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NORM ESTIMATES FOR OPERATORS IN NORM-ATTAINABLE
C*-ALGEBRAS

SABASI OMAORO, BENARD OKELO∗, OMOLO ONGATI

Abstract. Norm estimates for various types of Banach algebra operators have been studied
over decades with interesting results obtained. However, it still remains an open problem to
determine the norm of an operator in a general Banach space setting. In this note, we consider
norm attaining operators in C*-algebras and establish their lower bound and upper bound norm
estimates.

1. Introduction

The theory of norm-attaining operators appeared in the second half of the twentieth century
(see [6], [7]- [11] and the references therein). It started with the classical Bishop-Phelps Theorem
[1] which established that the set of norm attaining functionals for a Banach space is dense in
the dual space. A question on whether there could be an extension of this result for operators
was raised. Lindenstrauss [5] endeavored to answer this question by conducting a study which
resulted in a first counter example in addition to obtaining other positive results. Other several
researchers have also tackled the notion of norm-attainability with interesting results obtained
(see [2] and [4]). In this paper we characterize norms of norm attaining operators in C∗-algebras
and establish these norms via the lower bound and upper bound norm estimates.

2. Preliminaries

We provide some useful preliminary concepts which are useful in the sequel in this section.

Definition 2.1. ( [15]) A nonnegative function ‖.‖ : V → R with real values is a norm if the
following conditions are satisfied:

(i). ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0 ∀x ∈ V
(ii). ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ V
(iii). ‖λx‖ = |λ|‖x‖ ∀λ ∈ C and x ∈ V.

The ordered pair (V, ‖.‖) is then known as a normed space. For details on normed spaces
see [2], [12], [13] and [14].
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Definition 2.2. ( [3]) A C∗-Algebra is a Banach algebra A having an involution ∗ (that is a
conjugate linear map of A onto itself satisfying (x∗)∗ = x and (xy)∗ = y∗x∗ for x, y ∈ A) which
satisfies ‖x∗x‖ = ‖x‖2 for all x ∈ A.

Definition 2.3. ( [8]) Let H be a complex Hilbert space and B(H) be the C*-algebra of all
bounded linear operators on H. An operator A ∈ B(H) is said to be norm-attaining if there
exists x ∈ H with ‖x‖ = 1 such that ‖Ax‖ = ‖A‖.

Remark 2.4. For details on norm-attainability criterion and characterization of norm-
attainable operators, see [9] and [10].

3. Main Results

We characterize norms of norm attaining operators in C∗-algebras. The set of all norm attaining
operators is denoted by NA(H). We note that NA(H) is a norm-attainable C∗-algebra. We
begin with the following result.

Theorem 3.1. Let So ∈ NA(H) and So = S∗o . Then µ ∈ R exists in order for S∗(ϕo(Sog)) =

µϕo(g) and ‖So‖ = µ.

Proof. Let Γo1 ,Γo2 ∈ [NA(H)]∗ be defined as Γo1(fo) = 〈fo, ϕo1(g)〉,
Γo2(fo) = 1

‖So‖〈Sofo, ϕo2(g)〉 = 1
‖So‖〈fo, S

∗(ϕo2(Sog))〉. Then ‖Γo1‖ = 1 (since ‖ϕo1(g)‖ = 1)

and Γo1(g) = ‖g‖, so Γo1 norms g. Similarly ‖ϕo2(Sog)‖ = 1 implies that ‖Γo2‖ ≤ 1, but using
‖Sog‖ = ‖So‖‖g‖ we have Γo2(g) = ‖g‖ which means that g is normed by Γo2 . Now, since (H)

is smooth, then Γo1 = Γo2 . Therefore the result holds with µ = ‖So‖ as required. �

Corollary 3.2. Let NA(H)1 = Lq(X,µ), NA(H)2 = Lp(Y,W ) where q, p ∈ (1,∞) with h

being a solution in Proposition 3.1 . Let S ∈ NA(H) in order for S : NA(H)1 → NA(H)2.
Then S has h as its critical point and β = αq‖g‖q−pp . Moreover ‖S‖ = αq.

Proof. We first note that if h satisfies theorem 3.1, then we have
‖Sh‖p = 〈Sh, ϕo2(Sh)〉 = 〈h, S∗ϕo2(Sh)〉 = 〈h, λϕo1(h)〉 = λ‖h‖q. Substituting ϕLq(h) =

‖h‖−(q−1)
p sgn(h)|h|q−1 into

S∗(ϕo2(Sh)) = λϕo1(h) and multiplication by ‖Sh‖p−1
p gives

S∗((Sh)|Sh|q−1) = λ‖Sh‖p−1
p ‖h‖

−(q−1
p (h)|h|q−1 = λp‖h‖p−qq (h)|h|q−1 as required. �

Proposition 3.3. Let S ∈ NA(H) be bounded and ‖S‖ < 1. Then (I − S) is bounded with an

inverse equal to
∞
Σ
k=0

Sk i.e limn→∞
n

Σ
k=0

Sk is norm convergent to (I − S)−1.

Proof. Given ‖S‖ < 1 then
n

Σ
k=0
‖S‖k is a geometric series which is convergent and

n

Σ
k=0
‖Sk‖ <

n

Σ
k=0
‖S‖k then implies the sequence

n

Σ
k=0
‖Sk‖ is norm cauchy and therefore converges to a bounded

operator as the range of S is a Banach space. Now as a power series, (I − S)
∞
Σ
k=0

Sk =
∞
Σ
k=0

(Sk −

Sk+1) = 1 since it is norm convergent. Likewise, (
∞
Σ
k=0

Sk)(1 − S) =
∞
Σ
k=0

(Sk − Sk+1) = 1 which

shows that the series is equal to (1− S)−1 hence completing the proof. �

Proposition 3.4. Let S ∈ Mn be norm attaining and ψ : Mn → Cn be a contractive linear
mapping so that ψ(S) = ‖S‖. Then ∃ a vector ξ ∈ Cn where ‖ξ‖ = 1 and ‖Sξ‖ = ‖S‖ with
〈Sξ, ξ〉 = ϕ(I)‖S‖.
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Proof. Let S 6= 0 and ‖S‖ = 1 (or else S can be replaced by S
‖S‖). By Theorem ??, a matrix

C ∈Mn exists so that we have ψ(Q) = trace (CQ) ∀Q ∈Mn. Letting C = PoV where Po ∈M+
n

and V is unitary, trace Q = ψ(V ∗) ≤ ‖V ∗ = 1 = ψ(S)‖ = trace (PoV S). Let Q = V ∗P
1
2
o

and A = SP
1
2
o . Then trace (Q∗A) = trace (PoV S) = 1, trace (Q∗Q) = trace (Po) ≤ 1,

trace (A∗A) = trace (P
1
2
o S∗SP

1
2
o ) ≤ trace (Po) ≤ 1 and therefore trace (Q − A)∗(G − A) ≤ 0.

Hence Q = A, trace (Po) = trace (Q∗G) = trace (Q∗A) = 1 and trace (SPo) = trace (V ∗Po) =

φ(I). Since Po = P
1
2
o Q∗QP

1
2
o = P

1
2
o Y ∗Y P

1
2
o = P

1
2
o S∗SP

1
2
o , then it means range Po is an m-

dimensional linear subspace u ∈ Cn : ‖Su‖ = ‖u‖ with 1 ≤ m ≤ n. If B is a matrix
whose order is n × m so that B∗B = Ik where BB∗ is a projection onto range P , we have
PoBB

∗ = Po = BB∗Po where B∗PoB is a matrix belonging to a compact convex set D = {R ∈
M+

k : trace R = 1, trace (B∗SBR) = ψ} found through the intersection between three real
hyperplanes and the k × k hermitian matrices, M+

k . D contains a rank-1 matrix xx∗ where
x ∈ Ck with the properties 〈B∗SBx, x〉 = ψ(I) and ‖x‖2 = 1 = tr (xx∗). If we take y = Bx,
all the required conditions for y are obtained. �

Proposition 3.5. Let S1, S2 ∈ NA(H) be nonzero k× k matrices. Then the statements which
follow are similar.

(i). ∃ unit vectors x, ξ ∈ Ck such that ‖S1x‖ = ‖S1‖, ‖S2ξ‖ = ‖S2‖ and 〈S1x,x〉
‖S1‖ = 〈S2ξ,ξ〉

‖S2‖ .
(ii). ∃ unit vectors x, y ∈ Cn such that ‖S1x‖ = ‖S1‖, ‖S2ξ‖ = ‖S2‖ and ‖S1x‖ + ‖S2ξ‖ ≤
‖(S1 + µI)x‖+ ‖(S2 − µI)ξ‖ ∀µ ∈ C.

(iii). ‖S1‖+ ‖S2‖ ≤ ‖S1 + µI‖+ ‖S2 − µI‖ ∀µ ∈ C

Proof. (i)⇒ (ii):Suppose x and ξ satisfy condition (i). Then

‖S1x‖+ ‖S1ξ‖ =

∥∥∥∥∥
(

〈S1x, x〉
{‖S1x‖2 − |〈S1x, x〉|2}

1
2

)∥∥∥∥∥+

∥∥∥∥∥
(

〈S2ξ, ξ〉
{‖S2y‖2 − |〈S2ξ, ξ〉|2}

1
2

)∥∥∥∥∥
= ‖

(
〈(S1 + µI)x, x〉

{‖(S1 + µI)x‖2 − |〈(S1 + µI)x, x〉|2} 1
2

)

+

(
〈(S2 − µI)ξ, ξ〉

{‖(S2 − µI)ξ‖2 − |〈(S2 − µI)ξ, ξ〉|2} 1
2

)
‖

≤

∥∥∥∥∥
(

〈(S1 + µI)x, x〉
{‖(S1 + µI)x‖2 − |〈(S1 + µI)x, x〉|2} 1

2

)∥∥∥∥∥
+

∥∥∥∥∥
(

〈(S2 − µI)ξ, ξ〉
{‖(S2 − µI)ξ‖2 − |〈(S2 − µI)ξ, ξ〉|2} 1

2

)∥∥∥∥∥
= ‖(S1 + µI)x‖+ ‖(S2 − µI)ξ‖

(ii)⇒ (iii) as the vectors x and ξ are unit. (iii)⇒ (i):Considering (Mk×Mk, u) which is a linear
normed space with u(X1, X2) = ‖X1‖ + ‖X2‖, we have a contractive linear functional ψ with
respect to u on span {(S1, S2), (I,−I)} defined by ψ(S1, S2) = ‖S1‖+ ‖S2‖ and g(I,−I) = 0 if
and only if (iii) holds. Now ψ is extended to a contractive linear functional Ψ on Mk ×Mk by
Hahn Banach Theorem to get ‖S1‖+ ‖S2‖ = Ψ(S1, S2) ≤ |Ψ(S1, 0)|+ |Ψ(0, S2)| ≤ ‖S1‖+ ‖S2‖
which gives Ψ(S1, 0) = ‖S1‖ and (0, S2) = ‖S2‖. By Proposition 3.4 and given that X1 7→
Ψ(X1, 0) is contractive we have a unit vector x ∈ Cn giving ‖S1x‖ = ‖S1‖ and 〈Sx,x〉‖S1‖ = Ψ(I, 0).
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Likewise, we have a complex unit vector ς such that ‖S2ς‖ = ‖S2‖ and 〈S2ς,ς〉
‖S2‖ = F (0, I). Finally,

since Ψ(I,−I) = Ψ(I, 0)−Ψ(0, I) then F (I, 0) = F (0, I) = 0 and therefore (i) is true. �

Lemma 3.6. Let S1, S2 ∈ NA(H). Then sup{‖U∗S1U + V ∗S2V ‖} = min{‖S1 + µI‖+ ‖S2 −
µI‖} where U ,V are unitaries and µ ∈ C. Additionally the above equality is equivalent to
sup{‖S1X + S2X‖ : X ∈ NA(H), ‖X‖ ≤ 1} and further equivalent to sup{‖s + t‖ : s ∈
Γ(S1), t ∈ Γ(S2)}.

Proof. Let β ∈ C and a ∈ [0,∞). Suppose x, x′ ∈ H are unit vectors where 〈x, x′〉 = 0 giving
S1x = β + ax

′ with x uniquely determining x′ for all a 6= 0. Then(
β

a

)
=

(
〈S1x, x〉

{‖S1x‖2 − |〈S1x, x〉|2}
1
2

)
is a vector in C× R whose length is ‖S1x‖. Let

(1)

Φ(S1) =

(
〈S1x, x〉

{‖S1x‖2 − |〈S1x, x〉|2}
1
2

)
⊆ C× [0,∞)(2)

It should be noted that Γ(S1 + µI) = {u+

(
µ

0

)
: u ∈ Γ(S1)} since

{‖S1x‖2 − |〈S1x, x〉|2}
1
2 = {‖(S1 + µI)x‖ − |〈(S1 + µI)x, x〉|2}

1
2 .

Hence Γ(S1) + Γ(S2) = Γ(S1 + µI) + Γ(S2 − µI) which therefore means
sup{‖x+ x

′‖ : u ∈ Γ(S1), v ∈ Γ(S2)}
= sup{‖x + x′‖ : x ∈ Γ(S1 + µI), x′ ∈ Γ(S2 − µI)}∀µ ∈ C. Now taking e1, e2 ∈ H be unit
vectors such that 〈e1, e2〉 = 0 and letting x ∈ Γ(S1), x′ ∈ Γ(S2), then we have U, V ∈ NA(H)

as unitary operators to give x =

(
〈U∗S1Ue1, e1〉
〈U∗S1Ue1, e2〉

)
and x′

=

(
〈V ∗S2V e1, e1〉
〈V ∗S2V e1, e2〉

)
. This gives

‖x+ x
′‖ = ‖(U∗S1U + V ∗S2V )e1‖ ≤ ‖U∗S1U + V ∗S2V ‖

so that
sup{‖x + x

′‖ : x ∈ Γ(S1), x
′ ∈ Γ(S2)} ≤ sup{‖U∗S1U‖ + ‖V ∗S2V ‖}. It is clear that if

A ∈ NA(H) is a contraction with µ ∈ C, then

‖S1A+ AS2‖ ≤ ‖(S1 + µI)A‖+ ‖A(S2 − µI)‖

≤ ‖S1 + µI‖+ ‖S2 − µI‖

and therefore

sup{‖U∗S1U + V ∗S2V ‖} = sup{‖S1UV
∗ + UV ∗S2‖}

≤ sup{‖S1A+ AS2‖ : ‖X‖ ≤ 1}

≤ min{‖S1 + µI‖+ ‖S2 − µI‖ : µ ∈ C}

It is now sufficient to show that,

min{‖S1 + µI‖+ ‖S2 − µI‖} ≤ sup{‖u+ v‖ : u ∈ Γ(S1), v ∈ Γ(S2)}(3)

If S1 or S2 is a scalar operator, the result holds. Suppose none of the two is a scalar. We start
with the finite-dimensional case by letting ‖S1+µ0I‖+‖S2−µ0I‖‖ ≤ ‖S1+µI‖+‖S2−µI‖∀µ ∈
C. Since Γ(S1) + Φ(S2) = Γ(S1 + µI) + Γ(S2 − µI), we may take µ0 = 0 to simplify the work.

https://doi.org/10.28919/ejma.2023.3.24
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By Proposition 3.5, we have unit vectors ξ, ζ ∈ Cn such that ‖S1ξ‖ = ‖S1‖, ‖S2ζ‖ = ‖ζ‖ and
〈S1x,x〉
‖S1‖ = 〈Tζ,ζ〉

‖S2‖ . Let

x =

(
〈S1ξ, ξ〉

{‖S1ξ‖2 − |〈S1ξ, ξ〉|2}
1
2

)
∈ Γ(S1), x′

=

(
〈S2ζ, ζ〉

{‖S2ζ‖2 − |〈S2ζ, ζ〉|2}

)
∈ Γ(S2) so that we

have ‖x+ x
′‖ = ‖x‖+ ‖x′‖ = ‖S1ξ‖+ ‖S2ζ‖ = ‖S1‖+ ‖S2‖ as required.

We next look at the infinite-dimensional case. Assume inequality (3) is false. Then a real
number ε > 0 exists which gives
sup{‖x + x

′‖ : x ∈ Γ(S1), x
′ ∈ Φ(S2)} < ‖S1 + µI‖ + ‖S2 − µI‖ − ε for all complex numbers

µ. Therefore infinitely many complex numbers α1, ..., αm can be found to give {µ ∈ C : |µ| ≤
‖S1‖ + ‖S2‖} ⊆

⋃m
i=1{α ∈ C : |α − αi| < ε

4
}. Choosing unit vectors ς1, ..., ςm and η1, ..., ηm

in H we have ‖(S1 + αiI)ςi‖ > ‖S1 + αiI‖ − ε
4
and ‖(S2 − αiI)ηi‖ > ‖S2 − αiI‖ − ε

4
for

all i = 1, ...m. Letting Ho be the finite-dimensional subspace of H whose spanning vectors
are ξ1, ..., ξm, η1, ..., ηm and S1ξ1, ..., S1ξm, S2η1, ..., S2ηm while S ′1, S ′2 are compressions of S1, S2

respectively with I ′ also being a compression of I on Ho, we get

min{‖S1 + µI
′‖+ ‖S2 − µI

′‖}

= sup{‖x+ x
′‖ : x ∈ Γ(S1), x

′ ∈ Γ(S2)}(4)

≤ sup{‖x+ x
′‖ : x ∈ Γ(S1), x

′ ∈ Γ(S2)}(5)

by applying the finite dimensional case. Moreover, for each µ ∈ C with |µ| ≤ ‖S1‖ + ‖S2‖,
there exists i so that |µ− αi| < ε

4
and hence

‖S ′1 + µI ′‖ > ‖S ′1 + αiI
′‖ − ε

4

≥ ‖(S ′1 + αiI
′)xi‖ −

ε

4

= ‖(S1 + αiI)xi‖ −
ε

4

> ‖S1 + αiI‖ −
ε

2

Similarly, ‖S ′2 − µI ′‖ > ‖S2 − αiI‖ − ε
2
so that

‖S ′1+µI ′‖+‖S ′2−µI ′‖ > sup{‖x+x
′‖ : x ∈ Γ(S1), x

′ ∈ Γ(S2)}. Likewise when |µ| > ‖S1‖+‖S2‖
we get

‖S ′1 + µI ′‖+ ‖S ′2 − µI ′‖ ≥ ‖2µI ′‖ − ‖S ′1‖+ ‖S ′2‖

> ‖S1‖+ ‖S2‖

> sup{‖x+ x
′‖ : x ∈ Γ(S1), x

′ ∈ Γ(S2)}.

Hence this contradicts inequality (5) which therefore means that inequality (3) is true. �

Theorem 3.7. Let S, T ∈ NA(H) and µ0 ∈ C. Then ‖S − µ0I‖ + ‖T − µ0I‖ ≤ ‖S − µI‖ +

‖ − µIT‖∀µ ∈ C. Moreover, if δ1 = ‖S − µ0I‖ and δ2 = ‖T − µ0I‖, then

(6) sup{‖S − U∗TU‖ : U unitary} = δ1 + δ2

(7) ‖g(S) + U∗h(T )U‖ ≤ max
z∈Γ(µ0;δ1)

|g(z)|+ max
z∈Γ(µ0;δ2)

|h(z)|

for every U and every pair g(t) and h(t) of polynomials.

https://doi.org/10.28919/ejma.2023.3.24
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Proof. Suppose S, T ∈ NA(H) and that the hypotheses are satisfied by δ1, δ2, µo. Then by
Proposition 3.6 the pair (S,−T ) gives

sup{‖S − U∗TU‖ : Uunitary} = ‖S − µ0I‖+ ‖T − µ0I‖

= δ1 + δ2

as claimed. Using the Von Neumann inequality gives

‖g(S) + U∗h(T )U‖ ≤ g(S) + ‖h(T )‖

≤ max
z0∈Γ(µ0;δ1)

|g(z0)|+ max
z0∈Γ(µ0;δ2)

|h(z0)|

�

Proposition 3.8. Let So, S1 ∈ NA(H) and E(So, S1) set of complex numbers β0 satisfying
‖So − β0I‖ + ‖S1 − β0I‖ ≤ ‖So − βI‖ + ‖S1 − βI‖ ∀β ∈ C, then E(So, S1) is either a closed
line segment or a single point.

Proof. Being a set of complex numbers, (So, S1) is clearly a compact set. We now prove the
convexity of E(So, S1). Letting β1, β2 ∈ E(So, S1) and β0 = tβ1 + (1− t)β2 with t ∈ (0, 1) gives
‖So − β0I‖ + ‖S1 − β0I‖ ≤ t{‖So − β1‖ + ‖S1 − β1I‖} + (1 − t){‖So − β2I‖ + ‖S1 − β2I‖} ≤
‖So − βI‖ + ‖S1 − βI‖ ∀β ∈ C. Therefore β0 ∈ E(So, S1). Suppose that E(So, S1) does not
include any disk Do(β0; δ) = {β ∈ C : |β − β0| ≤ δ} with δ > 0. Incase Do(β0; δ) ⊆ E(So, S1),
we further assume that β0 = 0 with (So, S1) in the place of (So − β0I, S1 − β0I). Hence

(8) ‖So‖+ ‖S1‖ = ‖So − βI‖+ ‖S1 − βI‖ ∀β ∈ Do(0; δ)

Since Do(0; δ) \ {0} is a set which is connected and g : Do(0; δ) \ {0} → R is a continuous
function defined by g(β) = ‖So − βI‖ − ‖So + βI‖ and given that −g(β) = g(−β), there must
exist β′ 6= 0 to give g(β′) = 0 that is ‖So − β′I‖ = ‖So + β′I‖. By equality (8), it is true that
‖S1 − β′I‖ = ‖S1 + β′I‖. But

2‖So − β′I‖2 = ‖So − β′I‖2 + ‖So + β′I‖2

≥ ‖(So − β′I)∗(So − β′I) + (So + β′I)∗(So + β
′
I)‖

= 2‖S∗oSo + |β′|2I‖

= 2{‖So‖2 + |β′|2}

> 2‖So‖2

which leads to ‖So − β′I‖ > ‖So‖. Similarly, ‖So − β′I‖ > ‖So‖ and therefore we get ‖So‖ +

‖S1‖ < ‖So − β′I‖ + ‖S1 − β′I‖ which contradicts equality (8). Hence E(So, S1) is either a
closed line segment or a single point.

�

Proposition 3.9. Let S1, S2, S3 ∈ NA(H) with S1 and S2 positive. Then |〈S3x, y〉|2 ≤

〈S1x, x〉〈S2y, y〉 ∀x, y ∈ H if and only if

(
S1 S∗3
S3 S2

)
is positive in NA(H ⊕H).

Proof. Assume that

(
S1 S∗3
S3 S2

)
is a positive operator in NA(H ⊕ H). Then ∀x, y ∈ H, the

Schwarz inequality for positive operators gives

https://doi.org/10.28919/ejma.2023.3.24
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〈(

S1 S∗3
S3 S2

)(
x

0

)
,

(
0

y

)〉∣∣∣∣∣
2

≤

〈(
S1 S∗3
S3 S2

)(
x

0

)
,

(
x

0

)〉〈(
S1 S∗3
S3 S2

)(
0

y

)
,

(
0

y

)〉
. Simplification of these in-

ner products gives the required result.
Conversely, suppose the result is true. Then given any x, y ∈ H, we get〈(

S1 S∗3
S3 S2

)(
x

y

)
,

(
x

y

)〉
= 〈S1x, x〉+ 〈S∗3y, x〉

+〈S3x, y〉+ 〈S2y, y〉

= 〈S1x, x〉+ 〈S2y, y〉+ 2Re〈S3x, y〉

≥ 2〈S1x, x〉
1
2 〈Ty, y〉

1
2 + 2Re〈S3x, x〉

≥ 2|〈S3x, y〉|+ 2Re〈S3x, y〉

≥ 2|〈S3x, y〉| − 2|〈S3x, y〉|

= 0

Hence

(
S1 S∗3
S3 S2

)
is positive.

�

Lemma 3.10. Let S1, S2, S3 ∈ NA(H) and S1, S2 be positive with S2S3 = S3S1. If(
S1 S∗3
S3 S2

)
∈ NA(H ⊕ H) is positive , then

(
g(S1)2 S∗3
S3 h(S1)2

)
is also positive for con-

tinuous non-negative functions g and h on [0,∞) which satisfies the condition that g(t)h(t) = t

for t in the interval [0,∞).

Proof. Suppose S1 and S2 are both invertible, then for any continuous function h on [0,∞),
h(A)S3 = S3h(S1) since S2S3 = S3S1. Similarly, since t ∈ [0,∞) implies g(t)h(t) = t,
then g(C)h(C) = C for any operator C ∈ NA(H) which is positive. This implies that
h(S2)S

− 1
2

2 S3g(S1)S
− 1

2
1 = S3. Therefore,(

g(S1)2 S∗
2

3

S3 h(S1)

)
=

(
g(S1)S

− 1
2

1 0

0 h(S2)S
− 1

2
2

)(
S1 S∗3
S3 S2

)(
g(S1)S

− 1
2

1 0

0 h(S2)S
− 1

2
2

)

which together with the fact that

(
S1 S∗3
S3 S2

)
is positive completes the proof. �

Lemma 3.11. Let S ∈ NA(H). Then

(
|S| S∗

S |S∗|

)
is a positive operator in NA(H ⊕ H)

where |S| = (S∗S)
1
2 and |S∗| = (SS∗)

1
2 .

Proof. On H⊕H, let A =

(
0 S∗

S 0

)
. Then A is self-adjoint and A2 =

(
S∗S 0

0 SS∗

)
. Since

the square root of a positive operator is unique, we get
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A =

(
|S| 0

0 |S∗|

)
. This therefore means that by the spectral theorem |A| + |A| is positive

due to A being self-adjoint. Hence

(
|S| S∗

S |S∗|

)
is positive in NA(H ⊕H). �

Theorem 3.12. Let S ∈ NA(H) and f and h be as in Proposition 3.10. Then |〈Sπ, π〉| ≤
‖f(|S|)π‖‖h(|S∗|)y‖ for each π and y in H.

Proof. As S|S|2 = |S∗|2S, it follows that S|S| = |S∗|S and hence by Lemmas 3.10 and 3.11, we

have

(
f(|S|)2 S∗

S h(|S∗|)2

)
being positive in NA(H ⊕H). Therefore from Proposition 3.9 the

result follows. �

Lemma 3.13. Let So, S1 ∈ NA(H). Then ‖So+S1‖ = ‖So‖+‖S1‖ is equivalent to ‖So‖‖S1‖ ∈
W (S∗oS1).

Proof. Let ‖So + S1‖ = ‖So‖ + ‖S1‖. Then a sequence of vectors {yn}n for each n exists with
‖yn‖ = 1 such that limn→∞ ‖Soyn + S1yn‖ = ‖So‖+ ‖S1‖. But

‖Soyn + S1yn‖ ≤ ‖Soyn‖+ ‖S1yn‖

≤ ‖So‖‖yn‖+ ‖S1‖‖yn‖

≤ ‖So‖+ ‖S1‖

which means that limn→∞(‖Soyn‖ + ‖S1yn‖) = ‖So‖ + ‖S1‖. Hence it can be deduced that
limn→∞ ‖Soyn‖ = ‖S1‖ and limn→∞ ‖Soyn‖ = ‖So‖. Thus the identity
‖Soyn + S1yn‖2 = ‖Soyn‖2 + ‖S1yn‖2 + 2Re(〈S∗oS2yn, yn〉) shows that
limn→∞Re(〈S∗oS1yn, yn〉) = ‖So‖‖S1‖ and since
|〈S∗oS1yn, yn〉| = (Re(〈S∗oS1yn, yn〉))2 + (Im(〈S∗oS1yn, yn〉))2)

1
2 and

|〈S∗oS2yn, yn〉| ≤ ‖S∗oS1yn‖

≤ ‖So‖‖S1‖

then we have limn→∞ |〈S∗oS1yn, yn〉| = ‖So‖‖S1‖. Thus limn→∞ Im(〈S∗oS1yn, yn〉) = 0 which
implies that limn→∞〈S∗oS1yn, yn〉 = ‖So‖‖S1‖ meaning ‖So‖‖S1‖ ∈ W (S∗oS1). Conversely, as-
sume that ‖So‖‖S1‖ ∈ W (S∗oS1) and consider {yn}n ∈ H, which gives limn→∞〈S∗oS1yn, yn〉 =

‖So‖‖S1‖. Then since

|〈S∗oS1yn, yn〉| ≤ ‖Soyn‖‖S1‖

≤ ‖So‖‖S1‖

it follows that limn→∞ ‖Soyn‖ = ‖So‖. Similarly we have limn→∞ ‖S1yn‖ = ‖S1‖ and since

‖Soyn + S1yn‖2 = ‖Soyn‖2 + ‖S1yn‖2 + 2Re(〈S∗oS1yn, yn〉)

and limn→∞Re(〈S∗oS1yn, yn〉) = ‖So‖‖S1‖, then limn→∞ ‖Soyn + S1yn‖ = ‖So‖ + ‖S1‖. Hence
‖So + S1‖ = ‖So‖+ ‖S1‖. �

Theorem 3.14. Let So, S1 ∈ NA(H). Then the statements which follow are similar.

(i). ∃ β ∈ C with |β| = 1 in order for ‖So + βS1‖ = ‖So‖+ ‖S1‖
(ii). ∃ β ∈ C with |β| = 1 in order for β‖So‖‖S1‖ ∈ W (S∗1So)

https://doi.org/10.28919/ejma.2023.3.24
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(iii). ∃ β ∈ C with |β| = 1 in order for β‖So‖‖S1‖ ∈ σap(S∗1So)
(iv). w(S∗oS1) = ‖S∗oS1‖ = ‖So‖‖S1‖
(v). r(S∗oS1) = ‖S∗oS1‖ = ‖So‖‖S1‖

Proof. (i)⇔ (ii) is as a result of Lemma 3.13. (iii)⇔ (ii)⇔ (iv) and (v)⇔ (iii) are obvious.
(iv) ⇔ (v) is as a result of the fact that for any operator A ∈ H, r(A) = ‖A‖ if and only if
w(A) = ‖A‖. �

Proposition 3.15. Let So, S1 ∈ NA(H). Then ‖So‖‖S1‖ ∈ W (S∗oS1) and 0 ∈ σap(‖S1‖So −
‖So‖S1) is equivalent to either So or S1 being isometric.

Proof. Suppose ‖So‖‖S1‖ ∈ W (S∗oS1). Then we have a sequence {yn}∞n=1 of vectors for all n
with ‖yn‖ = 1 so that limn→∞〈S∗oS1yn, yn〉 = ‖So‖‖S1‖. Therefore limn→∞Re〈S∗oS1yn, yn〉 =

‖So‖‖S1‖ and as

|〈S∗oS1yn, yn〉| ≤ ‖Soyn‖‖S1yn‖

≤ ‖So‖‖S1‖‖yn‖2

≤ ‖So‖‖S1‖

then limn→∞ ‖S1yn‖ = ‖S1‖. Similarly, we have limn→∞ ‖Soyn‖ = ‖So‖. But

‖(‖S1‖Soyn − ‖So‖S1yn)‖2 = ‖S1‖2‖Soyn‖2 + ‖So‖2‖S1yn‖2

−2‖So‖‖S1‖Re(〈S∗oS1yn, yn〉)

which implies that limn→∞ ‖(‖S1‖Soyn − ‖So‖S1yn)‖ = 0 i.e 0 ∈ σap(‖S1‖So − ‖So‖S1).
For the converse, suppose S1 is isometric. Then 0 ∈ σap(So − ‖So‖S1) means a sequence
{yn}n ⊆ H exists with ‖yn‖ = 1 so that
limn→∞ ‖Soyn − ‖So‖S1yn‖ = 0. From ‖Soyn − ‖So‖S1yn‖ ≥ |‖Soyn‖ − ‖So‖|, we have
limn→∞ ‖Soyn‖ = ‖So‖. But since limn→∞〈(Soyn − ‖So‖S1yn), Soyn〉 = 0 we deduce that
limn→∞〈S∗oS1yn, yn〉 = ‖So‖ and hence ‖So‖ ∈ W (S∗oS1). �

4. Conclusion

Determining norms of operators still remains an open problem particularly in the general
Banach space setting. Norm estimates for various types of Banach algebra operators have
been studied over decades with interesting results obtained. In this note, we considered norm
attaining operators in C*-algebras and established their lower bound and upper bound norm
estimates.
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