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ALMOST SIMPLE GROUPS WITH MORE THAN ONE HALF OF THE
NUMBER OF CYCLIC SUBGROUPS

WEIDONG XU, RULIN SHEN∗

Abstract. Let G be a finite group, c(G) the number of cyclic subgroups of G, and α(G) the
ratio of the number of cyclic subgroups of G to the order of the group, i.e.α (G) = c(G)/|G|.
A group G called an almost simple group if there exists a finite non-abelian simple group such
that S ≤ G ≤ Aut(S). In this paper, we prove that if G is an almost simple group, then
α(G) ≥ 1/2 if and only if G ∼= A5, S5, S6.

1. Introduction

In this paper all groups are finite. Define c(G) be the number of cyclic subgroups of G and let
α(G) be the ratio of the number of cyclic subgroups of G to the order of the group, i.e.α (G) =

c(G)/|G|. In recent years, numerous academics have explored the correlation between α(G)

and finite group structure, and many results have been achieved. In 2018, Garonzi and Lima
have classified the groups with α(G) > 3/4 (see [1]). In 2020, Gao and Shen have classified the
groups with α(G) = 3/4 (see [2]). More recently, Cayley continued to study the classification
of groups for a given value of α(G) (see [3]). In this paper, we restrict G to an almost simple
group, that is S ≤ G ≤ Aut(S), where S is a finite non-abelian simple group. Our focus is the
classification of almost simple groups G, satisfying property α(G) > 1/2.

Theorem 1.1. Let G be an almost simple group. Then α(G) > 1/2 if and only if G ∼=
A5, S5, S6.

2. Some Lemmas

We define I(G) = {x ∈ G | x2 = 1}, J(G) = {x ∈ G | o(x) 6= 1, 2, 3, 4, 6} and denote k(G)

the number of conjugacy classes of the group G. For the proof of the theorem, we also give the
following necessary lemmas.

Lemma 2.1. ( [1]) Let G be a finite group, then c(G) =
∑
x∈G

1
ϕ(o(x))

, where o(x) is the order of

the element x and ϕ(o(x)) is Euler function of o(x).
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Lemma 2.2. Let G be a finite group. If |I(G)| < 1
2
|J(G)|, then α(G) < 1

2
.

Proof. For any element y of I(G), we have ϕ(o(y)) = 1. Let t is any element of J(G),
then ϕ(o(t)) ≥ 4. But for any remaining element z, we have ϕ(o(z)) = 2. Hence
c(G) =

∑
x∈G

1
ϕ(o(x))

=
∑

y∈I(G)

1
ϕ(o(y))

+
∑

t∈J(G)

1
ϕ(o(t))

+
∑

z∈G−I(G)−J(G)

1
ϕ(o(z))

≤ |I(G)| + 1
4
|J(G)| +

1
2
(|G| − |I(G)| − |J(G)|) = 1

2
|I(G)| − 1

4
|J(G)| + 1

2
|G| < 1

2
|G|. thus α(G) = c(G)

|G| < 1
2
.

�

Lemma 2.3. ( [1, Lemma 1]) Let G be a finite group. Then |I(G)|2 ≤ k(G) · |G|.

Lemma 2.4. ( [4, Theorem 2]) If G is any subgroup of Sn, then k(G) ≤ 2n−1, where n is a
positive integer.

Lemma 2.5. ( [5, Page 314 Theorem 1.1]) Suppose that G is An with n ≥ 5. If n = 6, then
Aut(A6) is isomorphic to an extension of S6 by the cyclic of order 2. If n 6= 6, then Aut(An)

is isomorphic to Sn.

Lemma 2.6. ( [4, Lemma 2.1]) If G is a simple group of Lie type in characteristic p, then
either

(1) k(G) < |G|p, that is the order of Sylow p-subgroup of G, or
(2) G = L2(q), q even (in which case k(G) = q+ 1), or G = L2(5) (in which case k(G) = 5).

Lemma 2.7. ( [4, Theorem 1]) Let S be a finite simple group of Lie type over Fq. If the Lie
rank of group S is equal to l, then k(S) ≤ (6q)l.

Lemma 2.8. ( [6, Lemma 1]) Let G be a finite group, for every normal subgroup N of G, we
have k(G) ≤ k(G/N) · k(N).

Lemma 2.9. Let S be a finite Lie type simple group, then there exist self-centred cyclic sub-
groups T (see Table 1), satisfying |T | ≥ 5, |T | 6= 6 and |S| > 4 · |T |2 · (6q)l · |Out(S)|2, except
for the following cases.

(i) A1(q), (q ≥ 4).

(ii) A2(q), q = 2f , 1 ≤ f ≤ 8, f = 10; q = 3f , 1 ≤ f ≤ 4; q = 5f , 1 ≤ f ≤ 2; q = 7f , 1 ≤ f ≤
3; q = 11f , 1 ≤ f ≤ 2; q = 13f , 1 ≤ f ≤ 2; q = 17, 19, 23, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109.

(iii) A3(q), q = 2, 3, 4, 5, 9;A4(2);2A2(q), q = 3, 4, 5, 7, 8, 11, 32;2A3(q), q = 2, 3;

C2(q), q = 3, 4, 5, 8;D4(2);2 F4(2)
′
;2B2(8).
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Table 1. Related Lie type simple groups
S Lie rank l |Out(S)| |T | (≥ 5 and 6= 6)

An(q), n ≥ 2 n 2(n+ 1, q − 1)f (qn+1 − 1)(q − 1)−1

2An(q), n ≥ 2
[
n+1
2

]
2(n+ 1, q + 1)f (qn+1 + (−1)n)(q + 1)−1

Bn(q), n ≥ 2, q odd n 2f qn + 1

Cn(q), n ≥ 2 n 2f, n = 2 qn + 1

(2, q − 1)f, n ≥ 3

Dn(q), n ≥ 4 n 6(4, qn − 1)f, n = 4 qn − 1

2(4, qn − 1)f, n 6= 4

2Dn(q), n ≥ 4 n− 1 2(4, qn + 1)f qn + 1

2F4(q), q = 22n+1 2 f q2 + (q + 1)(
√

2q + 1)

F4(q) 4 (2, p)f q4 + 1

3D4(q) 2 3f (q3 − 1)(q + 1)

2G2(q), q = 32n+1 1 f q +
√

3q + 1

E6(q) 6 2(3, q − 1)f Φ12(q)Φ3(q)

2E6(q) 4 2(3, q + 1)f Φ12(q)Φ6(q)

E7(q) 7 (2, q − 1)f Φ12(q)(q
3 + 1)

E8(q) 8 f Φ30(q)

G2(q) 2 2f, p = 3 Φ3(q)

f, p 6= 3

2B2(q), 1 f q +
√

2q + 1

q = 22n+1, n ≥ 2

where q = pf , f ∈ N , p is prime, Φn(q) denotes the cyclotomic polynomial(see [5] and [7]).

Proof. The order of the outer automorphism group of simple groups of Lie type is given by [5],
and the order of the self-centralized cyclic subgroup T is given in [7]. We list in Table 1. It is
easy to compute that if S is not in (i),(ii),(iii), then S satisfies |S| > 4 · |T |2 · (6q)l · |Out(S)|2,
|T | ≥ 5 and |T | 6= 6. �

3. Proof of Theorem

Proof. Suppose G is an almost simple group, that is S ≤ G ≤ Aut(S), where S is a finite
non-abelian simple group. If G ∼= A5, S5, S6, then α(A5) = 8

15
, α(S5) = 67

120
, α(S6) = 181

360
, all of

which have α(G) ≥ 1
2
. conversely we assume α(G) ≥ 1

2
, we need to prove G ∼= A5, S5, S6.

Firstly, suppose S is an Alternating group An with n ≥ 5. According to the Atlas group
table (see [8]), G is isomorphic to A5, S5 or S6 if n=5,6,7 and α(G) ≥ 1

2
. When n ≥ 8, it follows
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from Lemma 2.5 that Aut(An) is isomorphic to Sn, and hence G is isomorphic to An or Sn.
Then, by Lemma 2.3 and Lemma 2.4, we obtain |I(Sn)| ≤

√
2n−1 · (n!). Next, if n is even, then

J(An) ⊇ {x ∈ An | x is a (n− 1)-cycle }, and hence |J(An)| ≥ n!
n−1 . But

√
2n−1 · (n!) < 1

2
· n!
n−1 ,

and hence |I(Sn)| < 1
2
|J(An)|. If n is odd, then J(An) ⊇ {x ∈ An | x is a n-cycle }, and

hence |J(An)| ≥ n!
n
. But

√
2n−1 · (n!) < 1

2
· n!

n
, and hence |I(Sn)| < 1

2
|J(An)|. Both result in

|I(G)| < 1
2
|J(G)|. Thus, if the group S is an Alternating group, it follows from Lemma 2.2

that the group G is isomorphic to A5, S5 or S6.
Secondly, suppose S is a simple group of Lie type. When S is not a group of items (i),(ii),(iii)

in Lemma 2.9, there exists a self-centred cyclic subgroup T , satisfying |T | ≥ 5, |T | 6= 6 and
|S| > 4 · |T |2 · (6q)l · |Out(S)|2. We assume that T = 〈t〉, of course, has CS(t) = T . Since f∣∣tS∣∣ = |S : CS(t)| = |S| / |T |, we have |J(S)| ≥ |S| / |T |. By Lemmas 2.3, 2.7 and 2.8 we get

|S|
2 |T |

>

√
(6q)l · |S| · |Out(S)|2

≥
√
k(S) · |S| · k(Out(S)) · |Out(S)|

≥
√
k(Aut(S)) · |Aut(S)|

≥ |I(Aut(S))| .

Thus S satisfies |I(Aut(S))| < 1
2
|J(S)|, and because S ≤ G ≤ Aut(S), and hence

|I(G)| ≤ |I(Aut(S))| < 1
2
|J(S)| ≤ 1

2
|J(G)|. Again, by Lemma 2.2, it follows that α(G) < 1

2
.

Below, when S is a group in Lemma 2.9(i),(ii),(iii), we discuss three cases.

Case 1. S ∼= A1(q), (q ≥ 4).

When q = 4, 5, S is isomorphic to A5. When q = 9, S is isomorphic to A6. These are
discussed and not repeated. For q = 7, 8, 11, 13, 16, |I(G)| < 1

2
|J(G)| is easily calculated

from the Atlas table. The case of q ≥ 17 is discussed below. Since ϕ(d) denotes the value
of the Euler function of an element of order d in A1(q) and q2 − 1 denotes the number of
elements of order p in A1(q) (see Lemma 2.2.9 in [9]), we have |J(S)| ≥ |S| − 4q2 − 3q

and |I(Aut(S))| < 1
4
q(q2 − 8q − 7) below. In fact, by Lemma 2.2.9 in [9], we know that

the number of 2nd order elements is at most q2 − 1, and since ϕ(d) = 2, d = 3, 4, 6, it
is possible to take that 3rd, 4th, and 6th order elements exist and that the number of
elements is taken to be q(q + 1), and thus that |J(S)| ≥ |S| − 4q2 − 3q. By Lemma 2.6,
we have |I(Aut(S))| ≤

√
(q + 1) · (2, q − 1)2 · f 2 · |S| < 1

4
q(q2 − 8q − 7), and because of

1
4
q(q2 − 8q − 7) ≤ 1

2
(|S| − 4q2 − 3q), thus |I(Aut(S))| < 1

2
|J(S)|.

Case 2. S ∼= A2(q), where q = 2, 22, 23, 24, 25, 26, 27, 28, 210, 3, 32, 33, 34, 5, 52, 7, 72,

73, 11, 112, 13, 132, 17, 19, 23, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109.

When q = 2, 3, 4, 5, 7, 8, 9, 11, it is easy to verify |I(G)| < 1
2
|J(G)| according to the Atlas

group table. When q = 17, then there are elements of order 307, and according to lemma
3.1 in [10] the number of elements of order 307 is 2309188608, so |J(S)| ≥ 2309188608.
Substituting Lemma 2.6, it is clear that |I(Aut(S))| < 1

2
· 2309188608 ≤ 1

2
|J(S)|. When

q = 31, there is an element of order 331, again using Lemma 2.6 and Lemma 3.1 in [10], which
proves that there is |I(Aut(S))| < 1

2
|J(S)|. For q 6= 2, 3, 4, 5, 7, 8, 9, 11, 17, 31. By Theorem

5.2.14 in [11], there exists a primitive prime divisor r(r ≥ 5) in |S|, written |S|r′ = |S| /|S|r,
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where |S|r is Sylow r- subgroup order of the group S. Clearly {x ∈ S | r|o(x)} is a non-empty
subset of the group S. By Theorem 3 of [12], there exists |S|r′ which divides {x ∈ S | r|o(x)},
so |J(S)| ≥ |{x ∈ S | r|o(x)}| ≥ |S|r′ = |S| /r. Then by Lemma 2.6 and the order of the
group S, it follows that there exists a primitive prime divisor r such that |I(Aut(S))| <√
q3 · 4 · (3, q − 1)2 · f 2 · |S| < |S|

2r
≤ 1

2
|J(S)|, where r is in the order of q-values corresponding

to the order of 7, 7, 5, 43, 13, 41, 7, 41, 13, 19, 43, 61, 7, 5, 5, 7, 19, 11, 31, 17, 37, 5, 3169, 13, 11.

Case 3. S ∼= A3(q), q = 2, 3, 4, 5, 9;A4(2); 2A2(q), q = 3, 4, 5, 7, 8, 11, 32; 2A3(q), q =

2, 3;C2(q), q = 3, 4, 5, 8; D4(2); 2F4(2)
′
; 2B2(8).

According to the Atlas group table, if S ∼= A3(2), A3(3), A4(2),2A2(3),2A2(4),
2A2(5),2A2(7),2A2(8),2A2(11),2A3(2),2A3(3), C2(3), C2(4), C2(5), D4(2),2 F4(2)

′
,

2B2(8), then |I(G)| < 1
2
|J(G)| is obtained. If S ∼= A3(4), A3(5), A3(9),2A2(32),

C2(8), according to the order of the group S, there exist r is 7, 13, 7, 5, 31. Again, by Lemma
2.6 and Theorem 3 of [12], it is verified that there exists |I(Aut(S))| < 1

2
|J(S)|.

For |I(Aut(S))| < 1
2
|J(S)| appears in the above three cases due to S ≤ G ≤ Aut(S), and

hence |I(G)| ≤ |I(Aut(S))| < 1
2
|J(S)| ≤ 1

2
|J(G)|. Thus, if S is a group not isomorphic to

A5, A6 in (i),(ii),(iii), by Lemma 2.2, both yield α(G) < 1
2
. Thus, if S is a simple group of Lie

type, G ∼= A5, S5, S6.
Finally, if the group S is a sporadic simple group according to the Atlas group table, we check

that we have |I(G)| < 1
2
|J(G)|. According to Lemma 2.2, we have α(G) < 1

2
. In summary, we

have G ∼= A5, S5, S6, if α(G) ≥ 1
2
. The proof is complete. �
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