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THE HETEROGENEOUS MEAN-FIELD SLEIR PROPAGATION
DYNAMICS MODEL ON THE COMPLEX NETWORK

HUAN GAO1, JIN-SHAN ZHANG1,∗ AND SIYAN PAN2

Abstract. Since the outbreak of the novel coronavirus in early 2020, the epidemic has been
affecting our lives. Firstly, a heterogeneous mean-field SLEIR model based on complex net-
works was established to find disease-free equilibrium points and endemic equilibrium points,
and the prediction results in the small-world networks, BA scale-free networks, and ER random
networks were compared and analyzed. It was found that the prediction effect of the BA scale-
free network using the heterogeneous mean-field model was poor. And most of the prediction
results of a single degree are better than the heterogeneous mean-field, while the effect of small-
world network and ER random network is the opposite. Through the experiment, it is found
that the main reason for this is that the degree distribution of small-world network, ER random
network and BA scale-free network is different. Therefore, when conducting predictions using
heterogeneous mean-field method, it is preferable to choose the small-world networks as they
generally exhibit superior performance compared to other network types.

1. Introduction

The novel Coronavirus pneumonia (COV ID − 19), first discovered in Wuhan, China, in
January 2020, has now spread throughout the world and will show a tendency of multiple
outbreaks in all countries. As time changes, the novel coronavirus is also constantly mutating,
leading to increasing difficulties in prevention and control. A variety of forecasting methods
are used to predict the epidemic and make useful suggestions to contain the spread of the
epidemic. At present, the representative models of infectious disease models include the SIR
Model, SEIR model, SIRS model, and other classical infectious disease models. There are
also many expansion models based on these classical models. Many people [1–4]predict the
time inflection point of the epidemic through an improved SIR model or SEIR model and
optimization algorithm, providing good guidance for epidemic prevention and control. By
adjusting the parameters of the SEIR model [5], a new model was constructed and a visual
analysis system was established. Using nonlinear regression prediction [6] to compare and
analyze the development of the epidemic in multiple provinces. The ARIMA(0, 1, 0) model [7]
has a high degree of fit but can only make short-term predictions. Calculate the Spearman
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correlation coefficient [8] between the Baidu index of network-related words and the number
of newly confirmed cases using the ARIMA model, ARDL model, and regression model, and
demonstrate the consistency of the changes between the two through the Kendall covariance
coefficient. The SLEIR model [9,10] takes into account populations that are prone to infection
and have low risk of infection, and effectively simulates the epidemic data in this region of India
through this model.

The SIR model [11] includes scale-free and stochastic network numerical simulation of novel
coronavirus transmission, a dynamic model of SIR model [12] with immune effect, a spatial
multi-population model, a network-based the SIS epidemic model [13] with saturation treatment
function, an alternative social network model, and growth social network model with local
structure [14], Epidemic propagation dynamics models studied through various applications on
complex networks, such as SEIR models in heterogeneous mean-fields [15].

Most of the above research content is a prediction based on the mathematical model, and
most of the time, it fails to take into account the social network relationships and interpersonal
relationships in various regions at present. It is possible to combine the interpersonal connec-
tion with the infectious disease model, and consider the influence of different contacts on the
infectious disease. The infectious disease model based on the complex network will certainly
play a large role in preventing the spread of infectious diseases. The paper mainly combines
the SLEIR model and the heterogeneous mean-field method to modify model, and simulates
the model using the RungeKutta method.

2. Mean-Field SLEIR Model

In the event of an infectious disease, it can be thought of a closed mixed population of N
individuals as a complex network, in which individuals can be represented by network nodes
and relationships between people can be represented by edges. There is a graph G = (V,E),
where V and E represent vertices and edges. Degree is a key property of a node, used to
represent the number of edges that the node is connected to other nodes.

Θ =
∑
k

kp(k)(Ik + Ek)

〈k〉
.

Θ is the proportion of people in the network who are infectious, including those who are
dormant and those who are infected. Where k represents the degree of a node, Sk, Lk, Ek,
Ik, Rk respectively represent the proportion of susceptible nodes with degree k, the proportion
of low-risk infected nodes with degree k, the proportion of latent nodes with degree k, the
proportion of infected nodes with degree k, and the proportion of recovery nodes with degree
k, i.e., Sk(t) + Lk(t) + Ek(t) + Ik(t) + Rk(t) = 1. p(k) = Nk

N
is the proportion of the number

of nodes with degree k to the total population. 〈k〉 represents the average degree of the entire
network, 〈k〉 =

∑
k kp(k). Heterogeneous networks are those with nodes of type greater than 1

or edges of type greater than 1. Now it’s presented the basic assumptions for this model:

• Network structure will not change, that is, the complex network is a static network;
• A node represents a person. If two people meet, then the connection of the corresponding
node of two people means that there is an edge between the two nodes. The number
of people a person meets every day is the number of edges k of a node, also known as
the degree of node; S(t), L(t), E(t), I(t), R(t) said five people in t time respectively
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accounted for the proportion of the total population, namely S(t) +L(t) +E(t) + I(t) +

R(t) = 1.
• Sk(t), Lk(t), Ek(t), Ik(t), Rk(t) respectively represents that at time t, the proportion
of susceptible nodes with degree k in nodes with degree k, the proportion of low-risk
infected nodes with degree k in nodes with degree k, the proportion of latent nodes
with degree k in nodes with degree k, the proportion of infected nodes with degree k
in nodes with degree k, the proportion of recovering nodes with degree k in nodes with
degree k, namely

Sk(t) + Lk(t) + Ek(t) + Ik(t) +Rk(t) = 1,∑n
k=1 p(k)(Sk(t) + Lk(t) + Ek(t) + Ik(t) +Rk(t)) = 1,

S(t) =
∑kmax

k=kmin
p(k)Sk(t),

L(t) =
∑kmax

k=kmin
p(k)Lk(t),

E(t) =
∑kmax

k=kmin
p(k)Ek(t),

I(t) =
∑kmax

k=kmin
p(k)Ik(t),

R(t) =
∑kmax

k=kmin
p(k)Rk(t).

• The population will move in and out for various reasons, but the total number of
population will not change in a short time, the migration rate is µ;
• Both the lurkers and the infected can transmit the virus to the healthy population, and
the infection ability of the lurkers and the infected person is the same;
• Vulnerable and low-risk infected persons are both healthy people and at risk of infection,
but the probability of infection is different between them. The probability of vulnerable
infected persons being infected is α, the probability of low-risk infected persons being
infected is β, and the number of vulnerable and low-risk infected nodes of degree k being
infected per unit time of time t is respectively αSk(t)Θ and βLk(t)Θ;
• After infection, both susceptible and low-risk infected persons directly transform into
lurkers, with a latent outbreak rate of σ, and the number of infected persons transform-
ing from lurkers to k degrees in t single time is σEk(t);
• After an outbreak of the virus, the infected person will be treated with a recovery rate
of γ, so in t unit time, the infected person of degree k will be treated with the number
of recoveries is γIk(t).

3. Model Establishment

From this definition, it can be seen that the network is a heterogeneous network whose nodes
contain five states. The mean-field equation for constructing SLEIR propagation dynamics
model based on complex network is shown as follows:

dSk
dt

= µρ− αkSk(t)Θ− µSk(t),

dLk
dt

= µ(1− ρ)− βkLk(t)Θ− µLk(t),

dEk
dt

= αkSk(t)Θ + βkLk(t)Θ− σEk(t)− µEk(t),

dIk
dt

= σEk(t)− µIk(t)− γIk(t),

dRk
dt

= γIk(t)− µRk(t).
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The above equations can be simplified to give the following formula:



dSk
dt

= µρ− αkSk(t)Θ− µSk(t),

dLk
dt

= µ(1− ρ)− βkLk(t)Θ− µLk(t),

dEk
dt

= αkSk(t)Θ + βkLk(t)Θ− σEk(t)− µEk(t),

dIk
dt

= σEk(t)− µIk(t)− γIk(t).

(1)

The right end of the equation set 1 is 0, it can be obtained through calculation the disease-
free stable point E0 = {(ρ, 1 − ρ, 0, 0)}nk=1 and the local disease stabilization point E∗ =

{(Sk∗, Lk∗, Ek∗, Ik∗)}nk=1, where

Sk∗ = µρ
µ+αkΘ∗ ,

Lk∗ = µ(1−ρ)
µ+βkΘ∗ ,

Ek∗ = µ((αkΘ∗+µ)βkΘ∗+µρ(αkΘ∗−βkΘ∗))
(αkΘ∗+µ)(βkΘ∗+µ)(σ+µ)

,

Ik∗ = σµ((αkΘ∗+µ)βkΘ∗+µρ(αkΘ∗−βkΘ∗))
(αkΘ∗+µ)(βkΘ∗+µ)(σ+µ)(µ+γ)

,

Θ∗ =
∑n

k=1
kp(k)(Ek∗+Ik∗)

〈k〉 .

By the equations 1 and the regeneration matrix method, we can calculate the spectral radius
to obtain the basic reproduction number

R0 =
(αρ+ β(1− ρ))(µ+ γ + σ)

(σ + µ)(µ+ γ)

〈k2〉
〈k〉

.

4. Expriment

According to Figure 1, it can be observed that the corresponding values of different degrees
are also different, indicating that the amount of contact an individual has with other individuals
is significantly related to the predicted results. The different degrees of nodes will have a large
deviation between the predicted values. When solving the traditional dynamic differential
equation, the influence of the degrees of nodes on the predicted values is not taken into account,
and all of them are a single line.
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Figure 1. The evolution of five populations at different degrees
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Figure 2. Evolution of infected individuals at different levels

It can be observed from Figure 2 that different degrees of infection have different changes.
The smaller the degree of infection, the slower the rate of change, and the larger the rate of
change, the faster. This indicates that reducing the contact between residents and reducing the
degree of nodes will delay the development of the epidemic.

5. Model Application

According to the data, the existing artificial networks include random networks, small-world
networks, BA scale-free networks and other networks. Among the structures of so many arti-
ficial networks, the network that is most similar to the real human social relationship network
structure is the BA scale-free network.

5.1. Parameter Fitting of Various Artificial Networks. Three kinds of complex networks,
random network, small world network and BA scale-free network, are used for prediction here,
and the prediction results are compared with those of the general differential equation.The
number of nodes in each kind of network is set to N = 10000, and the SLEIR heterogeneous
mean-field model is solved by using the minimize function in Python.The parameters obtained
for three kinds of networks are shown in Table 1.

name α β γ ρ σ µ others
ER random network 0.00135 0.00128 0.0160 0.3329 1.0 0.00 N = 10000, p = 0.001

BA Scale-free Network 4.2821e-04 3.72199730e-04 1.20998348e-02 2.09494e-01 1.00000e+00 0.00000e+00 N = 10000,m = 5

Small World Network 1.980e-03 7.40063601e-03 1.73527228e-02 3.4999e-1 0.0000e+00 1.98628277e-04 N = 10000,m = 10, p = 0.2

General differential equation 0.08938 0.0894 0.05266 0.9907 0.02301486 0.499997

Table 1. Parameter values of various networks solved in the heterogeneous
mean-field SLEIR model

From Table 1, it can found that the parameters obtained by different complex networks are
very different, and the parameters obtained by different networks are not similar.

5.2. Prediction results and analysis of various artificial networks. The mean predicted
value of I state (mean_I) is shown as follow:

(2) mean_I =
kmax∑
k=kmin

p(k)Ik(t).
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Through the obtained parameter values of different artificial networks, the epidemic situation
in the next 30 days can be predicted. It is good to compare the predicted results with the
actual values by the coefficient of standard deviation. Through Table 2, it can be found that the
standard deviation coefficients of the final average predicted values of the random networks and
the small world networks are smaller than the standard deviation coefficients of the predicted
values of general differential equations. While the predicted value of the scale-free network is
larger than the standard deviation coefficient of the predicted value of the general differential
equation. The reason why this situation occurs is that the heterogeneous mean-field method
mainly relies on the degree distribution to calculate. Therefore, it will be discussed from the
degree distribution of three kinds of complex networks for the predict effect of the heterogeneous
mean-filed method.

name S L E I R
ER random network 0.0548883794 0.074561749 32.5060405 1.54024875 0.718464

BA Scale-free Network 0.582704067 0.5878463 40.082686 14.8388333 4.2088276
Small World Network 0.0577953710 0.16183728 32.6868958 1.2232678 0.3743996

General differential equation 0.1193169925 0.1194198452 35.3990665 1.9349754 1.12982

Table 2. Coefficient of standard deviation between predicted and actual values
of various networks in SLEIR heterogeneous mean-field model
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Figure 3. Degree Distribution on Different Networks

From Figure 3, it can be clearly found the largest degree kmax of BA scale-free network is ob-
viously much larger than ER random network and small-world network, and the images of ER
random network and small-world network are very similar to the images of the normal distri-
bution, both of which are degree distribution with higher probability in the middle and degree
probability on both sides is smaller, while the degree distribution image of BA scale-free net-
work is more similar to the power law distribution image, and the probability of smaller degree
is larger. As the degree increases, the corresponding probability monotonically decreases and
approaches 0, with fewer maximum degrees. The degree of BA scale-free network is relatively
concentrated in the range of 0 ∼ 100, and there are only a few scattered degrees of distribution
between 100 and 250, while the degree of ER random network and small-world network will
exist evenly between the minimum degree and the maximum degree, regardless of the high or
low distribution probability.
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(a) BA scale-free network
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(b) small world network
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Figure 4. Influence of Degree distribution on epidemic prediction

It can be clearly observed from Figure 4 that similarities are exhibited by the three graphs in
terms of the small errors and minimal changes observed in the S, L,R states. However, for the
E, I states, the errors undergo an initial decrease followed by an increase. It is worth noting
that in Figure 4 (a), the predicted values for most individual degree values are consistently
lower than the mean predicted value (mean_I), whereas in Figures 4 (b) and Figures 4 (c), the
majority of individual degree values exceed the mean predicted value (mean_I). Furthermore,
the predicted value distributions in Figures 4 (b) and Figures 4 (c) display a relatively uniform
pattern, while the predicted value errors in Figure 4 (a) initially appear dense and subsequently
become sparse, resembling the degree value distributions illustrated in Figure 3. As per the
formula 2, the prediction outcome of mean_I is heavily influenced by the degree value distribu-
tion. In the BA scale-free network, a significant number of nodes without a scale are located in
regions with lower degree values, leading to inadequate prediction performance for nodes with
lower degree values. Consequently, the predictive effectiveness of the BA scale-free network is
inferior to that of the other two networks.
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Figure 5. Three Different Networks for Epidemic Prediction

It can be clearly observed from Figure5 that the predicted result of BA scale-free network
has a large deviation from the actual value, while the predicted result of ER random network
and small-world network has a small deviation from the actual value, and the predicted effect
of BA scale-free network is almost not feasible compared with the actual value. Through a
comprehensive analysis and comparison of Figure 5, it becomes evident that the curve depicting
the predicted values and the corresponding real values of the small-world network exhibits a
higher level of stability.
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Figure 6. Prediction Results of Three Complex Networks at Different Degrees

It can be observed from Figure 6 that under different degree distributions, the prediction
of BA scale-free network is the most divergent under different degrees, the second degree of
divergence is the predicted result under different degrees of ER random network, and the least
degree of divergence is the predicted result under different degrees of small-world network.

6. Conclusion

In this paper, the heterogeneous mean field SLEIR model is proposed and the corresponding
basic growth number R0 is determined. By considering different degrees of heterogeneity in
the mean field, distinct variation trends are observed. To further analyze and compare these
trends, three commonly used complex network models are employed. It is found that significant
differences in the effects of these models are observed when they are applied to the same dataset.
Specifically, superior performance is demonstrated by the ER random network and small-world
network, while poor predictive value is exhibited by the BA scale-free network. Experimental
results reveal that the predicted values of the BA scale-free network for individual degrees
are consistently lower than the overall predicted value, whereas the opposite trend is observed
for the ER random network and small-world network. Additionally, it is observed that both
the ER random network and small-world network exhibit a degree distribution similar to a
normal distribution, while a power law distribution is followed by the BA scale-free network.
Consequently, poor predictions are yielded by the BA scale-free network primarily due to the
majority of low-degree values and the associated limited predictive effectiveness. Based on
these findings, it is recommended to avoid using the BA scale-free network when selecting a
heterogeneous mean field model for pre-testing purposes, as better predictive value may be
offered by the small-world network.
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