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EXISTENCE AND STABILITY OF POSITIVE WEAK SOLUTIONS FOR A
CLASS OF CHEMICALLY REACTING SYSTEMS

SALAH A. KHAFAGY1 AND A. EZZAT MOHAMED2,∗

Abstract. In this article, we study the existence and nonexistence results of positive weak
solutions for semilinear elliptic system of the form:

−∆u = λa(x)[f(u, v)− 1
uα ], x ∈ Ω,

−∆v = λb(x)[g(u, v)− 1
vβ ], x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

where λ is a positive parameter, α,β ∈ (0, 1) and Ω ⊂ Rn(n > 1) is a bounded domain with
smooth boundary ∂Ω. Here f, g are C1 non-decreasing functions such that f , g: [0,∞) ×
[0,∞) → [0,∞); f(u, v) > 0, g(u, v) > 0 for u, v > 0 and a(x), b(x) are C1 sign-changing
functions that are probably negative near the boundary. In particular, on f(0, 0) or g(0, 0)

there is no any sign conditions. Our approach is based on the sub-super solutions method.
Also, under some certain conditions, we study the stability and instability properties of the
positive weak solution for the system under consideration.

1. Introduction

In the present article, we discuss the existence results and stability of positive weak solutions
for the following semilinear elliptic system:

(1)


−∆u = λa(x)[f(u, v)− 1

uα
], x ∈ Ω,

−∆v = λb(x)[g(u, v)− 1
vβ

], x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

where ∆u is the Laplacian operator, λ is a positive parameter, a(x), b(x) are C1 sign-changing
functions that are probably negative near the boundary, α,β ∈ (0, 1) and Ω ⊂ Rn(n > 1) is a
bounded domain with smooth boundary ∂Ω. Here f, g are C1 non-decreasing functions such
that f , g: [0,∞) × [0,∞) → [0,∞); f(u, v) > 0, g(u, v) > 0 for u, v > 0. In particular, on
f(0, 0) or g(0, 0) there is no any sign conditions.
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Systems of singular equations such as (1) represent the stationary counterpart of general
evolutionary problems of the form:

(2)


ut = η∆u+ λa(x)[f(u, v)− 1

uα
], x ∈ Ω,

vt = δ∆v + λb(x)[g(u, v)− 1
vβ

], x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

where η, δ > 0 are positive parameters. System (2) is inspired by some significant applications
in chemically reacting systems, where u denotes the density of an activator chemical substance
while v denotes an inhibitor. Diffusion rates of u and v are respectively slow and rapid, which
are converted to a small η and large δ (see [3]).

Lately, similar problems have been discussed in [6, 7, 13–15, 18, 23, 25, 27, 31]. The authors
studied in [31] the model problem:

(3)


−∆u+ 1

uα
= λup, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where α > 0, λ > 0, p > 0 and Ω ⊂ Rn(n ≥ 1) is a bounded domain with C2+γ boundary for
some γ ∈ (0, 1). This problem appeared in the context of the chemical heterogeneous catalysts
as well as in non-Newtonian fluids. Their results are the following theorems:

Theorem A. If α, p ∈ (0, 1), then there exists 0 < λ̄ < ∞ that is if λ > λ̄ then (3) has at
least one solution uλ ∈ H1

0 (Ω) ∩ C(Ω̄) ∩ C2+γ(Ω) satisfying u−αλ ∈ L1(Ω) and if λ < λ̄ then (3)
has no solution in C(Ω̄) ∩ C2(Ω).

Theorem B. If α ≥ 1, then (3) has no solution in C(Ω̄)∩C2(Ω) when p and λ are positive.
Diaz, Morel and Oswald established an essential and adequate existence condition for the

solutions of the system:

(4)


−∆u+ 1

uα
= f x ∈ Ω,

u−α ∈ L1(Ω), u > 0 x ∈ Ω,

u = 0 x ∈ ∂Ω,

where f ≥ 0, f ∈ L1(Ω) and 0 < α < 1. They have shown that system (4) has a solution
u ∈ H1

0 (Ω) if
∫

Ω
fφ1dx is large enough and (4) has no solution if

∫
Ω
fφ1dx is small enough

(see [7]). In [25], the authors analyzed the positive solutions for the semilinear elliptic system:

(5)

−∆u = λ[f(u)− 1
uα

], x ∈ Ω,

u = 0, x ∈ ∂Ω,

where f ∈ C2(0,∞), f(0) ≥ 0, f ′ > 0, limu→∞
f(u)
u

=∞, α ∈ (0, 1), λ > 0 and Ω ⊂ Rn(n ≥ 1)

is a bounded domain with smooth boundary ∂Ω. When n = 1, they discussed the multiplicity
and uniqueness results by using the quadrature method, while for n > 1 they used the sub-super
solutions method to establish their existence results.
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Finally, in [27], the authors studied the existence of a positive weak solution for the following
semilinear elliptic system:

(6)


−∆u = λa(x)[f(v)− 1

uα
], x ∈ Ω,

−∆v = λb(x)[g(u)− 1
vβ

], x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

where f, g ∈ C1[0,∞) are non-decreasing functions such that f(u), g(u) > 0 for u > 0,
limu→∞

f(Mg(u))
u

= 0 for every M > 0 and a(x), b(x) are C1 sign-changing functions sat-
isfy certain additional conditions.

The first goal of our article is to extend the study of system (6) to system (1) with C1

sign-changing weight functions a(x), b(x) and non-decreasing functions f, g satisfying

lim
x→∞

f(x,Mg(x, x))

x
= 0 for everyM > 0, lim

x→∞

g(x, x)

x
= 0.

On the other hand, several authors are keen on studying the stability and instability of
positive solutions of linear [1], semilinear [11,22,24,30], semiposiotne [2,5,29] and fractional [16]
systems, as a result of many applications in Newtonian fluids, in Fluid mechanics, in reaction-
diffusion problems, in population dynamics, glaciology, etc.; see [4, 16] and their references.

Brown and Shivaji [5] studied the stability and instability of positive solutions to the system:

(7)

−∆u = λf(u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

such that every non-negative solution of (7) is unstable if f is a smooth function such that
f(0) < 0 (semipositone), f ′ > 0 and f ′′ ≥ 0 for u > 0. In [29], Tertikas proved the statement in
the non-monotone case. Shivaji and Maya [24] reduced the problem to the monotone case via
decomposition of f to a monotone and linear function involving f(0) and f ′(0). A direct proof
of the result given by Karatson and Simon [11]. This could be summarized as every positive
solution of (7) is unstable if f ′′ > 0 and f(0) ≤ 0 while every positive solution of (7) is stable
if f ′′ < 0 and f(0) ≥ 0.

The second goal of our article is to extend these results to system (1) under specific conditions.
We refer to [2, 10, 12, 17, 19, 20, 30] for additional results of stability and instability on elliptic
systems.

We consider the following eigenvalue problem to accurately state our existence results

(8)

−∆φ = λφ in Ω,

φ = 0 on ∂Ω.

Assume λ1 > 0 be the first eigenvalue of (8), φ1 be the corresponding eigenfunction such that
φ1(x) > 0 in Ω and ‖φ1‖∞ = 1. We consider δ, µ, m > 0 be such that

(9) µ ≤ φ1 ≤ 1, x ∈ Ω− Ω̄δ,

(10)
2

1 + s
(1− 2s

1 + s
)|∇φ1|2 ≥ m, x ∈ Ω̄δ,
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for s = α, β, where Ω̄δ := {x ∈ Ω | d(x, ∂Ω) ≤ δ}. This possible since |∇φ1| 6= 0 on ∂Ω while
φ1 = 0 on ∂Ω by Hopf’s lemma. Furthermore, to discuss our existence results, let e ∈ W 1,2

0 (Ω)

be the weak solution of

(11)

−∆e = 1, x ∈ Ω,

e = 0, x ∈ ∂Ω.

It is common that e > 0 in Ω, ∂e
∂n
< 0 on ∂Ω such that n is the outward unit normal vector to ∂Ω

(See [9, 25]). In Ω̄δ, we suppose that a(x), b(x) < 0, but in Ω− Ω̄δ, a(x), b(x) > 0. To be more
specific, let a0, b0, a1, b1, a0, b0, a1, b1 > 0 be such that −a0 ≤ a(x) ≤ −a0, −b0 ≤ b(x) ≤ −b0 in
Ω̄δ, and a1 ≤ a(x) ≤ a1, b1 ≤ b(x) ≤ b1 in Ω− Ω̄δ.

2. Existence and nonexistence results

In this section, to establish our existence results we use the sub-super solutions method. Also,
by the help of Young inequality we have the boundedness of the parameter λ where system (1)
has no positive weak solution.
Definition 2.1.(Positive weak solution):
A pair of positive functions (u, v) is called a positive weak solution of (1) if u, v ∈ W 1,2

0 (Ω) and
−∆u = λa(x)[f(u, v)− 1

uα
], x ∈ Ω,

−∆v = λb(x)[g(u, v)− 1
vβ

], x ∈ Ω,

u = 0 = v, x ∈ ∂Ω.

Definition 2.2.(Positive weak subsolution):
A pair of positive functions (ψ1, ψ2) is called a positive weak subsolution of (1) if ψ1, ψ2 ∈
W 1,2

0 (Ω) and 
−∆ψ1 ≤ λa(x)[f(ψ1, ψ2)− 1

ψα
1

], x ∈ Ω,

−∆ψ2 ≤ λb(x)[g(ψ1, ψ2)− 1

ψβ
2

], x ∈ Ω,

ψ1 = 0 = ψ2, x ∈ ∂Ω.

Definition 2.3.(Positive weak supersolution):
A pair of positive functions (z1, z2) is called a positive weak supersolution of (1) if z1, z2 ∈
W 1,2

0 (Ω) and 
−∆z1 ≥ λa(x)[f(z1, z2)− 1

zα1
], x ∈ Ω,

−∆z2 ≥ λb(x)[g(z1, z2)− 1

zβ2
], x ∈ Ω,

z1 = 0 = z2, x ∈ ∂Ω.

Hence the following results hold.
Lemma 2.4.(See [6]): Assume there exist a subsolution (ψ1, ψ2) and a supersolution (z1, z2)

of (1) such that ψ1 ≤ z1 and ψ2 ≤ z2. Then (1) has solution (u, v) such that ψ1 ≤ u ≤ z1 and
ψ2 ≤ v ≤ z2.

To establish our results we assume the following:
(H1) f , g : [0,∞) × [0,∞) → [0,∞) are C1 non-decreasing functions where f(u, v) > 0,
g(u, v) > 0 for u, v > 0 and limu,v→∞ f(u, v) = limu,v→∞ g(u, v) =∞,
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(H2) limx→∞
f(x,Mg(x,x))

x
= 0 for every M > 0 and limx→∞

g(x,x)
x

= 0,
(H3) Let us assume that we have ε > 0 such that :
(i) N = f(µε

2
, µε

2
)− ( 2

µε
)α > 0 and M = g(µε

2
, µε

2
)− ( 2

µε
)β > 0,

(ii) λ1f(ε,ε)
m
≤ min{2α−1(α+1)

εα
,
Na1(α+1)

2a0
,

2β−1b0(β+1)

a0ε
β ,

Mb1(β+1)

2a0
},

(iii) λ1g(ε,ε)
m
≤ min{2β−1(β+1)

εβ
,
Na1(α+1)

2b0
,

2α−1a0(α+1)

b0ε
α ,

Mb1(β+1)

2b0
}.

(H4) There exists f0, g0 > 0 such that f(u, v) ≤ f0u
k1vl1 and g(u, v) ≤ g0u

l2vk2 where
k1, k2, l1, l2 are positive parameters such that k1,k2 ∈ (0, 1) and l2 + k2 < max{1, 1

l1
}.

To be more specific we define λ∗(ε) and λ∗(ε) by

λ∗ = min

{
mε

2a0f(ε,ε)
, mε

2b0g(ε,ε)

}
and λ∗ = max

{
λ1εα+1

2αa0(α+1)
, λ1εβ+1

2βb0(β+1)
, λ1ε
Na1(α+1)

, λ1ε
Mb1(β+1)

}
.

Example 2.5. Let f(u, v) = [vk + (uv)l − 1] and g(u, v) = [uω + (uv)
τ
2 − 1] where k, l, ω, τ

are positive parameters. So, it is clear that the hypotheses of (H1)-(H3) satisfied by f, g if
max{ω, τ}k < 1, max{ω, τ} < 1 and (max{ω, τ}+ 1)l < 1.
Remark 2.6. By (H3) we conclude that λ∗ < λ∗.

Now we can state our existence results.
Theorem 2.7. There exists a positive weak solution of (1) for every λ∗(ε) ≤ λ ≤ λ∗(ε) if the
assumptions (H1)-(H3) are satisfied.

proof. We shall verify that (ψ1, ψ2) =
(
ε
2
φ

2
1+α

1 , ε
2
φ

2
1+β

1

)
is a positive weak subsolution of (1). A

calculations shows that ∇ψ1 =
(

ε
1+α

)
φ

1−α
1+α

1 ∇φ1, and hence

−∆ψ1 = −∇(∇ψ1) = ∇
(( ε

1 + α

)
φ

1−α
1+α

1 ∇φ1

)
=
−ε

1 + α

{(1− α
1 + α

)
φ

−2α
1+α

1 |∇φ1|2 + φ
1−α
1+α

1 ∆φ1

}
=

ε

1 + α

{
φ

1−α
1+α

1 (−∆φ1)− (
1− α
1 + α

)φ
−2α
1+α

1 |∇φ1|2
}

=
ε

1 + α

{
λ1φ

2
1+α

1 − (
1− α
1 + α

)φ
−2α
1+α

1 |∇φ1|2
}
.

(12)

Similarly,

−∆ψ2 =
ε

1 + β

{
λ1φ

2
1+β

1 − (
1− β
1 + β

)φ
−2β
1+β

1 |∇φ1|2
}
.

Firstly, we study the case when x ∈ Ω̄δ. For s = α in (10) one can get
−ε

1 + α
φ

−2α
1+α

1 (
1− α
1 + α

)|∇φ1|2 ≤
−mε

2
,

and since λ ≤ λ∗, we have
−mε

2
≤ −λa0f(ε, ε) ≤ −λa0f(

ε

2
φ

2
1+α

1 ,
ε

2
φ

2
1+β

1 ),

and so

(13)
−ε

1 + α
φ

−2α
1+α

1 (
1− α
1 + α

)|∇φ1|2 ≤ −λa0f(
ε

2
φ

2
1+α

1 ,
ε

2
φ

2
1+β

1 ).

Also, since λ ≥ λ∗, we have

(14)
ε

1 + α
λ1φ

2
1+α

1 ≤ λ1ε

1 + α
≤ λa0

( ε
2
)α
≤ λa0

( ε
2
φ

2
1+α

1 )α

https://doi.org/10.28919/ejma.2024.4.2
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Combining (12-14) we see that

−∆ψ1 ≤
λa0

( ε
2
φ

2
1+α

1 )α
− λa0f(

ε

2
φ

2
1+α

1 ,
ε

2
φ

2
1+β

1 )

= −λa0

[
f(
ε

2
φ

2
1+α

1 ,
ε

2
φ

2
1+β

1 )− 1

( ε
2
φ

2
1+α

1 )α

]

≤ λa(x)[f(ψ1, ψ2)− 1

ψ1
α ].

Furthermore, on Ω− Ω̄δ we have µ ≤ φ1 ≤ 1, a1 ≤ a(x) and b1 ≤ b(x). Since λ∗ ≤ λ, then

λ1ε

Na1(α + 1)
≤ λ.

Now, we have

−∆ψ1 =
ε

1 + α

{
λ1φ

2
1+α

1 − (
1− α
1 + α

)φ
−2α
1+α

1 |∇φ1|2
}

≤ λ1ε φ
2

1+α

1

1 + α
≤ λa1N

= λa1

[
f(
µε

2
,
µε

2
)− (

2

µε
)α
]

≤ λa1

[
f(
ε

2
φ

2
1+α

1 ,
ε

2
φ

2
1+β

1 )− 1

( ε
2
φ

2
1+α

1 )α

]

≤ λa(x)
[
f(ψ1, ψ2)− 1

ψα1

]
.

Similarly, we can get

−∆ψ2 ≤ λb(x)[g(ψ1, ψ2)− 1

ψβ2
],

i.e., (ψ1, ψ2) is a positive weak subsolution of (1).
Next, we show that there exists a large enough c thus,

(z1, z2) =
(
ce(x), λµb [g(cµe, cµe)] e(x)

)
is a positive weak supersolution of (1), where µe = ‖e(x)‖∞, µa = ‖a(x)‖∞ and µb = ‖b(x)‖∞.
Now by (H2) we are able to take c large enough so that

(15) c ≥ λµaf
(
cµe, λµb[g(cµe, cµe)]µe

)
.

Then, using (11) and (15) we have

−∆z1 = −∆(ce(x)) = c ≥ λµaf
(
cµe, λµb[g(cµe, cµe)]µe

)
≥ λa(x)f

(
ce(x), λµb[g(cµe, cµe)]e(x)

)
= λa(x)f(z1, z2)

≥ λa(x)[f(z1, z2)− 1

zα1
].

https://doi.org/10.28919/ejma.2024.4.2
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Also, by (H2) we can take c ≥ λµbg(cµe, cµe). Then we have

−∆z2 = −∆
(
λµb g(cµe, cµe)e(x)

)
= λµb g(cµe, cµe)

≥ λb(x) g(ce(x), ce(x))

≥ λb(x) g
(
ce(x), λµb g(cµe, cµe)e(x)

)
= λb(x)g(z1, z2)

≥ λb(x)
[
g(z1, z2)− 1

zβ2

]
.

i.e., (z1, z2) is a positive weak supersolution of (1) with ψi ≤ zi for large c and i = 1, 2.
Therefore, there exists a positive weak solution (u, v) of (1) thus ψ1 ≤ u ≤ z1 and ψ2 ≤ v ≤ z2.
Hence, the proof is completed.
Theorem 2.8. Let (H4) holds with li + ki = 1, i = 1, 2, then system (1) has no positive weak
solution for every λ ∈ (−λ1

2t
, λ1

2s
), where s = max{f0a1, g0b1} and t = min{f0a0, g0b0}.

Proof. Assume that system (1) has a positive weak solution (u, v). We will eventually arrive
at a contradiction in order to prove Theorem 2.8. If the first equation of (1) is multiplied by
u, then by Young inequality we have

(16)
∫
Ω

|∇u|2dx ≤ λ

∫
Ω

f0a(x)(
u2

µ1

+
v2

µ2

)dx,

with µ1 = 2
1+k1

> 1 and µ2 = 2
1−k1 > 1. Similarly, we have

(17)
∫
Ω

|∇v|2dx ≤ λ

∫
Ω

g0b(x)(
u2

θ1

+
v2

θ2

)dx,

with θ1 = 2
1−k2 > 1 and θ2 = 2

1+k2
> 1. Note that

(18) λ1

∫
Ω

u2dx ≤
∫
Ω

|∇u|2dx, λ1

∫
Ω

v2dx ≤
∫
Ω

|∇v|2dx.

Combining (16)-(18), we obtain

(19) λ1

∫
Ω

u2dx+ λ1

∫
Ω

v2dx ≤ λ

[ ∫
Ω

(
f0a(x)

µ1

+
g0b(x)

θ1

)
u2dx+

∫
Ω

(
f0a(x)

µ2

+
g0b(x)

θ2

)
v2dx

]
.

Now, on Ω− Ω̄δ we have a(x) ≤ a1, b(x) ≤ b1, then (19) becomes

(20) (λ1 − 2λs)

∫
Ω

u2dx+ (λ1 − 2λs)

∫
Ω

v2dx ≤ 0,

where s = max{f0a1, g0b1}, which is a contradiction if λ < λ1
2s
.

Similarly, on Ω̄δ we have a(x) ≤ −a0, b(x) ≤ −b0, and then (19) becomes

(21) (λ1 + 2λt)

∫
Ω

u2dx+ (λ1 + 2λt)

∫
Ω

v2dx ≤ 0,

where t = min{f0a0, g0b0}, which is a contradiction if λ > −λ1
2t
. Hence, the proof is completed.

https://doi.org/10.28919/ejma.2024.4.2
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3. Stability and instability results

This section deals with the stability and instability of the positive weak solution (u, v) of
system (1) under specific conditions.

The linearized equation about (u, v), where (u, v) any positive weak solution of (1) is

(22)


−∆φ− λa(x)[fu(u, v) + α

u1+α ]φ− λa(x)fv(u, v)ψ = µφ, x ∈ Ω,

−∆ψ − λb(x)gu(u, v)φ− λb(x)[gv(u, v) + β
v1+β ]ψ = µψ, x ∈ Ω,

φ = 0 = ψ, x ∈ ∂Ω,

where fu(u, v) represents the partial derivative of f(u, v) with respect to u (see [8]). Let (φ1, ψ1)

be the corresponding eigenfunction to the principal eigenvalue µ1. We take φ1, ψ1 such that
φ1, ψ1 > 0 in Ω (see [21,28]).
Definition 4.1. A solution (u, v) of (1) is a stable solution if all eigenvalues of (22) are strictly
positive, which can be inferred if the principal eigenvalue µ1 > 0. In contrast, (u, v) is unstable.

To establish our results we assume the following:

(23) fv(u, v), gu(u, v) > 0, for u, v > 0,

(24) u 7→ f(u, v)− u−α

u
is strictly non-decreasing at u ∀v > 0,

(25) v 7→ g(u, v)− v−β

v
is strictly non-decreasing at v ∀u > 0,

Theorem 4.2. Assume (23)-(25) hold, then the positive weak solution (u0, v0) of system (1)
is unstable in Ω− Ω̄δ and stable in Ω̄δ.
Proof. Let (u0, v0) be any positive weak solution of (1). We multiply the first and second
equation of (1) by φ1, ψ1, respectively and integrate over Ω yields

(26) −
∫

Ω

φ1(x)∆u0dx− λ
∫

Ω

φ1(x)a(x)[f(u0, v0)− 1

u0
α

]dx = 0,

and

(27) −
∫

Ω

ψ1(x)∆v0dx− λ
∫

Ω

ψ1(x)b(x)[g(u0, v0)− 1

v0
β

]dx = 0.

On the other side, we multiply the first and second equation of (22) by −u0, −v0, respectively
and integrate over Ω yields∫

Ω

u0∆φ1dx+ λ

∫
Ω

φ1(x)a(x)
[
fu(u0, v0) +

α

u0
1+α

]
u0dx+ λ

∫
Ω

ψ1(x)a(x)fv(u0, v0)u0dx

= −µ1

∫
Ω

u0φ1(x)dx,

(28)

and ∫
Ω

v0∆ψ1dx+ λ

∫
Ω

ψ1(x)b(x)
[
gv(u0, v0) +

β

v0
1+β

]
v0dx+ λ

∫
Ω

φ1(x)b(x)gu(u0, v0)v0dx

= −µ1

∫
Ω

v0ψ1(x)dx.

(29)
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Combining (26) to (29) we get∫
Ω

[u0∆φ1 − φ1(x)∆u0]dx+

∫
Ω

[v0∆ψ1 − ψ1(x)∆v0]dx

+λ

∫
Ω

φ1(x)a(x)

[
u0

(
fu(u0, v0) +

α

u0
1+α

)
−
(
f(u0, v0)− 1

u0
α

)]
dx

+λ

∫
Ω

ψ1(x)b(x)

[
v0

(
gv(u0, v0) +

β

v0
1+β

)
−
(
g(u0, v0)− 1

v0
β

)]
dx

+λ

∫
Ω

a(x)ψ1(x)fv(u0, v0)u0dx+ λ

∫
Ω

b(x)φ1(x)gu(u0, v0)v0dx

= −µ1

∫
Ω

[u0φ1(x) + v0ψ1(x)]dx.

(30)

But by the Green’s first identity

(31)
∫

Ω

u0∆φ1dx = −
∫

Ω

∇u0 · ∇φ1dx,

(32)
∫

Ω

φ1(x)∆u0dx = −
∫

Ω

∇u0 · ∇φ1dx,

and

(33)
∫

Ω

v0∆ψ1dx = −
∫

Ω

∇v0 · ∇ψ1dx,

(34)
∫

Ω

ψ1(x)∆v0dx = −
∫

Ω

∇v0 · ∇ψ1dx.

By using (31)-(34) in (30) we get

λ

∫
Ω

φ1(x)a(x)

[
u0fu(u0, v0)− f(u0, v0) +

1 + α

u0
α

]
dx+ λ

∫
Ω

ψ1(x)a(x)fv(u0, v0)u0dx

+λ

∫
Ω

ψ1(x)b(x)

[
v0gv(u0, v0)− g(u0, v0) +

1 + β

vβ0

]
dx+ λ

∫
Ω

φ1(x)b(x)gu(u0, v0)v0dx

=− µ1

∫
Ω

[u0φ1(x) + v0ψ1(x)]dx.

(35)

Also, since f(u0,v0)−u0−α

u0
is strictly non-decreasing at u0 ∀ v0 > 0, then we get

(36)
u0fu(u0, v0)− f(u0, v0) + (1 + α)u0

−α

u2
0

> 0 for u0, v0 > 0,

and since g(u0,v0)−v0−β

v0
is strictly non-decreasing at v0 ∀ u0 > 0, then we get

(37)
v0gv(u0, v0)− g(u0, v0) + (1 + β)v0

−β

v2
0

> 0 for u0, v0 > 0.

On Ω− Ω̄δ we have a(x), b(x) > 0, by using (36) and (37) in (35) we get

(38) −µ1

∫
Ω

[u0φ1(x) + v0ψ1(x)]dx > 0.
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Then, µ1 < 0 and the solution is unstable.
Similarly, on Ω̄δ we have a(x), b(x) < 0, by using (36) and (37) in (35) we get

(39) −µ1

∫
Ω

[u0φ1(x) + v0ψ1(x)]dx < 0,

and hence µ1 > 0 and the solution is stable. Hence, the proof is completed.
Remark 4.3. According to the previous theorem, the stability of the positive weak solution
depends on the domain besides the assumptions given by (23)-(25).
Remark 4.4. If the conditions (23)-(25) replaced by the following conditions

(40) fv(u, v), gu(u, v) < 0, for u, v > 0,

(41) u 7→ f(u, v)u−1 − u−α−1 is strictly non-increasing at u ∀v > 0,

(42) v 7→ g(u, v)v−1 − v−β−1 is strictly non-increasing at v ∀u > 0,

we conclude:
Corollary 4.5. If (40)-(42) hold, then every positive weak solution (u, v) of system (1) is stable
in Ω− Ω̄δ and unstable in Ω̄δ.
Proof. The proof procedure is analogous to the proof of Theorem 4.2.
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