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RATE OF CONVERGENCE IN THE KOLMOGOROV DISTANCE FOR
THE MINIMUM CONTRAST ESTIMATOR IN THE HESTON MODEL

JAYA P. N. BISHWAL

Abstract. We develop a new explicit estimator of the mean reversion parameter in the Heston
model by using the minimum contrast method. We obtain a bound on the Kolmogorov distance
for the distribution of the approximate minimum contrast estimator and the normal distribution
for high frequency data.

1. Introduction

Due to the availability of high frequency market price data of stocks, currencies, and other
financial instruments, statistics of high frequency data has seen a revolution recently. One
of the fundamental problems is the estimation of integrated volatility in the statistics of high
frequency data. Hence realized volatility which is a measure of the integrated volatility has
received considerable interest in recent days empirical finance. The realized volatility is defined
as the sum of squared increments of returns, which is basically quadratic variation of log-
prices. In Heston stochastic volatility model (see Heston [1]), the unknown parameters are
present in the unobserved volatility process. We focus on the estimation of the mean reversion
parameter based on the high frequency log-price data. Barndorff-Nielsen and Shephard [2–4]
also studied stochastic volatility models where the unobserved stochastic volatility process is
Ornstein-Uhlenbeck type driven by positive Levy processes. Woerner [5] studied estimation
of integrated volatility in stochastic volatility models. Jacod [6] studied asymptotic properties
of realized power variations for semimartingales. Jacod and Reiss [7] studied the rates of
convergence for integrated volatility estimation in the presence of semimartingales. Parameter
estimation in stochastic differential equations from direct observations is studied in Bishwal [8].
Parameter estimation in stochastic volatility models from partial observations is extensively
studied in see Bishwal [9].

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis on which the Cox-Ingersoll-Ross (CIR) process
{Xt} is defined satisfying the Itô stochastic differential equation

dXt = (1− 2θXt)dt+ 2
√
XtdWt, t ≥ 0 (1.1)
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where {Wt, t ≥ 0} is a standard Wiener process with the filtration {Ft}t≥0 and consider the
classical direct estimation problem where θ > 0 is the unknown parameter to be estimated on
the basis of discrete observations of the process {Xt} at times 0 = t0 < t1 < · · · tn = T with
ti − ti−1 = T

n
, i = 1, 2 · · · , n. For our asymptotic framework, we assume two types of high

frequency data with long observation time: 1) T → ∞, n → ∞, T√
n
→ 0, 2) T → ∞, n →

∞, T
n2/3 → 0. Recall that in the standard definition of CIR process, there is a mean reversion

level parameter α, mean reversion speed parameter β and a volatility of volatility parameter
σ. However, first we consider the simplified model (1.1) in the beginning in order to keep the
presentation simple.

For the moment assume that a continuous realization {Xt, 0 ≤ t ≤ T} be denoted by XT
0 .

Let P T
θ be the measure generated on the space (CT , BT ) of continuous functions on [0, T ] with

the associated Borel σ-algebra BT generated under the supremum norm by the process XT
0 and

let P T
0 be the standard Wiener measure. It is well known that when θ is the true value of the

parameter P T
θ is absolutely continuous with respect to P T

0 and the Radon-Nikodym derivative
(likelihood) of P T

θ with respect to P T
0 based on XT

0 is given by

LT (θ) :=
dP T

θ

dP T
0

(XT
0 ) = exp

{
−θ
∫ T

0

dXt −
θ2

2

∫ T

0

Xtdt

}
. (1.2)

Consider the score function, the derivative of the log-likelihood function, which is given by

γT (θ) := −
∫ T

0

dXt − θ
∫ T

0

Xtdt. (1.3)

A solution of the estimating equation γT (θ) = 0 provides the maximum likelihood estimate
(MLE)

θ̂T :=
−XT +X0 + T/2∫ T

0
Xtdt

. (1.4)

Minimum contrast estimator (MCE) is an alternative to the maximum likelihood estimator
which does not involve the stochastic integral and hence is easier for simulation. It preserves
similar asymptotic properties of the MLE. The popularM -estimator is reduced to the minimum
contrast estimator, see Bishwal [8]. As far as we know, rate of normal approximation in the
Kolmogorov distance for the minimum contrast estimator has not been studied earlier. Our
aim in this paper is to bridge this gap. Consider the minimum contrast estimate (MCE)

θT :=
T/2∫ T

0
Xtdt

. (1.5)

Note that the volatility which is given by the CIR process is not observed. In the following
section we obtain nonparametric estimator of the minimum contrast estimator of the mean
reversion parameter in the Heston model using approximations to θT defined in (1.5).

2. Approximate Minimum Contrast Estimator

Consider the Heston stochastic volatility model

dSt = µStdt+
√
XtStdWt, (2.1)

dXt = (1− 2θXt) dt+ 2σ
√
XtdZt, (2.2)
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where {Wt}, a standard Brownian motion, is independent of another standard Brownian motion
{Zt} and θ > 0. We assume that X0 > 0. The process X is strictly positive and never hits
zero. Here θ corresponds to the speed of adjustment, 1/θ is called the mean and σ is called
the volatility of volatility. It is well known that the X process is ergodic and has a stationary
distribution. The distribution of its future value given the current is non-central chi-square and
the distribution of the limit value is gamma. The integrated volatility is given by

IT :=

∫ T

0

Xtdt. (2.3)

The process IT which is the integrated volatility (energy) of the CIR process which plays a
important role in clustering time or activity persistence in stochastic volatility modeling.

The estimator of θn,T based on discrete observations of the process {St} at times 0 = t0 <

t1 < · · · tn = T is approximate minimum contrast estimator given by

θn,T =
T

2ÎT
(2.4)

where ÎT is nonparametric estimator of IT based on discrete observations of the process {St}
at times 0 = t0 < t1 < · · · tn = T .

Integrated volatility has to be estimated on the basis of discrete observations of the process
{St} at times 0 = t0 < t1 < · · · tn = T with ti − ti−1 = T

n
, i = 1, 2 · · · , n. Denote

∆Sti−1
:= Sti − Sti−1

. (2.5)

The realized volatility or "approximate quadratic variation" is defined as

Rn,T :=
n∑
i=1

(∆Sti−1
)2. (2.6)

It is well known from Barndorff-Nielsen and Shephard [2] that

P-lim
n→∞

Rn,T = IT (2.7)

where P − lim stands for convergence in probability. and the stable convergence in law at the
rate

√
n holds, see Barndorff-Nielsen and Shephard [3]:

√
n(Rn,T − IT )→D−s

√
2

∫ T

0

XsdW
′
s as n→∞ (2.8)

where D − s stands for convergence in distribution stably.
where W ′ is a Brownian motion defined on an extension of the probability space

(Ω,F , {Ft}t≥0, P ), and which is independent of the σ-field F . Now we define the approxi-
mate minimum contrast estimator (AMCE) of θ as

θn,T :=
T

2Rn,T

=
T

2
∑n

i=1(Sti − Sti−1
)2
. (2.9)

3. Rates of Weak Convergence in the Kolmogorov Distance

For our asymptotic framework, we assume two types of high frequency data with long obser-
vation time: 1) T →∞, n→∞, T√

n
→ 0, 2) T →∞, n→∞, T

n2/3 → 0.
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Observe that (
T

2θ

)1/2

(θ̃T − θ) =

(
2θ
T

)1/2
MT(

2θ
T

)
IT

(3.1)

where

MT :=
T

2
− θIT and IT :=

∫ T

0

Xtdt. (3.2)

We have by Itô’s formula,
√
Xt is an Ornstein-Uhlenbeck process satisfying

d(
√
Xt) = θ

√
Xtdt+ dWt (3.3)

since
dXt = d(

√
Xt)

2 = 2
√
Xtd

√
Xt + d(

√
Xt)

2 = 2θXtdt+ 2XtdWt + dt

= 2θ(
1

2θ
−Xt)dt+ 2

√
XtdWt = (1− 2θXtdt) + 2

√
XtdWt.

Denote Ut :=
√
Xt. Thus

dUt = θUtdt+ dWt, t ≥ 0. (3.4)

Hence

Ut =

∫ t

0

eθ(t−u)dWu, t ≥ 0.

Introduce the following notations :

Yn,T :=
n∑
i=1

Uti−1
[Wti −W (ti−1)] , YT :=

∫ T

0

UtdWt,

Zn,T :=
n∑
i=1

Uti−1
[Uti − U(ti−1)] , ZT :=

∫ T

0

UtdUt,

In,T :=
n∑
i=1

Xti−1
(ti − ti−1), Vn,T :=

n∑
i=1

∫ ti

ti−1

Uti−1

[
Ut − Uti−1

]
dt.

In this paper, OP (δn) are random variables which are bounded in probability of the order δn,
also called stochastically bounded of the order δn.

We need the following lemma in the sequel.

Lemma 3.2 (a) Let

ΞT,x :=

(
2θ

T

)1/2

MT −
(

2θ

T
IT − 1

)
x.

Then for |x| ≤ 2(log T )1/2 and for |u| ≤ εT 1/2, where ε is sufficiently small∣∣∣∣E exp(iuΞT,x)− exp(
−u2

2
)

∣∣∣∣ ≤ C exp(
−u2

4
)(|u|+ |u|3)T−1/2.

(b) sup
x∈R

∣∣∣∣∣P
{(

2θ

T

)1/2

MT ≤ x

}
− Φ(x)

∣∣∣∣∣ ≤ CT−1/2.

Proof : From Pitman and Yor [15], the characteristic function of IT , closely associated with
Levy’s stochastic area formula, is given by

E exp(iuIT ) = exp

(
x

2iu

θ + γ coth(γT
2

)

)
exp( θT

2
)

cosh(γT
2

) + θ
γ

sinh(γT
2

)
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where u ∈ R, γ :=
√
θ2 − 4iu and X0 = x. Alternatively, this can be written as

E exp(iuIT ) = exp

(
2iu(e

γT
2 − e−γT

2 )

e
γT
2 (γ + θ) + e−

γT
2 (γ − θ)

)
2
[
e
γT
2 (γ + θ) + e−

γT
2 (γ − θ)

]−1

.

Now consider
E exp(iuΞT,x)

= E exp
[
iu
(

2θ
T

)1/2
MT − iu

(
2θ
T
IT − 1

)
x
]

= E exp
[
−iu

(
2θ
T

)1/2 {θIT − 1} − iu
(

2θ
T
IT − 1

)
x
]

= E exp(z1IT + z3)

= exp(z3)φT (z1)

(3.5)

where z1 := −iuθδT,x, and z3 := iuT
2
δT,x with δT,x :=

(
2θ
T

)1/2
+ 2x

T
. Note that φT (z1) satisfies the

conditions of (a) by choosing ε sufficiently small. Let ω1,T (u), ω2,T (u), ω3,T (u) and ω4,T (u)

be functions which are O(|u|T−1/2), O(|u|2T−1/2), O(|u|3T−3/2) and O(|u|3T−1/2) respectively.
Note that for the given range of values of x and u, the conditions on z1 of the Lemma are
satisfied. Further, with

$T (u) := 1 + iu
δT,x
β

+
u2δ2

T,x

2β2
,

we obtain
γ = (β2 − 2z1)1/2

= θ

[
1− z1

θ2
− z2

1

2θ4
+

z3
1

2θ8
+ · · ·

]
= θ

[
1 + iu

δT,x
θ

+
u2δ2

T,x

2θ2
+
iu3δ3

T,x

2θ3
+ · · ·

]
= β[1 + ω1,T (u) + ω2,T (u) + ω3,T (u)]

= β$T (u) + ω3,T (u)

= β[1 + ω1,T (u)].

(3.6)

Thus
γ − θ = ω1,T , γ + θ = 2β + ω1,T . (3.7)

Hence the above expectation equals

exp

(
z3 +

θT

2

)[
2θ$T (u) + ω3,T (u)

ω1,T exp{−θT$T (u) + ω4,T (u)}+ (2θ + ω1,T (u)) exp{θT$T (u) + ω4,T (u)}

]1/2
=

[
1 + ω1,T (u)

ω1,T exp(χT (u)) + (1 + ω1,T (u)) exp(ψT (t))

]1/2
(3.8)

where
χT (u) := −θTβT (u) + α4,T (u)− 2z3 − θT

= −2θT + ω1,T (u) + t2ω1,T (u).
(3.9)

and
ψT (u) := θT$T (u) + ω4,T (u)− 2z3 − θT

= θT

[
1 + iu

δT,x
θ

+
u2δ2

T,x

2θ2

]
+ α4,T (u)− iuTδT,x − θT

=
u2T

2θ

[(
2θ

T

)1/2

+
2x

T

]2

= u2 + u2ω1,T (u).

(3.10)

Hence, for the given range of values of u, χT (u)− ψT (u) ≤ −θT .

https://doi.org/10.28919/ejma.2023.3.22
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Hence the above expectation equals

exp(−u
2

2
)(1 + ω1,T )1/2

× [ω1,T exp{−2θT + ω1,T + u2ω1,T}+ (1 + ω1,T (u)) exp{u2ω1,T (u)}]−1/2

= exp(−u2

2
) [1 + ω1,T )(1 + ω1,T (1 + ω1,T ) exp{−θT + ω1,T + t2ω1,T}] exp(u2ω1,T (u)).

(3.11)

Applying part (a) along with Esseen’s smoothing lemma (see Petov [10] or Feller [11]) yields
part (b). This completes the proof of the lemma.

Lemma 3.3 We have

(a) E |Yn,T − YT |2 = O

(
T 2

n

)
,

(b) E |Zn,T − ZT |2 = O

(
T 2

n

)
,

(c) E |In,T − IT |2 = O

(
T 4

n2

)
,

(d) E |Rn,T − IT |2 = O

(
T 4

n2

)
.

Proof: See Appendix.

The following theorem gives the bound on the error of normal approximation of the AMCEs.
Note that part (a) uses parameter dependent nonrandom norming. While this is useful for
testing hypotheses about θ, it may not necessarily give a confidence interval. The normings in
parts (b) and (c) are sample dependent which can be used for obtaining a confidence interval.
Following theorem shows that asymptotic normality of the AMCEs need T →∞ and T√

n
→ 0.

Theorem 3.1 Let δn,T = T−1/2(log T )1/2
∨

T 2

n
(log T )−1. We have,

(a) sup
x∈R

∣∣∣∣∣P
{(

T

−2θ

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(δn,T ).

(b) sup
x∈R

∣∣∣P {R1/2
n,T (θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(δn,T ).

(c) sup
x∈R

∣∣∣∣∣P
{(

T

|2θn,T |

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(δn,T ).

Proof (a) From (2.9) and (3.2), we have

Rn,T θn,T =
T

2
= MT + θIT . (3.12)

Hence using (3.1)(
T

2θ

)1/2

(θn,T − θ) =

(
− T

2θ

)1/2
MT + θ

(
T
2θ

)1/2
(IT −Rn,T )

Rn,T

=

(
2θ
T

)1/2
MT +

(
−2θ

T

)1/2
(IT −Rn,T )(

2θ
T

)
Rn,T

. (3.13)

https://doi.org/10.28919/ejma.2023.3.22
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Further, using Lemma 2.2 (a) of Bishwal and Bose [14] and Lemma 3.3 (d), we have

P

{∣∣∣∣(2θ

T

)
(Rn,T − 1)

∣∣∣∣ > ε

}
=

{∣∣∣∣(2θ

T

)
(Rn,T − IT + IT )− 1

∣∣∣∣ > ε

}
≤ P

{∣∣∣∣(2θ

T

)
IT − 1

∣∣∣∣ > ε

2

}
+ P

{(
2θ

T

)
|Rn,T − IT | >

ε

2

}
≤ C exp

(
−Tθ
16

ε2
)

+
16θ2

T 2

E|Rn,T − IT |2

ε2

≤ C exp

(
−Tθ
16

ε2
)

+ C
T 2/n2

ε2
. (3.14)

Next, observe that

sup
x∈R

∣∣∣∣∣P
{(

T

2θ

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{(

2θ
T

)1/2
MT +

(
2θ
T

)1/2
(IT −Rn,T )(

2θ
T

)
Rn,T

≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(

2θ

T

)1/2

MT ≤ x

}
− Φ(x)

∣∣∣∣∣+ P

{∣∣∣∣∣θ
(

2θ

T

)1/2

(Rn,T − IT )

∣∣∣∣∣ > ε

}

+P

{∣∣∣∣(2θ

T

)
Rn,T − 1

∣∣∣∣ > ε

}
+ 2ε

≤ CT−1/2 + θ2

(
2θ
T

)
E|Rn,T − IT |2

ε2
+ C exp

(
−Tθ

4
ε2
)

+ C
T 2

n2ε2
+ 2ε, (3.15)

(the bound for the first term in the right hand side of (3.15) comes from Lemma 3.2(b)

and that for the 3rd term is obtained from (3.14))

≤ CT−1/2 + C
T 2

n2ε2
+ C exp

(
−Tθ

4
ε2
)

+ C
T

n2ε2
+ ε (3.16)

(by Lemma 3.3(d)).

Choosing ε = CT−1/2(log T )1/2, the terms in the right hand side of (3.16) are of the order
O(max(T−1/2(log T )1/2, (T

4

n2 )(log T )−1)).

(b) Using (3.1), we have

R
1/2
n,T (θn,T − θ) =

MT + θ(IT −Rn,T )

R
1/2
n,T

.

Then,

sup
x∈R

∣∣∣P {R1/2
n,T (θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣ = sup
x∈R

∣∣∣∣∣P
{
MT

R
1/2
n,T

+ θ
IT −Rn,T

R
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{
MT

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣+ P

{∣∣∣∣∣θ(IT −Rn,T )

R
1/2
n,T

∣∣∣∣∣ > ε

}
+ ε

=: U1 + U2 + ε. (3.17)

We have from (3.14),

U1 ≤ CT−1/2 + C exp

(
Tθ

16
ε2
)

+ C
T 2

n2ε2
+ ε. (3.18)

https://doi.org/10.28919/ejma.2023.3.22
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Now,

U2 = P

{
|θ|

∣∣∣∣∣Rn,T − IT
R

1/2
n,T

∣∣∣∣∣ > ε

}
= P

|θ|
∣∣∣(−2θ

T

)1/2
(Rn,T − IT )

∣∣∣∣∣∣(−2θ
T

)1/2
R

1/2
n,T

∣∣∣ > ε


≤ P

{∣∣∣∣∣
(
−2θ

T

)1/2
∣∣∣∣∣ |Rn,T − IT | > δ

}
+ P

{∣∣∣∣∣
(
−2θ

T

)1/2

R
1/2
n,T − 1

∣∣∣∣∣ > δ1

}
(3.19)

(where δ = ε− Cε2 and δ1 = (ε− δ)/ε > 0)

≤
(
−2θ

T

)
E|Rn,T − IT |2

δ2
+ P

{∣∣∣∣(−2θ

T

)
Rn,T − 1

∣∣∣∣ > δ1

}
≤ C

T 3

n2δ2
+ C exp

(
Tθ

16
δ2

1

)
+ C

T 2

n2δ2
1

. (3.20)

Here, the bound for the first term in the right hand side of (3.20) comes from Lemma 3.4(d)
and that for the second term is obtained from (3.14).

Now, using the bounds (3.18) and (3.20) in (3.17) with ε = CT−1/2(log T )1/2, we obtain that
the terms in (3.17) are of the order O(max(T−1/2(log T )1/2, (T

4

n2 )(log T )−1)).
(c) Let GT := {|θn,T − θ| ≤ dT} , and dT := CT−1/2(log T )1/2.

On the set GT , expanding (2|θn,T |)1/2, we obtain

(2θn,T )−1/2 = (2θ)1/2

[
1− θ − θn,T

θ

]−1/2

= (2θ)1/2

[
1 +

1

2

(
θ − θn,T

θ

)]
+O(d2

T ).

Then,

sup
x∈R

∣∣∣∣∣P
{(

T

2|θn,T |

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

{
P

(
T

2|θn,T |

)1/2

(θn,T − θ) ≤ x,GT

}
+ P (Gc

T ).

Further,

P (Gc
T ) = P

{
|θn,T − θ| > CT−1/2(log T )1/2

}
= P

{(
T

2θ

)1/2

|θn,T − θ| > C(log T )1/2(2θ)−1/2

}

≤ C max

(
T−1/2(log T )1/2,

T 3

n2
(log T )−1

)
+ 2(1− Φ log T 1/2(2θ)−1/2)

(by Theorem 3.1(a))

≤ C max

(
T−1/2(log T )1/2,

T 3

n2
(log T )−1

)
.

On the set GT , ∣∣∣∣∣
(
θn,T
θ

)1/2

− 1

∣∣∣∣∣ ≤ CT−1/2(log T )1/2.

Hence, upon choosing ε = CT−1/2(log T )1/2, C large, we obtain∣∣∣∣∣P
{(

T

2θn,T

)1/2

(θn,T − θ) ≤ x,GT

}
− Φ(x)

∣∣∣∣∣
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≤

∣∣∣∣∣P
{(

T

2θ

)1/2

(θn,T − θ) ≤ x,GT

}∣∣∣∣∣+ P

{∣∣∣∣∣
(
θn,T
θ

)1/2

− 1

∣∣∣∣∣ > ε,GT

}
+ ε

(by Lemma 1.1 (b) in Bishwal and Bose [13])

≤ C max

(
T−1/2(log T )1/2,

T 4

n2
(log T )−1

)
(by Theorem 3.1(a)).

This completes the proof of the theorem.

In the following theorem, we improve the bound on the error of normal approximation using
a mixture of random and nonrandom normings. Thus asymptotic normality of the AMCE
needs T → ∞ and T

n2/3 → 0 which are sharper than the bound in Theorem 3.1. Using this
norming, we do not need the rapidly increasing experimental design condition T → ∞ and
T
n1/2 → 0 as in Theorem 3.1.

Theorem 3.2

sup
x∈R

∣∣∣∣∣P
{
Rn,T

(
−2θ

T

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O

(
T−1/2

∨(
T 3

n2

)1/3
)
.

Proof : Let bn,T := Rn,T − IT . By Lemma 3.3 (d), we have

E|bn,T |2 = O

(
T 4

n2

)
. (3.21)

From (3.12), we have

Rn,T (θn,T − θ) = MT + θ(Rn,T − IT ) = MT + θbn,T .

Combining Lemma 3.3 (c) and (d), we have

E |Rn,T − In,T |2 = O

(
T 4

n2

)
.

Thus

sup
x∈R

∣∣∣∣∣P
{
Rn,T

(
2θ

T

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{(

2θ

T

)1/2

[MT + θbn,T ] ≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(

2θ

T

)1/2

YT ≤ x

}
− Φ(x)

∣∣∣∣∣+ P

{∣∣∣∣∣
(

2θ

T

)1/2

[θbn,T ]

∣∣∣∣∣ > ε

}
+ ε

≤ CT−1/2 +

(
2θ

T

)
E|θbn,T |2

ε2
+ ε

(by Lemma 1 in Michel and Pfanzagl [12] and Lemma 1.2 in Bishwal and Bose [13])

≤ CT−1/2 + C
T 3

n2ε2
+ ε (by (3.21)).

(3.22)

Choosing ε = (T
3

n2 )1/3, the rate is O
(
T−1/2

∨(
T 3

n2

)1/3
)
.
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The following theorem gives stochastic bound on the error of approximation of the continuous
AMCE by the AMCE.

Theorem 3.3

|θn,T − θT | = OP

(
T 2

n

)
.

Proof : Note that θn,T − θT = T
2Rn,T

− T
2IT
. From Lemma 3.3 it follows that

|Rn,T − IT | = OP (T 4/n2)1/2. Now the theorem follows easily from the from the Lemma
1.2 in Bishwal and Bose [13].

We propose three theoretical ratio estimators of the drift. The first ratio estimator of θ is
defined as

θ̂n := − log

[
σ2
n∆

σ2
(n−1)∆

]
. (3.23)

The second ratio estimator of θ is defined as

θ̃n := − log

[ ∑n
i=1 σ

2
i∆∑n

i=1 σ
2
(i−1)∆

]
. (3.24)

The third ratio estimator of θ is defined as

θ̌n := − log

[
min

1≤i≤n

σ2
i∆

σ2
(i−1)∆

]
. (3.25)

We propose three observable ratio estimators of the drift. The first observable ratio estimator
of θ is defined as

θ̂n,T := − log

[
Rn,T

Rn−1,T

]
. (3.26)

The second observable ratio estimator of θ is defined as

θ̃n,T := − log

[ ∑n
i=1Rn,i∆∑n

i=1 Rn,(i−1)∆

]
. (3.27)

The third observable ratio estimator of θ is defined as

θ̌n,T := − log

[
min

1≤i≤n

Rn,i∆

Rn,(i−1)∆

]
. (3.28)

It would be interesting to study Kolmogorov distance of these estimators.

4. Estimation of Mean Reversion Level and Speed

We consider the general case with two parameters. Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis
on which the Cox-Ingersoll-Ross process {Xt} is defined satisfying the Itô stochastic differential
equation

dXt = (α + βXt) dt+ 2
√
X t dWt, t ≥ 0, X0 = 1 (4.1)

where {Wt} is a standard Wiener process with the filtration {Ft}t≥0, α > 0 and β < 0 are the
unknown parameters to be estimated on the basis of observations of the process {Xt}.
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The true transition density which is the fundamental solution to the PDE

ut = 2xuxx + αux −
(µ
x

+ λx
)
u (4.2)

is given by

q(t, x, y, α, β) := −2β
(y
x

)α− 1
2 e( 1

2
−α)βt

1− eβt
exp

[
2β(x+ y)

e−βt − 1

]
Iν

(
−2β
√
xy

sinh(−1
2
βt)

)
(4.3)

where Iν is the modified Bessel function of first kind with index ν, which is noncentral chi-square
density. The invariant density is gamma as t→∞.

Let the continuous realization {Xt, 0 ≤ t ≤ T} be denoted by XT
0 . Let P T

β be the measure
generated on the space (CT , BT ) of continuous functions on [0, T ] with the associated Borel
σ-algebra BT generated under the supremum norm by the process XT

0 and let P T
0 be the

standard Wiener measure. It is well known that when β is the true value of the parameter P T
β,α

is absolutely continuous with respect to P T
0 and the Radon-Nikodym derivative (likelihood) of

P T
β with respect to P T

0 based on XT
0 is given by

LT (β, α) :=
dP T

β,α

dP T
0

(XT
0 ) = exp

{∫ T

0

α + βXt

4Xt

dXt −
∫ T

0

(α + βXt)
2

8Xt

dt

}
. (4.4)

Consider the score function, the derivative of the log-likelihood function, which is given by

γT (β, α) :=

{∫ T

0

α + βXt

4Xt

dXt −
∫ T

0

(α + βXt)
2

8Xt

dt

}
. (4.5)

We estimate α and β. A solution of the estimating equation γT (β, α) = 0 provides the maximum
likelihood estimates (MLEs)

β̂T :=
X0 −XT + αT∫ T

0
Xtdt

, α̂T :=

∫ T
0
X−1
t dXt + βT∫ T
0
X−1
t dt

=
logXT − logX0 +

∫ T
0
X−1
t dt+ βT∫ T

0
X−1
t dt

.

It is important to note that if β > 0 and α ≥ 2, the MLE α̂T is inconsistent. It remains an
open problem to find a consistent estimator in this case.

Consider the minimum contrast estimates (MCE)

β̃T :=
αT∫ T

0
Xtdt

=
α

XT

where XT =
1

T

∫ T

0

Xtdt

and

α̃T :=
βT∫ T

0
X−1
t dt

=
β

X−1
T

where X−1
T =

1

T

∫ T

0

X−1
t dt.

Note that using the Skorohod embedding of martingale which has been the one of the basic
tools for normal approximation of martingales, will not give a rate better than O(T−1/4). To
obtain the rate of normal approximation of the order O(T−1/2), we adopt the Fourier method
followed by the squeezing technique of Bishwal [8].

Observe that (
Tα

−4β

)1/2

(β̃T − β) =

(−4β
Tα

)1/2
NT(−4β

Tα

)
IT

(4.6)

and (
Tβ

−4(α− 2)

)1/2

(α̃T − α) =

(
−4(α−2)

Tβ

)1/2

MT(
−4(α−2)

Tβ

)
JT

. (4.7)
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where

NT := αT − βIT , MT := βT − αJT , IT :=

∫ T

0

Xtdt, and JT :=

∫ T

0

X−1
t dt.

The process IT which is energy of the CIR process which plays a important role in clustering
time or activity persistence in stochastic volatility modeling.

Based on continuous time observation {Xt, 0 ≤ t ≤ T} the continuous conditional least
squares estimators of β and α are respectively given by

βT :=

∫ T
0
XsdXs − (XT −X0)X̃T∫ T

0
(Xt − X̃T )2dt

, (4.8)

αT := −X̃TβT + T−1(XT −X0) (4.9)

where

X̃T :=

∫ T

0

Xtdt. (4.10)

Note that by Itô formula

X2
T −X2

0 = 2

∫ T

0

XsdXs +

∫ T

0

Xsds. (2.11)

Hence

βT =
TX̃T∫ T

0
(Xt − X̃T )2dt

+ oP (T−1/2)

=
TX̃T

2(X̃2
T − (X̃T )2)

+ oP (T−1/2) (4.12)

αT =
X̃2
T

2(X̃2
T − (X̃T )2)

+ oP (T−1/2) (4.13)

where

X̃2
T :=

∫ T

0

X2
t dt (4.14)

We define the minimum contrast estimators as

β̌T :=
TX̃T

2(X̃2
T − (X̃T )2)

, (4.15)

α̌T :=
X̃2
T

2(X̃2
T − (X̃T )2)

. (4.16)

Consider the Heston model under the risk-neutral measure

dSt = rStdt+
√
XtStdZt

dXt = (α + βXt) dt+ 2
√
X t dWt, t ≥ 0, X0 = 1 (4.17)

where Zt and Wt are correlated Brownian motions with correlation parameter ρ. For instance,

Zt = ρWt +
√

1− ρ2Vt

where Wt and Vt are two independent Brownian motions.
We define the minimum contrast estimators as

β̂T :=
T
˜̂
XT

2(
˜̂
X2
T − (

˜̂
XT )2)

, (4.18)

https://doi.org/10.28919/ejma.2023.3.22


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2023.3.22 13

α̂T :=
˜̂
X2
T

2(
˜̂
X2
T − (

˜̂
XT )2)

. (4.19)

where ˜̂
XT =

∫ T

0

X̂tdt,
˜̂
X2
T =

∫ T

0

X̂2
t dt (4.20)

and X̂t = E(Xt|St) where St = σ(Su, 0 ≤ u ≤ t) which can be estimated as follows:
Using Itô formula to Yt = logSt, we have the observation process

dYt = (r − 1

2
σ2)dt+

√
XtdZt, t ≥ 0. (4.21)

We follow conditional least squares (CLS) estimation method as in ARCH(1) model. Observe
that

(dYt)
2 = Xt(dZt)

2, E[(dYt)
2|Ft] = Xt. (4.22)

Denote X̂ti = (Yti − Yti−1
)2. We have

n∑
i=1

(Yti − Yti−1
)2 →P

∫ T

0

Xtdt,

n∑
i=1

(Y 2
ti
− Y 2

ti−1
)2 →P

∫ T

0

X2
t dt (4.23)

We use these estimates for (4.18) and (4.19) and obtain

β̂n,T :=
n∆
∑n

i=1(Yti − Yti−1
)2

2(
∑n

i=1(Y 2
ti − Y 2

ti−1
)2 − (

∑n
i=1(Yti − Yti−1

)2)2)
, (4.24)

α̂n,T :=

∑n
i=1(Y 2

ti
− Y 2

ti−1
)2

2(
∑n

i=1(Y 2
ti − Y 2

ti−1
)2 − (

∑n
i=1(Yti − Yti−1

)2)2)
. (4.25)

By following the methods in the previous section, we have

Theorem 4.1

a) sup
x∈R

∣∣∣∣∣∣P
Rn,T

(
−4(α− 2)

T β̂n,T

)1/2

(αn,T − α) ≤ x

− Φ(x)

∣∣∣∣∣∣ = O

(
T−1/2

∨(
T 3

n2

)1/3
)
.

b) sup
x∈R

∣∣∣∣∣P
{
Rn,T

(
− 4β

T α̂n,T

)1/2

(βn,T − β) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O

(
T−1/2

∨(
T 3

n2

)1/3
)
.

5. Estimation of Correlation

Next we consider the SDEs with five parameters

dYt = (µ+ βXt)dt+
√
XtdWt + ρdZθt, (5.1)

dXt = −θXtdt+ dZθt, (5.2)

where Zt is a inverse Gaussian (IG) Levy process independent of X0 with L(X0) = IG(δ, γ).
We suppose that the parameters δ and γ are known. Here θ > 0 and ρ < 0. When the
process Z is inverse-Gaussian, the model is called the IGOU process. In the IGOU model,
calculation of conditional cummulants of the integrated volatility conditioned on the initial
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value is enough to be able to compute European style options. We consider fixed time interval
ti − ti−1 = ∆, i = 1, 2, . . . , n.

The process Z is the sum of two independent Levy processes Z = Z(1) +Z(2) where L(X0) =

IG(δ/2, γ) and Z(2) is a compound Poisson process given by Z(2) = γ−2
∑Nt

j=1 uj with N being
a Poisson process with intensity δγ/2 and uj is a sequence of independent and identically
χ2

1-distributed random variables independent of N , see Barndorff-Neilsen and Shephard [2].
The processes Z and X have infinitely many jumps in any finite time interval, hence they

are infinite activity processes. Note that the cumulative process or the integrated process
It =

∫ t
0
Xudu has long range dependence or long memory, see Barndorff-Neilsen and Shephard

[2].
The cumulant functions of IGOU process are given by

k(u) = logE[e−uZ(1)] = −uδγ−1(1 + 2uγ−2)−1/2, (5.3)

k′(u) = logE(e−uXt) = δγ − δγ(1 + 2uγ−2)1/2, u ∈ R. (5.4)

In order to construct the estimating functions, we use the first and second cumulants which are
given respectively by

κ(1)
y1

= θρ∆κ
(1)
IG, κ(2)

y1
= ∆κ

(1)
IG + 2θρ2∆κ

(2)
IG (5.5)

where yj := Yj∆−Y(j−1)∆, j = 1, 2, . . . , n. Inverting these cumulants and replacing the cumulants
by their sample quantities, we obtain the explicit the moment estimators of ρ and θ.

The moment estimators of ρ and θ are given by

ρ̂n :=
γ(γs2

y −∆δ)

2ȳ
, θ̂n :=

γȳ

∆δρ̂n

where

s2
y :=

1

n

n∑
j=1

(yj − ȳ)2 =
1

n

n∑
j=1

y2
j − (ȳ)2,

ȳ :=
1

n

n∑
j=1

yj, yj := Yj∆ − Y(j−1)∆

Let ϑ = (ρ, θ). and ϑ̂n = (ρ̂n, θ̂n). We have the following properties of the estimators:

Proposition 5.1 For fixed ∆ > 0 as n→∞,

(a) ϑ̂n → ϑ0 a.s. as n→∞.

(b)
√
n(ϑ̂n − ϑ0)→D N2(0, (2θρ2∆2δ2γ−4)−2V (ϑ0)) as n→∞.

where V (ϑ0) is the limiting covariance matrix.

Next we consider the Heston model with correlation under the risk neutral measure:

dSt = rStdt+ ρ
√
XtStdWt

which gives

dYt = (r − 1

2
ρ2)dt+ ρ

√
XtdWt, (5.6)

dXt = (1− 2θXt)dt+ dWt. (5.7)
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where Yt = logSt. Invariant distribution of Xt is gamma with parameters a and b. We assume
a and b known. The moment estimators of θ and ρ are given by

θ̂n :=
1
n2

[∑n
i=1(Yi∆ − Y(i−1)∆)

]2
1
n2

∑n
i=1(Yi∆ − Y(i−1)∆)2 − ∆

n

[∑n
i=1(Yi∆ − Y(i−1)∆)

] 2a3(a+ 1)

b4∆
,

ρ̂n :=
1
n2

∑n
i=1(Yi∆ − Y(i−1)∆)2 − ∆

n

[∑n
i=1(Yi∆ − Y(i−1)∆)

]
1
n2

[∑n
i=1(Yi∆ − Y(i−1)∆)

] b3∆

2a2(a+ 1)
.

By using Theorem 4.1 Van der Vaart [20], we obtain the strong consistency and asymptotic
normality of the method of moments (MM) estimators:

Proposition 5.2
a) θ̂n → θ0 a.s. as n→∞.
b)
√
n(θ̂n − θ0)→D N (0, L−1(θ0)) as n→∞.

c) ρ̂n → ρ0 a.s. as n→∞.
d)
√
n(ρ̂n − ρ0)→D N (0, K−1(ρ0)) as n→∞

where L(θ0) and K(ρ0) are the corresponding Fisher-information.

Next we show that the Berry-Esseen bounds in part d) is of the order O(n−1/2). Let

dYt = btdt+
√
ρ
√
XtdWt (5.8)

where bt is an Itô process and Xt is a positive Itô processes satisfying the SDEs

dbt = b
[0]
t dt+ b

[1]
t dWt, d

√
X t = σ

[0]
t dt+ σ

[1]
t dWt (5.9)

db
[0]
t = b

[0,0]
t dt+ b

[0,1]
t dWt, dσ

[0]
t = σ

[0,0]
t dt+ σ

[0,1]
t dWt, (5.10)

db
[1]
t = b

[1,0]
t dt+ b

[1,1]
t dWt, dσ

[1]
t = σ

[1,0]
t dt+ σ

[1,1]
t dWt (5.11)

We assume that the drift and the volatility coefficients of the hidden diffusions are smooth,
i.e., supt∈[0,1] ‖ft‖p,3 < ∞ for ft = bt, b

[0]
t , b

[1]
t , b

[1,0]
t , b

[1,1]
t , σt, σ

[0]
t , σ

[1]
t , σ

[0,0]
t , σ

[0,1]
t , σ

[1,0]
t , σ

[1,1]
t for

p > 1. We also assume that supt∈[0,1] ‖1/σt‖Lp < ∞ for each for p > 1. Our aim is to estimate
ρ based on observations of Y at 0 = t0 < t1 < t2 . . . < tn = 1. Thus the observations are
Yt0 , Yt1 , Yt2 , . . . , Ytn . Let ∆Wi := Wti −Wti−1

.

The quasi maximum likelihood estimator (QMLE) of ρ is given by

ρ̂n =
n∑
i=1

(
Yti − Yti−1√

X ti−1

)2

=
n∑
i=1

(Yti − Yti−1
)2

Xti−1

.

We have the following optimal rate of convergence on the Kolmogorov distance:

Theorem 5.3

sup
x∈R

∣∣∣∣ √n√2ρ
(ρ̂n − ρ0)− Φ(x)

∣∣∣∣ = O(n−1/2).

Proof Using Burkholder’s inequality for martingales and Itô’s formula, we show that
√
n√
2ρ

(ρ̂n − ρ) = Mn +
1√
n
Nn (5.12)
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where

Mn :=
n∑
i=1

1√
2n

[(
√
n∆Wi)

2 − 1], (5.13)

and

Nn :=
n∑
i=1

1√
6n

√
3σ

[1]
ti−1√

X ti−1

[(
√
n∆Wi)

3 − 3
√
n∆Wi]

+
n∑
i=1

1√
n

√
2σ

[1]
ti−1√

X ti−1

+

√
2bti−1√

θ
√
X ti−1

)(
√
n∆Wi) +

n∑
i=1

1

n
Fti−1

+OP (n−1/2) (5.14)

and

Ft :=

√
2σ

[0]
t

2
√
X t

+
(σ

[1]
t )2

2
√

2Xt

+

√
2b

[1]
t

2
√
ρ
√
X t

+

√
2b2
t

2ρXt

. (5.15)

Further,

ρ̂n −
∫ T

0

( √
X t√
X ti−1

)2

dt =
n∑
i=1

(
Yti − Yti−1√

X ti−1

)2

−
∫ T

0

( √
X t√
X ti−1

)2

dt (5.16)

=
n∑
i=1

(
Yti − Yti−1√

X ti−1

)2

−
n∑
i=1

∫ ti

ti−1

( √
X t√
X ti−1

)2

dt. (5.17)

Denote

En :=

√
n√
2ρ

(ρ̂n − ρ). (5.18)

We decompose this as the sum of four terms:

En = Ψ + Φ2 + Φ3 + Φ4 (5.19)

where

Ψ =
n∑
i=1

√
n√
2

{
1

Xti−1

(∫ ti

ti−1

√
X tdWt

)2

− 1

n

}
, Φ2 =

n∑
i=1

√
2n

√
ρXti−1

∫ ti

ti−1

∫ t

ti−1

bsds
√
X tdWt,

(5.20)

Φ3 =
n∑
i=1

√
2n

√
ρXti−1

∫ ti

ti−1

∫ t

ti−1

√
XsdWsbtdt, Φ4 =

n∑
i=1

√
2n

ρXti−1

∫ ti

ti−1

∫ t

ti−1

bsdsbtdt. (5.21)

√
nΦ3 =

n∑
i=1

√
2n

√
ρXti−1

∫ ti

ti−1

√
Xti−1bti−1

∫ t

ti−1

dWsdt+

∫ ti

ti−1

bti−1

(∫ s

ti−1

√
X

[1]

s dWu

)
dWsdt

+

∫ ti

ti−1

σti−1

∫ t

ti−1

b[1]
s dsdt+

∫ ti

ti−1

σti−1

[∫ t

ti−1

∫ v

ti−1

b[1]
s dWsdWv +

∫ t

ti−1

∫ v

ti−1

dWs · b[1]
v dWv

]
dt+OP (n−0.5)

=
n∑
i=1

√
2n

√
ρXti−1

{
bti−1

∫ ti

ti−1

∫ t

ti−1

dWsdt+ b
[1]
ti−1

∫ ti

ti−1

∫ t

ti−1

dsdt

}
+OP (n−0.5). (5.22)

√
nΦ2 =

n∑
i=1

√
2nbti−1√
ρσ2

ti−1

∫ ti

ti−1

∫ t

ti−1

dsdWt +OP (n−0.5). (5.23)

√
nΦ2 +

√
nΦ3 =

n∑
i=1

√
2nbti−1√
ρXti−1

(Wti −Wti−1
) +

n∑
i=1

√
2nbti−1

2
√
ρXti−1

· 1

n
+OP (n−0.5). (5.24)

√
nΦ4 =

n∑
i=1

√
2b2
ti−1

2ρXti−1

· 1

n
+OP (n−0.5). (5.25)
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On the other hand, Ψ is decomposed as the sum of three terms:

Ψ = Ψ1 + Ψ2 + Ψ3 (5.26)

where

Ψ1 =
n∑
i=1

√
n√
2

(
(∆Wi)

2 − 1

n

)
, Ψ2 =

n∑
i=1

√
2n√
X ti−1

∆Wi

∫ ti

ti−1

(
√
X t −

√
X ti−1

)dWt, (5.27)

Ψ3 =
n∑
i=1

√
n√

2Xti−1

(∫ ti

ti−1

(
√
X t −

√
X ti−1

)dWt

)2

. (5.28)

√
nΨ1 =

n∑
i=1

n√
2

(
(∆Wi)

2 − 1

n

)
, (5.29)

√
nΨ3 =

n∑
i=1

n√
2Xti−1

(∫ ti

ti−1

∫ t

ti−1

(σ[1]
s dWsdWt

)2

+OP (n−0.5) (5.30)

=
n∑
i=1

n√
2
√
X ti−1

∫ ti

ti−1

(∫ t

ti−1

σ[1]
s dWs

)2

dt+OP (n−0.5) (5.31)

=
n∑
i=1

n√
2
√
X ti−1

∫ ti

ti−1

∫ t

ti−1

(
σ[1]
s

)2
dsdt+OP (n−0.5) (5.32)

=
n∑
i=1

1

2
√

2

(
σ

[1]
ti−1

)2

Xti−1

· 1

n
+OP (n−0.5), (5.33)

√
nΨ2 =

n∑
i=1

√
2√

X ti−1

n∆Wi

∫ ti

ti−1

∫ t

ti−1

dWsdWt + +
n∑
i=1

√
2σ

[0]
ti−1

2
√
X ti−1

· 1

n
+OP (n−0.5). (5.34)

Due to uniform non-degeneracy of the Malliavian covariance of the scaled stochastic integral of
the diffusion functional with respect to Brownian motion, we have

sup
x∈R
|P (Mn ≤ x)− Φ(x)| ≤ Cn−1/2 (5.35)

and
P (

1√
n
Nn > ε) ≤ Cn−1. (5.36)

Hence

sup
x∈R
|P (

√
n√
2ρ

(ρ̂n − ρ) ≤ x)− Φ(x)| ≤ Cn−1/2. (5.37)

With ρ = 1,

sup
x∈R
|P (

√
n√
2

(ρ̂n − 1) ≤ x)− Φ(x)| ≤ Cn−1/2. (5.38)

When the processX is unobserved, we replaceXt by the conditional expectation X̂t = E(Xt|Yt)
where Yt = σ(Ys, 0 ≤ s ≤ t), which can be evaluated by Kitagawa [18] algorithm or by Monte
Carlo methods.

6. Estimation of Stochastic Correlation and Stochastic Elasticity of Volatility

In general, the correlation should be stochastic. It can be modeled by a Jacobi process, see
Veraart and Veraart [17]. A real asset price model should be of the following hybrid type with
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14 parameters. We consider the hybrid stochastic volatility, stochastic interest rate, stochastic
leverage and stochastic elasticity model under the risk neutral measure which is given by

dSt = Xtdt+
√
Vt−StdWt + ρλtdLτλt , (6.1)

dVt = −λVtdt+ υλt−dLτλt , (6.2)

dXt = α(β −Xt)dt+ σXγt
t dW

H
t , (6.3)

dρt = ((2ζ − η)− ηρt)dt+ θ
√

(1 + ρt)(1− ρt)dZt, (6.4)

dξt = κ(µ− ξt)dt+ ς
√
ξtdBt, (6.5)

dγt = $(ψ − δ))dt+
√
χdMt, (6.6)

dτt = ξt−dt, t ≥ 0 (6.7)

where (Lt, t ≥ 0) is a Levy process, (WH , t ≥ 0) is a subfractional Brownian motion, (Bt, t ≥
0), (Zt, t ≥ 0) and (Mt, t ≥ 0) are standard Brownian motions. Here (St, t ≥ 0) is the
asset price which a geometric jump-diffusion, (Vt, t ≥ 0) is the stochastic volatility which
is a Levy O-U process, (Xt, t ≥ 0) is the stochastic interest rate which is a sub-fractional
Chan-Karolyi-Longstaff-Sanders (CKLS) process, (ρt, t ≥ 0) is the stochastic leverage Jacobi
(Beta) process, (ξt, t ≥ 0) is a volatility modulation (stochastic time change or stochastic
clock process) of the driving Levy subordinator which is a Cox-Ingersoll-Ross (CIR) process,
γt is the stochastic elasticity models which is another CIR process, and all the 14 parameters
λ, α, β, σ, ξ, η, θ, κ, µ, ς,$, ψ, δ, χ are positive. See Bishwal [19].

We first discuss estimation of elasticity when it is a constant parameter by the test func-
tion estimation method. Generalized method of moments (GMM), which is a generalization
of weighted least squares method with the random weight being the inverse of the covariance
matrix is a popular estimation method in financial econometrics where likelihood may not be
available, that is maximum likelihood estimation is not feasible. Also one may not need the
distribution of the error term in the model. GMM estimators are in general consistent, asymp-
totic normal and asymptotically efficient. Conley et al. [21] proposed to estimate the elasticity
parameter γ by minimizing a generalized method of moments (GMM) criterion function. The
criterion function is based on a combined set of moment conditions constructed from the level
and difference test functions, whereas the elasticity is treated as an unknown parameter to
be estimated along with the drift parameters. To facilitate the interpretation of the GMM
test statistics, we can estimate the elasticity parameter γ by the two-step GMM estimation
procedure proposed in Conley et al. [21]. In the first step, we use our estimators of the drift
parameters of the previous section as a function of the variance elasticity γ and plug them into
the moment conditions formed from test functions of the first differences to estimate γ. Then
we estimate γ by GMM method. Based on empirical data fitting to the model, the value of the
elasticity parameter is known to be near 0.75.

Consider a test function ϕ in the domain of the generator G of the diffusion process X
satisfying the SDE

dXt = µ(Xt)dt+ σ(Xt)dWt. (6.8)

Since E[ϕ(Xt)] is constant over time, it has zero derivative. We have

E[Gϕ(Xt)] = E[µ(Xt)ϕ
′(Xt) +

1

2
σ2(Xt)ϕ

′′(Xt)] = 0. (6.9)
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An efficient test function would be lT , the derivative of the log-likelihood. The resulting test
function estimator using E[GlT ] = 0 will be efficient. It will be more efficient than the quasi-
maximum likelihood estimator (QMLE) that uses the moment condition E[lT ] = 0. In effect,
the application of the generator to the score function adjusts the moment conditions optimally
for the presence of temporal dependence. One can use localized test functions by multiplying
the first derivative by a smooth kernel K.

Finally, we propose a fractional stochastic elasticity of volatility model

dXt = α(β −Xt)dt+ σXγt
t dW

H
1,t, (6.10)

dγt = (α1 + β1γt)dt+ σ1
√
γt(ρW

H
1,t +

√
1− ρ2BH

1,t) (6.11)

where WH
1,t and BH

1,t are two correlated fractional Levy processes and ρ is the correlation
between the interest rate and elasticity processes. In order to estimate γt and its parameters
based on the interest rate data, one can use the stochastic filtering method. It would be very
interesting to estimate other parameters in the hybrid model which is a very complex problem.
We postpone this work to a future publication.

Concluding Remarks: In order to test hypotheses and obtain confidence intervals of
unknown model parameters, rate of normal approximation in the Kolmogorov distance is
needed. Heston model is a popular stochastic volatility model which is an improvement of
the Black-Scholes model with constant volatility. The option pricing formula involves the
parameters in the volatility process which must be estimated from the return data. Rate of
normal approximation in the Kolmogorov distance for the minimum contrast estimator in the
Heston model had not been studied earlier in the literature. Our aim in this paper was to
bridge this gap. First we studied this problem in Heston model without correlation. Then
we generalized the problem to Heston model with correlation. Then we studied models with
Levy type noise with jumps. Finally we considered rough volatility models with stochastic
correlation having long memory and jumps.
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Appendix

Proof of Lemma 3.3 Let gi(t) := Uti−1
− Ut for ti−1 ≤ t < ti, i = 1, 2, . . . , n. By Theorem 4

of Gikhman and Skorohod [16, p. 48], there exists C > 0 such that

E|Uti−1
− Ut|2k ≤ C(ti−1 − t)k, k = 1, 2, . . . , (A.1)

hence

E|Yn,T − YT |2

= E|
n∑
i=1

Uti−1
[Wti −Wti−1

]−
∫ T

0

UtdWt|2

= E|
∫ T

0

gi(t)dWt|2

=

∫ T

0

E(g2
i (t))dt

≤ C
n∑
i=1

∫ ti

ti−1

|ti−1 − t|dt

= Cn
(ti − ti−1)2

2
= C

T 2

n
.

This completes the proof of (a).
Next we prove (b). Using (2.1) and the fact that

Uti − Uti−1
=

∫ ti

ti−1

θUtdt+Wti −Wti−1

https://doi.org/10.28919/ejma.2023.3.22


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2023.3.22 21

we obtain
E|Zn,T − ZT |2

= E|
n∑
i=1

Uti−1
[Uti − Uti−1

]−
∫ T

0

UtdWt|2

= E|
n∑
i=1

∫ ti

ti−1

θUtUti−1
dt+

n∑
i=1

Uti−1
[Wti −Wti−1

]

−
∫ T

0

θU2
t dt−

∫ T

0

UtdWt|2

≤ 2E|
n∑
i=1

Uti−1
[Wti −Wti−1

]−
∫ T

0

UtdWt|2

+2θ2E|
n∑
i=1

∫ ti

ti−1

Ut[Uti−1
−Xt]dt|2.

=: N1 +N2.

N1 is O(T
2

n
) by Lemma 3.2(a) in Bishwal and Bose [13].

To estimate N2 let ψi(t) := Ut[Uti−1
− Ut] for ti−1 ≤ t < ti, i = 1, 2, . . . , n. Then

E|
n∑
i=1

∫ ti

ti−1

ψi(t)dt|2

=
n∑
i=1

E|
∫ ti

ti−1

ψi(t)dt|2 + 2
n∑

i,j=1,i<j

E

[∫ ti

ti−1

ψi(t)dt

∫ ti

ti−1

ψj(s)ds

]
=: D1 +D2.

By the boundedness of E(U4
t ) and (A.1) we have

E(ψ2
i (t))

= E{U2
t [Uti−1

− Ut]2}
≤ {E(U4

t )}1/2{E[Uti−1
− Ut]4}1/2

≤ C(ti−1 − t).

Note that

D1 =
n∑
i=1

E|
∫ ti

ti−1

ψi(t)dt|2

≤
n∑
i=1

(ti − ti−1)

∫ ti

ti−1

E(ψ2
i (t))dt

≤ C
T

n

n∑
i=1

∫ ti

ti−1

(t− ti−1)dt

≤ C
T

n

n∑
i=1

(ti − ti−1)2 = C
T 3

n2

and

D2 = 2
n∑

i,j=1, i<j

E

∫ ti

ti−1

∫ ti

tj−1

[ψi(t)ψj(s)]dtds

= 2
n∑

i,j=1, i<j

∫ ti

ti−1

∫ tj

tj−1

E[ψi(t)ψj(s)]dtds.

By Wick’s lemma, we have

E[ψi(t)ψj(s)]
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= E[Ut(Uti−1
− Ut)Us(Xtj−1

− Us)]

= E[Ut(Uti−1
− Ut)]E[Us(Utj−1

− Us)]

+ E[UtUs]E[(Uti−1
− Ut)(Utj−1

− Us)]

+ E[Ut(U(tj−1)− Us)]E[Us(Uti−1
− Ut)]

=: A1 + A2 + A3.

Note that

Ut =

∫ t

0

eθ(t−u)dWu, t ≥ 0.

Let a := eθ. For s ≥ t, we have

E(UtUs)

= E

(∫ t

0

eθ(t−u)dWu

)(∫ s

0

eθ(s−u)dWu

)
=

∫ t

0

eθ(t+s−2u)du

=
1

2θ
[as+t − as−t].

Observe that

E(Ut − Uti−1
)(Us − Utj−1

)

= E(UtUs)− E(UtUtj−1
)− E(Uti−1

Us) + E(Uti−1
Utj−1

)

=
1

2θ
(as − atj−1)[(at − ati−1) + (a−ti−1 − a−t)]

=
1

2θ
(s− tj−1)at

∗
[(t− ti−1a

t∗∗ + (t− ti−1)a−t
∗∗∗

]

(where tj−1 < t∗ < s, ti−1 < t∗∗, t∗∗∗ < t)

≤ 1

2θ
(s− tj−1)at(t− ti−1)ati−1 + (s− tj−1)at(t− ti−1)a−t]

≤ C(s− tj−1)(t− ti−1).

Thus
A2 ≤ C(s− tj−1)(t− ti−1)

since |E(UtUs)| is bounded.
Next

|E[Ut(Uti−1
− Ut)]|

=
1

2|θ|
[at+ti−1 − at−ti−1 − a2t + 1]

=
1

2|θ|
at[ati−1 − a−ti−1 − at + a−t]

≤ 1

2|θ|
at(t− ti−1)[ati−1 + a−t]

≤ C(t− ti−1)

and

|E[Us(Us − Utj−1
]|
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=
1

2|θ|
[a2s − 1− as+tj−1 + as+tj−1 ]

=
1

2|θ|
as[as − a−s − atj−1 + a−tj−1 ]

≤ 1

2|θ|
as(s− tj−1)[atj−1 + a−s]

≤ C(s− tj−1).

Thus
A1 ≤ C(s− tj−1)(t− ti−1).

Next

|E[Ut(Us − Utj−1
]|

=
1

2|θ|
[as+t − as−t − at+tj−1 + atj−1−t]

=
1

2|θ|
at(as − atj−1)

≤ 1

2|θ|
at(1− a−2t)(s− tj−1)at

≤ (a2t − 1)(s− tj−1)

≤ C(s− tj−1)

and

|E[Us(Ut − Uti−1
]|

=
1

2|θ|
[at+s − as−t − as+ti−1 + as−ti−1 ]

=
1

2|θ|
as[at − a−t − ati−1 + a−ti−1 ]

≤ 1

2|θ|
as(t− ti−1)[ati−1 + a−t]

≤ C(t− ti−1).

Thus
A3 ≤ C(s− tj−1)(t− ti−1).

Hence
E[ψi(t)ψj(s)] ≤ C(s− tj−1)(t− ti−1).

Thus

D2 = 2
n∑

i,j=1,i<j

∫ ti

ti−1

∫ tj

tj−1

E[ψi(t)ψj(s)]dtds

≤ C

n∑
i,j=1,i<j

∫ ti

ti−1

∫ tj

tj−1

(t− ti−1)(s− tj−1)dtds

= C

n∑
i,j=1,i<j

(ti−1 − ti)2(tj−1 − ti)2
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= Cn2

(
T

n

)4

= C
T 4

n2
.

Hence, N2 is O(T
3

n2 ). Combining N1 and N2 completes the proof of (b).
Next we prove (c). Let χi(t) := U2

ti−1
− U2

t , ti−1 ≤ t < ti, i = 1, 2, . . . , n. Then

E|In,T − It|2

= E|
n∑
i=1

U2
ti−1

(ti − ti−1)−
∫ T

0

U2
t dt|2

= E|
n∑
i=1

∫ ti

ti−1

[U2
ti−1
− U2

t ]dt|2

= E|
n∑
i=1

∫ ti

ti−1

χi(t)dt|2

=
n∑
i=1

E|
∫ ti

ti−1

χi(t)dt|2 + 2
n∑

i,j=1,i<j

E

∫ ti

ti−1

∫ tj

tj−1

χi(t)χj(s)dtds

=: B1 +B2.

Thus

Eχ2
i (t) = E[U2

ti−1
− U2

t ]2

= E[Uti−1
− Ut]2[Uti−1

+ Ut]
2

≤ {E[Uti−1
− Ut]4}1/2{{E[Uti−1

+ Ut]
4}1/2

≤ C(t− ti−1)

(by (A.1) and the boundedness of the second term)

B1 =
n∑
i=1

E|
∫ ti

ti−1

χi(t)dt|2 ≤
n∑
i=1

(ti − ti−1)

∫ ti

ti−1

E(χ2
i (t))dt

≤ C
T

n

n∑
i=1

∫ ti

ti−1

(t− ti−1)dt = C
T 3

n2
.

Note that

E[χi(t)χj(s)]

= E(U2
ti−1
− U2

t )(U2
tj−1
− U2

s )

= E(Uti−1
− Ut)(Uti−1

+ Ut)(Utj−1
− Us)(Utj−1

+ Us).

Now using Wick’s lemma and proceeding similar to the estimation of M2 it is easy to see that

B2 ≤ C
T 4

n2
.

Combining B1 and B2, (c) follows.
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Next we prove (d). Let hi(t) := Uti−1
− Ut for ti−1 ≤ t < ti, i = 1, 2, . . . , n. Observe that

E|Rn,T − IT |2

= E|Rn,T − In,T + In,T − IT |2

≤ 2[E|In,T −Rn,T |2 + 2E|In,T − IT |2]

=: 2G11 + 2E

∣∣∣∣∣
n∑
i=1

Uti−1
(ti − ti−1)−

∫ T

0

Ut dt

∣∣∣∣∣
2

= 2G11 + E

∣∣∣∣∣
n∑
i=1

∫ ti

ti−1

[Uti−1
− Ut] dt

∣∣∣∣∣
2

= 2G11 + 2E

∣∣∣∣∣
n∑
i=1

∫ ti

ti−1

hi(t) dt

∣∣∣∣∣
2

= 2G11 + 2
n∑
i=1

2E

∣∣∣∣∫ ti

ti−1

hi(t) dt

∣∣∣∣2 + 4
∑

i,j=1, i<j

E

∫ ti

ti−1

∫ tj

tj−1

hi(t)hj(s) dt ds

=: 2G11 + 2B11 + 2B12.

We first estimate G11 = E|Rn,T − In,T |2. We have

Sti − Sti−1
=

∫ ti

ti−1

µStdt+ 2

∫ ti

ti−1

√
XtStdWt.

Hence

(Sti − Sti−1
)2 = (Sti − Sti−1

)

(∫ ti

ti−1

µStdt+ 2

∫ ti

ti−1

√
XtStdWt

)
.

This gives
n∑
i=1

(Sti − Sti−1
)2 = ST −

n∑
i=1

Sti−1
(Sti − Sti−1

) = ST −
n∑
i=1

Sti−1

∫ ti

ti−1

dSt.

Observe that by Itô formula,
n∑
i=1

(Sti − Sti−1)2 −
∫ T

0
StXtdt =

n∑
i=1

(Sti − Sti−1)

∫ ti

ti−1

dSt −
∫ T

0
StXtdt =

n∑
i=1

∫ ti

ti−1

(St − Sti−1)dSt

=
n∑
i=1

(Sti − Sti−1
)

∫ ti

ti−1

(µStdt+
√
X tStdWt)−

∫ T

0

StXtdt

=
n∑
i=1

Sti

∫ ti

ti−1

dSt +
n∑
i=1

∫ ti

ti−1

(µSt − Sti−1
)dt+

n∑
i=1

∫ ti

ti−1

√
X t(St − Sti−1

)dWt −
∫ T

0

StXtdt.

n∑
i=1

(Sti − Sti−1
)2 − IT = 2

n∑
i=1

∫ ti

ti−1

µ(St − Sti−1
)dt+ 2

n∑
i=1

∫ ti

ti−1

(St − Sti−1
)
√
XtdWt.

Hence

Rn,T − In,T =
n∑
i=1

∫ ti

ti−1

(Uti−1
− Ut)dWt.

Observe that

Sti−1
− St =

∫ ti−1

t

µSrdr + 2

∫ ti−1

t

√
XrSrdWr.

Thus

G11 = E|Rn,T − IT |2 = 4E

∣∣∣∣∣
n∑
i=1

∫ ti

ti−1

(Sti−1
− St)

√
XtdWt

∣∣∣∣∣
2
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= 4E

∣∣∣∣∣
n∑
i=1

∫ ti

ti−1

√
Xt

(∫ ti−1

t

µSrdr + 2

∫ ti−1

t

√
XrSrdWr

)
dWt

∣∣∣∣∣
2

≤ C
n∑
i=1

∫ ti

ti−1

(t− ti−1)2dt ≤ C
T 4

n2
.

Since
Eh2

i (t) = E[U(ti−1)− Ut]2 = E[U(ti−1)− Ut][U(ti−1) + Ut]

≤
{
E[U(ti−1)− Ut]2}1/2{E[U(ti−1) + Ut]

2
}1/2

≤ C(t− ti−1)

(by (A.1) and the boundedness of the second term).

B11 =
n∑
i=1

E

∣∣∣∣∫ ti

ti−1

hi(t) dt

∣∣∣∣2 ≤ n∑
i=1

(ti − ti−1)

∫ ti

ti−1

E(h2
i (t)) dt

≤ C
T

n

n∑
i=1

∫ ti

ti−1

(t− ti−1) dt = C
T 3

n2
.

Further,
E[hi(t)hj(s)]

= E(Uti−1
− Ut)(Utj−1

− Us)
= E(Uti−1

− Ut)(Uti−1
+ Ut)(Utj−1

− Us)(Utj−1
+ Us).

Now, using Wick’s lemma and proceeding similar to the estimation of D2 it is easy to see that

B12 ≤ C
T 4

n2
.

Combining bounds for B11, B12 and G11, part (d) of the lemma follows. This completes the
proof of the lemma.
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