}
\end{equation*}
$$

From (4.21) and (4.27), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-z_{n}\right\|=0 \tag{4.29}
\end{equation*}
$$

Since J is uniformly norm- to- norm continuous on bounded sets, we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J u_{n}-J z_{n}\right\|=0 \tag{4.30}
\end{equation*}
$$

Also, since $x_{n+1}=R_{C_{n} \cap Q_{n}} x \in C_{n}$, it follows that

$$
\begin{equation*}
\phi\left(y_{n}, x_{n+1}\right) \leq \phi\left(w_{n}, x_{n+1}\right), \forall n \in \mathbb{N} . \tag{4.31}
\end{equation*}
$$

By using (4.16) and (4.31), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(y_{n}, x_{n+1}\right)=0 \tag{4.32}
\end{equation*}
$$

Also, by Lemma 2.1, (4.32), and uniformly convexity and smoothness of E, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n+1}\right\|=0 \tag{4.33}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\left\|y_{n}-x_{n}\right\| \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| . \tag{4.34}
\end{equation*}
$$

By using (4.11) and (4.33) in (4.34), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 \tag{4.35}
\end{equation*}
$$

From (4.12) and (4.35), we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{n}=\vartheta \tag{4.36}
\end{equation*}
$$

It follows from (4.13) and (4.35) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-y_{n}\right\|=0 \tag{4.37}
\end{equation*}
$$

Since J is uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J w_{n}-J y_{n}\right\|=0 \tag{4.38}
\end{equation*}
$$

It follows from the inequality (4.2) that

$$
\phi\left(y_{n}, v^{*}\right) \leq \rho_{n} \phi\left(w_{n}, v^{*}\right)+\left(1-\rho_{n}\right) \phi\left(\mu_{n}, v^{*}\right) .
$$

Implies that

$$
\phi\left(y_{n}, v^{*}\right)-\rho_{n} \phi\left(w_{n}, v^{*}\right) \leq\left(1-\rho_{n}\right) \phi\left(\mu_{n}, v^{*}\right) .
$$

So

$$
\begin{equation*}
\frac{1}{\left(1-\rho_{n}\right)}\left(\phi\left(y_{n}, v^{*}\right)-\rho_{n} \phi\left(w_{n}, v^{*}\right)\right) \leq \phi\left(\mu_{n}, v^{*}\right) . \tag{4.39}
\end{equation*}
$$

Now, since $\mu_{n}=J_{r_{n}} w_{n}$ and by Lemma 2.9, we have

$$
\phi\left(w_{n}, \mu_{n}\right)=\phi\left(w_{n}, J_{r_{n}} w_{n}\right) \leq \phi\left(w_{n}, v^{*}\right)-\phi\left(J_{r_{n}} w_{n}, v^{*}\right)=\phi\left(w_{n}, v^{*}\right)-\phi\left(\mu_{n}, v^{*}\right)
$$

Therefore by (4.39), we obtain

$$
\begin{aligned}
\phi\left(w_{n}, \mu_{n}\right) & \leq \phi\left(w_{n}, v^{*}\right)-\phi\left(\mu_{n}, v^{*}\right) \\
& \leq \phi\left(w_{n}, v^{*}\right)-\frac{1}{\left(1-\rho_{n}\right)}\left(\phi\left(y_{n}, v^{*}\right)-\rho_{n} \phi\left(w_{n}, v^{*}\right)\right) \\
& =\frac{1}{\left(1-\rho_{n}\right)}\left(\phi\left(w_{n}, v^{*}\right)-\phi\left(y_{n}, v^{*}\right)\right) \\
& =\frac{1}{\left(1-\rho_{n}\right)}\left(\left\|w_{n}\right\|^{2}-\left\|y_{n}\right\|^{2}-2\left\langle v^{*}, J w_{n}-J y_{n}\right\rangle\right) \\
& \leq \frac{1}{\left(1-\rho_{n}\right)}\left[\left|\left\|w_{n}\right\|-\left\|y_{n}\right\|\right|\left(\left\|w_{n}\right\|+\left\|y_{n}\right\|\right)+2\left\|v^{*}\right\|\left\|J w_{n}-J y_{n}\right\|\right] \\
& \leq \frac{1}{\left(1-\rho_{n}\right)}\left[\left\|w_{n}-y_{n}\right\|\left(\left\|w_{n}\right\|+\left\|y_{n}\right\|\right)+2\left\|v^{*}\right\|\left\|J w_{n}-J y_{n}\right\|\right]
\end{aligned}
$$

It follows from (4.37) and (4.38) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(w_{n}, \mu_{n}\right)=0 \tag{4.40}
\end{equation*}
$$

From Lemma 2.1, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-\mu_{n}\right\|=0 \tag{4.41}
\end{equation*}
$$

By the uniformly convexity of J on bounded sets and (4.41), we get

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left\|J w_{n}-J \mu_{n}\right\|=0 \tag{4.42}\\
\left\|\mu_{n}-x_{n+1}\right\| \leq\left\|\mu_{n}-w_{n}\right\|+\left\|w_{n}-x_{n+1}\right\|
\end{gather*}
$$

By (4.15) and (4.41), we arrive at

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\mu_{n}-x_{n+1}\right\|=0 \tag{4.43}
\end{equation*}
$$

Taking the advantage (4.14) and (4.41), implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu_{n}=\vartheta \tag{4.44}
\end{equation*}
$$

From (4.1), we observe that

$$
\begin{aligned}
\left\|x_{n+1}-z_{n}\right\| & =\| x_{n+1}-\left(\sigma_{n} y_{n}+\left(1-\sigma_{n}\right) T_{n} \mu_{n} \|\right. \\
& =\left\|x_{n+1}-\sigma_{n} y_{n}-\left(1-\sigma_{n}\right) T_{n} \mu_{n}\right\| \\
& =\left\|\left(1-\sigma_{n}\right)\left(x_{n+1}-T_{n} \mu_{n}\right)-\sigma_{n}\left(y_{n}-x_{n+1}\right)\right\| \\
& \geq\left(1-\sigma_{n}\right)\left\|x_{n+1}-T_{n} \mu_{n}\right\|-\sigma_{n}\left\|y_{n}-x_{n+1}\right\| .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\left\|x_{n+1}-T_{n} \mu_{n}\right\| \leq \frac{1}{\left(1-\sigma_{n}\right)}\left(\left\|x_{n+1}-z_{n}\right\|+\sigma_{n}\left\|y_{n}-x_{n+1}\right\|\right) . \tag{4.45}
\end{equation*}
$$

Since $\liminf _{n \rightarrow \infty}\left(1-\sigma_{n}\right)>0$, Using (4.25) and (4.33) in (4.45), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-T_{n} \mu_{n}\right\|=0 \tag{4.46}
\end{equation*}
$$

Taking into account that

$$
\begin{equation*}
\left\|\mu_{n}-T_{n} \mu_{n}\right\| \leq\left\|\mu_{n}-x_{n+1}\right\|+\left\|x_{n+1}-T_{n} \mu_{n}\right\| \tag{4.47}
\end{equation*}
$$

Putting (4.43) and (4.46) in (4.47), we get

$$
\lim _{n \rightarrow \infty}\left\|\mu_{n}-T_{n} \mu_{n}\right\|=0
$$

Therefore, since $\left\{T_{n}\right\}$ satisfies $N S T$ - condition, we conclude that

$$
\lim _{n \rightarrow \infty}\left\|\mu_{n}-T \mu_{n}\right\|=0, \forall T \in \Upsilon .
$$

Also, since T is closed and $\mu_{n} \longrightarrow \vartheta$, we obtain that ϑ is a fixed point of T, implies that $\vartheta \in F\left(T_{n}\right), \forall n \geq 1$. Therefore

$$
\vartheta \in \cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\Upsilon) .
$$

Step 5 : we show that $\vartheta \in \cap_{j=1}^{\infty} M_{j}^{-1} 0$. Now, since $\left\{w_{n}\right\}$ is bounded, there exists a subsequence $\left\{w_{n_{k}}\right\}$ of $\left\{w_{n}\right\}$ such that $w_{n_{k}} \longrightarrow \vartheta$. Also since $\lim _{n \rightarrow \infty}\left\|w_{n}-\mu_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|w_{n}-y_{n}\right\|=0$, then we conclude that $\mu_{n_{k}} \longrightarrow \vartheta$. and $y_{n_{k}} \longrightarrow \vartheta$. respectively. Taking the advantage of $r_{j, n} \geq 0, \mu_{n}=J_{r_{n}} w_{n}$, (4.42) and Lemma 2.8, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{r_{j, n}}\left\|J w_{n}-J \mu_{n}\right\|=0, \forall j \geq 1
$$

Therefore

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|M_{j r_{j, n}} w_{n}\right\| & =\lim _{n \rightarrow \infty} \frac{1}{r_{j, n}}\left\|J w_{n}-J J_{r_{n}} w_{n}\right\|, \forall j \geq 1 \\
& =\lim _{n \rightarrow \infty} \frac{1}{r_{j, n}}\left\|J w_{n}-J \mu_{n}\right\| \\
& =0
\end{aligned}
$$

From the fact that $M_{j}, \forall j \geq 1$ are monotone and by Lemma 2.9(ii), we have

$$
\left\langle\varpi-\mu_{n}, \varpi^{*}-M_{j r_{j, n}} w_{n}\right\rangle \geq 0, \forall n \in \mathbb{N}
$$

Implies that

$$
\left\langle\varpi-\mu_{n_{k}}, \varpi^{*}-M_{j r_{j, n_{k}}} w_{n_{k}}\right\rangle=\left\langle\varpi-\vartheta, \varpi^{*}\right\rangle \geq 0 .
$$

Therefore, it follows from the maximality of M_{j} that $\vartheta \in M_{j}^{-1} 0, \forall j \geq 1$. Hence

$$
\vartheta \in \cap_{j=1}^{\infty} M_{j}^{-1} 0 .
$$

Step 6 : we show that $\vartheta \in \cap_{j=1}^{\infty} G M E P\left(B_{j}, A_{j}, \varphi_{j}\right)$. Now for each $j \geq 1$ and $n \geq 1$, from equation $u_{n}=T_{r_{j, n}} z_{n}$, using (4.30) with $\left\{r_{j, n}\right\} \subset[a, \infty)$ for some $a>0$, we obtain

$$
\lim _{n \rightarrow \infty} \frac{\left\|J u_{n}-J z_{n}\right\|}{r_{j, n}}=0, \forall j \geq 1 .
$$

By using $u_{n}=T_{r_{j, n}} z_{n}$, we get

$$
\Phi_{j}\left(u_{n}, y\right)+\frac{1}{r_{j, n}}\left\langle y-u_{n}, J u_{n}-J z_{n}\right\rangle \geq 0, \forall y \in C
$$

where

$$
\Phi_{j}\left(u_{n}, y\right)=B_{j}\left(u_{n}, y\right)+\left\langle A_{j} u_{n}, y-u_{n}\right\rangle+\varphi_{j}(y)-\varphi_{j}\left(u_{n}\right) .
$$

By applying the assumption B_{2}, we have for each $n \geq 1$ and $j \geq 1$ that

$$
\frac{1}{r_{j, n}}\left\langle y-u_{n}, J u_{n}-J z_{n}\right\rangle \geq-\Phi_{j}\left(u_{n}, y\right) \geq \Phi_{j}\left(y, u_{n}\right), \forall y \in C .
$$

Therefore, we obtain

$$
\left\langle y-u_{n}, J u_{n}-J z_{n}\right\rangle \geq r_{j, n} \Phi_{j}\left(y, u_{n}\right), \forall y \in C .
$$

This implies that

$$
\left\|y-u_{n}\right\|\left\|J u_{n}-J z_{n}\right\| \geq r_{j, n} \Phi_{j}\left(y, u_{n}\right), \forall y \in C
$$

From $\left(B_{4}\right)$, we conclude that

$$
\Phi_{j}(y, \vartheta) \leq 0, \quad \forall y \in C, j \geq 1
$$

Consider $y_{\lambda}=\lambda y+(1-\lambda) \vartheta, \forall \lambda \in(0,1]$. Since $y \in C$ and $\vartheta \in C$, then we have $y_{\lambda} \in C$ and $\Phi_{j}\left(y_{\lambda}, \vartheta\right) \leq 0$. Now $\forall y_{\lambda} \in C, j \geq 1$ and by the assumptions $\left(B_{1}\right)-\left(B_{4}\right)$, we obtain

$$
\begin{aligned}
0 & =\Phi_{j}\left(y_{\lambda}, y_{\lambda}\right) \\
& \leq \lambda \Phi_{j}\left(y_{\lambda}, y\right)+(1-\lambda) \Phi_{j}\left(y_{\lambda}, \vartheta\right) \\
& \leq \lambda \Phi_{j}\left(y_{\lambda}, y\right) .
\end{aligned}
$$

Dividing by λ, implies that

$$
\Phi_{j}\left(y_{\lambda}, y\right) \geq 0, \forall y \in C
$$

Letting $\lambda \longrightarrow 0$ and by $\left(B_{3}\right)$, we conclude that

$$
\Phi_{j}(\vartheta, y) \geq 0, \forall y \in C
$$

This shows that $\vartheta \in \operatorname{GMEP}\left(B_{j}, A_{j}, \varphi_{j}\right), \forall j \geq 1$. Therefore $\vartheta \in \cap_{j=1}^{\infty} G M E P\left(B_{j}, A_{j}, \varphi_{j}\right), \forall j \geq$ 1. Hence

$$
\vartheta \in\left(\cap_{n=1}^{\infty} F\left(T_{n}\right)\right) \cap\left(\cap_{j=1}^{\infty} M_{j}^{-1} 0\right) \cap\left(\cap_{j=1}^{\infty} \operatorname{GMEP}\left(B_{j}, A_{j}, \varphi_{j}\right)\right)
$$

Step 7 : we show that $\vartheta=R_{\Gamma} x$. from Lemma 2.3(ii), we obtain

$$
\phi\left(x, R_{\Gamma} x\right) \leq \phi\left(x, R_{\Gamma} x\right)+\phi\left(R_{\Gamma} x, \vartheta\right) \leq \phi(x, \vartheta) .
$$

Also, by Lemma 2.3(ii), $x_{n+1}=R_{C_{n} \cap Q_{n}} x$ and $\vartheta \in \Gamma \subset C_{n} \cap Q_{n}$, we obtain the following estimation:

$$
\phi\left(x, x_{n+1}\right) \leq \phi\left(x, x_{n+1}\right)+\phi\left(x_{n+1}, R_{\Gamma} x\right) \leq \phi\left(x, R_{\Gamma} x\right) .
$$

Therefore $\phi(x, \vartheta) \leq \phi\left(x, R_{\Gamma} x\right)$, since $x_{n} \longrightarrow \vartheta$. Hence $\phi(x, \vartheta)=\phi\left(x, R_{\Gamma} x\right)$. Now, by the uniqueness of $R_{\Gamma} x$, we conclude that $\vartheta=R_{\Gamma} x$. This completes the proof.

Corollary 4.2. Let C be a nonempty closed and convex subset of a uniformly smooth and uniformly convex Banach space E such that JC is closed convex. Let $\left\{B_{j}\right\}_{j=1}^{\infty}: C \times C \longrightarrow$ \mathbb{R} be a sequence of bifunctions satisfying assumptions $\left(B_{1}\right)-\left(B_{4}\right)$, let a nonlinear mapping $\left\{A_{j}\right\}_{j=1}^{\infty}: C \longrightarrow E^{*}$ be a sequence of continuous and monotone, and $\left\{\varphi_{j}\right\}_{j=1}^{\infty}: C \longrightarrow \mathbb{R}$ be a sequence of convex and lower semi-continuous function. Let $\left\{M_{j}\right\}_{j=1}^{\infty} \subset E \times E^{*}$ be a sequence of maximal monotone operators satisfying $D\left(M_{j}\right) \subset C$ and $J_{r}=\left(J+r M_{j}\right)^{-1} J$, for all $r>0$. Let $T: C \longrightarrow E$ be a generalized nonexpansive mappings such that $\Gamma:=$
$F(T) \cap\left(\cap_{j=1}^{\infty} M_{j}^{-1} 0\right) \cap\left(\cap_{j=1}^{\infty} \operatorname{GMEP}\left(B_{j}, A_{j}, \varphi_{j}\right)\right) \neq \emptyset$, Let $\left\{x_{n}\right\}$ be a sequence generated by the following algorithm:

$$
\left\{\begin{array}{l}
x_{1}=x \in E, C_{0}=Q_{0}=E ; \\
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) ; \\
y_{n}=\rho_{n} w_{n}+\left(1-\rho_{n}\right) T J_{r_{n}} w_{n} ; \\
z_{n}=\sigma_{n} y_{n}+\left(1-\sigma_{n}\right) T J_{r_{n}} w_{n} ; \\
u_{n} \in C \text { such that } B_{j}\left(u_{n}, y\right)+\left\langle A_{j} u_{n}, y-u_{n}\right\rangle+\varphi_{j}(y)-\varphi_{j}\left(u_{n}\right) \\
+\frac{1}{r_{j, n}}\left\langle y-u_{n}, J u_{n}-J z_{n}\right\rangle \geq 0, \forall y \in C ; \\
C_{n}=\left\{u \in C_{n-1} \cap Q_{n-1}: \phi\left(u_{n}, u\right) \leq \phi\left(w_{n}, u\right)\right\} ; \\
Q_{n}=\left\{u \in C_{n-1} \cap Q_{n-1}:\left\langle x-x_{n}, J x_{n}-J u\right\rangle \geq 0\right\} ; \\
x_{n+1}=R_{C_{n} \cap Q_{n}} x, \forall n \in \mathbb{N},
\end{array}\right.
$$

where $\theta_{n} \subset(0,1)$ and $\left\{\rho_{n}\right\},\left\{\sigma_{n}\right\}$ are sequence in $[0,1]$ such that $\liminf _{n \rightarrow \infty}\left(1-\rho_{n}\right)>0, \liminf _{n \rightarrow \infty}(1-$ $\left.\sigma_{n}\right)>0$ and $\left\{r_{j, n}\right\} \subset[a, \infty)$ for some $a>0, \forall j \geq 1$ Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $R_{\Gamma} x$.

Proof. For all $n \in \mathbb{N}$, setting $T_{n}=T$ in Theorem 4.1, we obtain the desired result.
Corollary 4.3. Suppose that $S_{1}, S_{2}, \ldots, S_{N}: C \longrightarrow E$ are generalized nonexpansive mappings. Let $\left\{B_{j}\right\}_{j=1}^{\infty}: C \times C \longrightarrow \mathbb{R}$ be a sequence of bifunctions satisfying assumptions $\left(B_{1}\right)-\left(B_{4}\right)$, let a nonlinear mapping $\left\{A_{j}\right\}_{j=1}^{\infty}: C \longrightarrow E^{*}$ be a sequence of continuous and monotone, and $\left\{\varphi_{j}\right\}_{j=1}^{\infty}: C \longrightarrow \mathbb{R}$ be a sequence of convex and lower semi-continuous function. Let $\left\{M_{j}\right\}_{j=1}^{\infty} \subset E \times E^{*}$ be a sequence of maximal monotone operators satisfying $D\left(M_{j}\right) \subset C$ and $J_{r}=\left(J+r M_{j}\right)^{-1} J$, for all $r>0$ such that $\Gamma:=\left(\cap_{j=1}^{N} F\left(S_{j}\right)\right) \cap\left(\cap_{j=1}^{\infty} M_{j}^{-1} 0\right) \cap\left(\cap_{j=1}^{\infty}\right.$ $\left.\operatorname{GMEP}\left(B_{j}, A_{j}, \varphi_{j}\right)\right) \neq \emptyset$, Let $\left\{x_{n}\right\}$ be a sequence generated by the following algorithm:

$$
\left\{\begin{array}{l}
x_{1}=x \in E, C_{0}=Q_{0}=E ; \\
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) ; \\
y_{n}=\rho_{n} w_{n}+\left(1-\rho_{n}\right)\left(\gamma_{0, n} w_{n}+\sum_{j=1}^{N} \gamma_{j, n} S_{j} J_{r_{n}} w_{n}\right) ; \\
z_{n}=\sigma_{n} y_{n}+\left(1-\sigma_{n}\right)\left(\gamma_{0, n} w_{n}+\sum_{j=1}^{N} \gamma_{j, n} S_{j} J_{r_{n}} w_{n}\right) ; \\
u_{n} \in C \text { such that } B_{j}\left(u_{n}, y\right)+\left\langle A_{j} u_{n}, y-u_{n}\right\rangle+\varphi_{j}(y)-\varphi_{j}\left(u_{n}\right) \\
+\frac{1}{r_{j, n}}\left\langle y-u_{n}, J u_{n}-J z_{n}\right\rangle \geq 0, \forall y \in C ; \\
C_{n}=\left\{u \in C_{n-1} \cap Q_{n-1}: \phi\left(u_{n}, u\right) \leq \phi\left(w_{n}, u\right)\right\} ; \\
Q_{n}=\left\{u \in C_{n-1} \cap Q_{n-1}:\left\langle x-x_{n}, J x_{n}-J u\right\rangle \geq 0\right\} ; \\
x_{n+1}=R_{C_{n} \cap Q_{n}} x, \forall n \in \mathbb{N},
\end{array}\right.
$$

where $\theta_{n} \subset(0,1),\left\{\rho_{n}\right\},\left\{\sigma_{n}\right\}$ and $\left\{\gamma_{j, n}\right\}$ are sequence in $[0,1],\left\{r_{j, n}\right\} \subset[a, \infty)$ for some $a>0, \forall j \geq 1$ and the following condition holds:
(a) $\liminf _{n \rightarrow \infty}\left(1-\rho_{n}\right)>0$
(b) $\liminf _{n \rightarrow \infty}\left(1-\sigma_{n}\right)>0$
(c) $\sum_{j=0}^{N} \gamma_{j, n}=1$
(d) $\liminf _{n \rightarrow \infty} \gamma_{0, n} \gamma_{j, n}>0$, for all $j \in\{1,2,, \ldots, N\}$.

Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $R_{\Gamma} x$.

5. Application

What we present in this section are some of the application of theorem 4.1:
5.1. Countable family of generalized nonexpansive mappings, maximal monotone operator and system of equilibrium problems. Consider the sequence $\left\{x_{n}\right\}$ defined in theorem 4.1 converges strongly to $R_{\Gamma} x$ by setting $A \equiv 0, \varphi \equiv 0$ in theorem 4.1, where $\Gamma:=$ $\left(\cap_{n=1}^{\infty} F\left(T_{n}\right)\right) \cap\left(\cap_{j=1}^{\infty} M_{j}^{-1} 0\right) \cap\left(\cap_{j=1}^{\infty} G M E P\left(B_{j}\right)\right) \neq \emptyset$ and $E P\left(B_{j}\right)$ is the set of solutions of the equilibrium problem for B.
5.2. Countable family of generalized nonexpansive mappings, maximal monotone operator and system of convex optimization problems. Consider the sequence $\left\{x_{n}\right\}$ defined in theorem 4.1 converges strongly to $R_{\Gamma} x$ by setting $B \equiv 0, A \equiv 0$ in theorem 4.1, where $\Gamma:=\left(\cap_{n=1}^{\infty} F\left(T_{n}\right)\right) \cap\left(\cap_{j=1}^{\infty} M_{j}^{-1} 0\right) \cap\left(\cap_{j=1}^{\infty} \operatorname{GMEP}\left(\varphi_{j}\right)\right) \neq \emptyset$ and $C M P\left(\varphi_{j}\right)$ is the set of solutions of the convex optimization problem for φ.
5.3. Countable family of generalized nonexpansive mappings, maximal monotone operator and system of variational inequalities problems. Consider the sequence $\left\{x_{n}\right\}$ defined in theorem 4.1, converges strongly to $R_{\Gamma} x$ by setting $B \equiv 0, \varphi \equiv 0$ in theorem 4.1, where $\Gamma:=\left(\cap_{n=1}^{\infty} F\left(T_{n}\right)\right) \cap\left(\cap_{j=1}^{\infty} M_{j}^{-1} 0\right) \cap\left(\cap_{j=1}^{\infty} V I P\left(C, A_{j}\right)\right) \neq \emptyset$ and $V I P\left(C, A_{j}\right)$ is the set of solutions of the variational inequality problem for A over C.

Application in Hilbert space

We also present the application of theorem 4.1 in Hilbert space as follows:
Theorem 5.1. Let C be a nonempty closed and convex subset of a Hilbert space H such that JC is closed convex. Let $\left\{B_{j}\right\}_{j=1}^{\infty}: C \times C \longrightarrow \mathbb{R}$ be a sequence of bifunctions satisfying assumptions $\left(B_{1}\right)-\left(B_{4}\right)$, let a nonlinear mapping $\left\{A_{j}\right\}_{j=1}^{\infty}: C \longrightarrow E^{*}$ be a sequence of continuous and monotone, and $\left\{\varphi_{j}\right\}_{j=1}^{\infty}: C \longrightarrow \mathbb{R}$ be a sequence of convex and lower semi-continuous function. Let $\left\{M_{j}\right\}_{j=1}^{\infty} \subset E \times E^{*}$ be a sequence of maximal monotone operators satisfying $D\left(M_{j}\right) \subset C$ and $J_{r}=\left(J+r M_{j}\right)^{-1} J$, for all $r>0$. Let $\left\{T_{n}\right\}, \Upsilon: C \longrightarrow H$ be two family of generalized nonexpansive mappings such that $\Gamma:=\left(\cap_{n=1}^{\infty} F\left(T_{n}\right)\right) \cap\left(\cap_{j=1}^{\infty} M_{j}^{-1} 0\right) \cap\left(\cap_{j=1}^{\infty} G M E P\left(B_{j}, A_{j}, \varphi_{j}\right)\right) \neq \emptyset$, where $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\Upsilon) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by the following algorithm:

$$
\left\{\begin{array}{l}
x_{1}=x \in E, C_{0}=Q_{0}=C \\
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) ; \\
y_{n}=\rho_{n} w_{n}+\left(1-\rho_{n}\right) T_{n} J_{r_{n}} w_{n} ; \\
z_{n}=\sigma_{n} y_{n}+\left(1-\sigma_{n}\right) T_{n} J_{r_{n}} w_{n} ; \\
u_{n} \in C \text { such that } B_{j}\left(u_{n}, y\right)+\left\langle A_{j} u_{n}, y-u_{n}\right\rangle+\varphi_{j}(y)-\varphi_{j}\left(u_{n}\right) \\
+\frac{1}{r_{j, n}}\left\langle y-u_{n}, J u_{n}-J z_{n}\right\rangle \geq 0, \forall y \in C \\
C_{n}=\left\{u \in C_{n-1} \cap Q_{n-1}:\left\|u_{n}-u\right\| \leq\left\|w_{n}-u\right\| ;\right. \\
Q_{n}=\left\{u \in C_{n-1} \cap Q_{n-1}:\left\langle x-x_{n}, x_{n}-u\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x, \forall n \in \mathbb{N},
\end{array}\right.
$$

where $\theta_{n} \subset(0,1)$ and $\left\{\rho_{n}\right\},\left\{\sigma_{n}\right\}$ are sequence in $[0,1]$ such that $\liminf _{n \rightarrow \infty}\left(1-\rho_{n}\right)>0, \liminf _{n \rightarrow \infty}(1-$ $\left.\sigma_{n}\right)>0$ and $\left\{r_{j, n}\right\} \subset[a, \infty)$ for some $a>0, \forall j \geq 1$ Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $P_{\Gamma} x$, where P_{Γ} is the metric projection from C onto Γ.

Proof. From Theorem 4.1, we obtain the desired result by considering a nonexpansive mapping $T: C \longrightarrow H$ with a fixed point as generalized nonexpansive mapping. where J is the identity mapping and $\phi(x, y)=\|x-y\|^{2}$ for all $x, y \in H$.

References

[1] M. Alansari, R. Ali and M. Farid, Strong convergence of an inertial iterative algorithm for variational inequality problem, generalized equilibrium problem and fixed point problem in a Banach space, J. Ineq. Appl. 2020 (2020) 42.
[2] S. Alizadeh and F. Moradlou, A monotone hybrid algorithm for a family of generalized nonexpansive mappings in Banach spaces, Int. J. Nonlinear Anal. Appl. 13 (2022) 2347-2359.
[3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994) 123-145.
[4] F.E. Browder, Existence and perturbation theorem for nonlinear maximal monotone operators in Banach spaces, Bull. Amer. Math. Soc. 73 (1967) 322-327.
[5] S.S. Chang, J.K. Kim and X.R. Wang Modified block iterative algorithm for solving convex feasibility problem in Banach spaces, J. Inequal. Appl. 20102010869684.
[6] C.E. Chidume, P. Kumam and A. Adamu, A hybrid Inertial algorithm for approximating solution of convex feasibility problems with applications, Fixed Point Theory Appl. 12 (2020) 17.
[7] P.L. Combette and S. A. Hirstoage, Equilibrium programming in Hilbert space, Nonlinear Convex Anal. 6 (2005) 117-136.
[8] R.I. Bot, E.R. Csetnek and C. Hendrich, Inertial Douglas-Racheord splitting for monotone inclusion problems, Appt. Math. Comput 256 (2015) 472-487.
[9] R.I. Bot and E.R. Csetnek, An inertial forward- backward - forward primal-dual splitting algorithm for solving monotone inclusions problems, Numer. Algorithms. 71 (2016) 519-540.
[10] K. Goebel and S. Reich Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
[11] T. Ibaraka and W. Takahashi, A new projection and convergence theorem for the projections in Banach spaces, J. Approx. Theory, 149 (2007), 1-14.
[12] T. Ibaraka and W. Takahashi, Block iterative methods for finite family of generalized nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim 29 (2008) 362-375.
[13] G.J. Minty, Monotone networks, Proc. R. Soc. Lond. 257 (1960) 194-212.
[14] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002) 938-945.
[15] C. Klin, S. Suantai and W. Takahashi, Strong convergence of generalized projection algorithms for nonlinear operators, Abstr. Appl. Anal. 2009 (2009) 649831.
[16] C. Klin-eam, S. Suantai and W. Takahashi, Strong convergence theorems by monotone hybrid method for a family of generalized nonexpansive mappings in Banach spaces, Taiwan. J. Math. 16 (2012) 1971-1989.
[17] F. Kohsaka and W. Takahashi, Generalized nonexpansive retractions and a proximal-type algorithm in a Banach spaces, J. Nonlinear Convex Anal. 8 (2007) 179-209.
[18] Lawal Umar, Yusuf Ibrahim and Tafida M. Kabir Hybrid algorithm for solving fixed point problem and generalized mixed equilibrium problem in Banach spaces, Uzbek Math. J. 66 (2022) 101-118.
[19] Lawal Umar, Tafida M. Kabir and Ibrahim U. Haruna, An inertial algorithm of generalized f - projection for maximal monotone operators and generalized mixed equilibrium problem in Banach spaces, Afr. Sci. Rep. 1 (2022) 32-47.
[20] C. Martinez-Yanes and H.K. Xu, Strong convergence of CQ method for fixed point iteration processes, Nonlinear Anal. TMA. 64 (2006), 2400-2411.
[21] K. Nakajo and K. Shimoji, Strong convergence theorem to common fixed points of families of nonexpansive mappings in Banach spaces, J. Nonlinear Convex Anal. 8 (2007), 11-34.
[22] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Phys 4 (1964) 1-7.
[23] X. Qin and Y. Su Strong convergence of monotone hybrid method for fixed point iteration processes, J. Syst. Sci. Complex. 21 (2008), 474-482.
[24] S. Saewan and P. Kumam, Convergence theorems for uniformly quasi- ϕ-asymptotically nonexpansive mappings, generalized equilibrium problems and variational inequalities in Banach space, Fixed Point Theory Appl. 96 (2011) 18.
[25] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and semigroups, J. Math. Anal. Appl. 279 (2003) 372-379.
[26] H. Zegeye, A hybrid iterative scheme for equilibrium problems, variational inequality problems and common fixed point problems in Banach spaces, Nonlinear Anal. TMA. 72 (2010) 2136-2146.

[^0]: ${ }^{1}$ Department of Mathematics, Federal College of Education, Zaria Kaduna, Nigeria
 ${ }^{2}$ Department of Mathematics, Saadatu Rimi University of Education, Kumbotso Kano, NigeRIA
 *Corresponding author
 E-mail addresses: lawalu4@gmail.com, danustazz@gmail.com, mktafida.555@gmail.com.
 Key words and phrases. monotone hybrid inertial algorithm; generalized nonexpansive mappings; maximal monotone operators; generalized mixed equilibrium problems.

