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EXISTENCE RESULTS FOR FRACTIONAL FISHER-KOLMOGOROFF
STEADY STATE PROBLEM

SALAH A. KHAFAGY1,∗, S.H. RASOULI2 AND HASSAN M. SERAG1

Abstract. In the present paper, we study the existence results of positive weak solution for
the fractional Fisher-Kolmogoroff steady state problem. We establish a condition under which
the system under consideration has a positive weak solution. Also, we consider the case in
which there is no positive weak solution. We use the method of sub-supersolutions to establish
our existence results.

1. Introduction

Many authors are interested in the study of existence results of weak solutions for linear [31],
semilinear [15] and nonlinear systems [19]- [24] by using different methods. In [18,20], the sub-
super solutions method is used to give necessary conditions for the existence of positive weak
solutions. Liu [28] has obtained existence and uniqueness of solution to semilinear fractional
elliptic equation by using the Stampacchia’s theorem. Mountain Pass Theorems for non-local
elliptic operators are used in [33]. Also, the Browder theorem approach was used to demonstrate
the existence and uniqueness of the positive weak solution for a quasilinear weighted (p, q)-
Laplacian system, see [26].

In [2], the authors have been studied the diffusive logistic equation

(1)

{
−∆u = au− bu2 in Ω,

u = 0 in ∂Ω,

where a and b are real numbers with b > 0 (see [16, 29]). They proved that u1 = 1 is a
supersolution and when a > λ1, u2 = εφ1 is a subsolution for ε > 0 small, where λ1 is the first
eigenvalue and φ1 is the corresponding eigenfunction of the Laplacian operator ∆.

In this paper, we study the existence and nonexistence results of positive weak solution for
the fractional Fisher-Kolmogoroff steady state problem

(2)


(−∆)su = λu(1− u) in Ω,

u > 0 in Ω,

u = 0 in Rn\Ω,
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where Ω is a bounded domain in Rn with n > 2s, λ is a positive parameter and (−∆)s is the
fractional Laplacian operator of order s with s ∈ (0, 1) defined by [17]

(3) (−∆)su(x) = C(n, s) P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s dy,

where P.V. stands for Cauchy principal value and C(n, s) is a normalization constant, with
precise value C(n, s) = 22ssΓ((n+ 2s)/2)/(π

n
2 Γ(n− 1)). We establish a conditions under which

system (2) has a positive weak solution. Also, we consider the case in which there is no positive
weak solution. We will use the method of sub–supersolutions to establish our results (see e.g. [10]
and [11]). Due to the appearance of fractional Laplacian operator in (2); the extensions are
challenging and nontrivial. There are very few and sparse works till now pledging with the
existence of solution for fractional Laplacian systems by using the sub–supersolutions method.

The Fisher-Kolmogoroff model is one of the most famous fundamental models in mathemat-
ical biology and ecology [25, 30], which was proposed, on the one hand, by Fisher [13] who
interpreted the spread of an advantageous gene in a population; and on the other hand, by
Kolmogorov et al [27] who additionally obtained the basic analytical results for this equation..
The Fisher-Kolmogoroff problem is givin by

(4)
∂u

∂t
= D4 u+ ρu(1− u),

where D, ρ are positive constants. It describes a reaction-diffusion process describing the be-
havior of the concentration u(x, t) of molecules of type x diffusing with diffusion constant D
and reacting according to Y + X ↔ 2x, ρ represents the reaction rate coefficient, and the
concentration of molecules of type Y is assumed constant [4].

Recently, systems involving fractional Laplace operators has been attracted the intersts of
many scientists. This is naturally due to such operators are now experiencing impressive ap-
plications in different fields. In particular, they appear in many subjects of science such as
finance [8], population dynamics [35], probability [3, 6], phase transitions [14, 34], material sci-
ence [1], optimization [12], water waves [9].

This paper covers the following sections: In section 2, we provide a suitable functional
framework for problem (2). Section 3 is devoted to derive the existence of positive weak solution
for system (2) via sub–supersolutions method. Also, we consider the nonexistence result.

2. Technical results

In this section, we interpret appropriate function spaces which are imperative for our analysis.
We define the fractional-order Sobolev space by (see [17,37]).

(5) W s.2(Rn) = {u ∈ L2(Rn) :

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞},

equipped with the norm

(6) ‖u‖W s.2(Rn) = (

∫
Rn

|u|2dx+

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy)1/2.

Let

(7) W s.2
0 (Rn) = {u ∈ W s.2(Rn) : u = 0 a.e. u ∈ Rn\Ω},
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be a closed linear subspace of W s.2(Rn), and its norm is given by

(8) ‖u‖W s.2
0 (Rn) = (

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy)1/2,

which is equivalent to the norm given by (6).
Now, we introduce some technical results [5,36] concerning the fractional Laplacian eigenvalue

problem

(9)


(−∆)su = λu in Ω,

u > 0 in Ω,

u = 0 in Rn\Ω.

Lemma 2.1. There exists the first eigenvalue λ1 > 0 and precisely one corresponding eigen-
function φ1 > 0 a.e. in Ω of the eigenvalue problem (9). Moreover, it is characterized by

(10) λ1 = inf
u∈W s,2

0 (Rn)\{0}

∫
Rn

|(−∆)s/2u|2dx∫
Ω

u2dx
.

3. Existence and nonexistence results

In this section, existence and nonexistence results of positive weak solution for system (2) are
derived. We shall prove the existence by constructing a positive weak subsolution u ∈ W s,2

0 (Rn)

and a positive supersolution u ∈ W s,2
0 (Rn) of (2) such that u ≤ u. That is, u satisfies u = 0 in

Rn\Ω and

(11)
∫
Rn

(−∆)s/2u(−∆)s/2ζdx ≤ λ

∫
Ω

u(1− u)ζdx,

and u satisfies u = 0 in Rn\Ω and

(12)
∫
Rn

(−∆)s/2u(−∆)s/2ζdx ≥ λ

∫
Ω

u(1− u)ζdx,

for all test function ζ ∈ W s,2
0 (Ω) with ζ ≥ 0.

Then the following result holds:

Lemma 3.1. (see [7,21]) Suppose there exist a weak subsolution u and a weak supersolution u
of (2) such that u ≤ u; then there exists a weak solution u of (2) such that u ≤ u ≤ u.

Definition 3.2. A function u ∈ W s,2
0 (Ω) is said to be a weak solution of (2) if for every

ζ ∈ W s,2
0 (Ω), we have

(13)
∫
Rn

(−∆)s/2u(−∆)s/2ζdx = λ

∫
Ω

u(1− u)ζdx.

Our main results of this paper are the following theorems.

Theorem 3.3. If λ ≤ λ1, then system (2) has no positive weak solution.
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Proof. Suppose u ∈ W s,2
0 (Ω) be a positive weak solution of (2). We shall prove the theorem

by arriving at a contradiction. Multiplying (2) by u, we have

(14)
∫
Rn

|(−∆)s/2u|2dx = λ

∫
Ω

u(1− u)udx.

But from (10), we obtain

(15) λ1

∫
Ω

u2dx ≤
∫
Rn

|(−∆)s/2u|2dx.

Combining (14) and (15), we have

λ1

∫
Ω

u2dx ≤ λ

∫
Ω

u(1− u)udx,

and so
(λ1 − λ)

∫
Ω

u2dx ≤ 0.

Hence λ1 ≤ λ. The proof complete.

Theorem 3.4. If λ > λ1, system (2) has a positive weak solution.

Proof. Suppose λ > λ1 be fixed. Let λ1 be the first eigenvalue of the fractional eigenvalue
problem (5) and φ1 the corresponding eigenfunction satisfying φ1 > 0 in Ω with ‖φ1‖∞ = 1.

Then we have

(16)

{
(−∆)sφ1 = λ1φ1 in Ω,

φ1 = 0 in Rn\Ω.

Let e(x) be the positive weak solution of [32]

(17)

{
(−∆)se(x) = 1 in Ω,

e(x) = 0 in Rn\Ω.

We denote u = Ae(x), where the constant A > 0 is sufficiently large and to be chosen later.
We shall verify that u is the weak supersolution of (2). To do this, let ζ ∈ W s,2

0 (Ω) with ζ ≥ 0.

Then, we have ∫
Ω

(−∆)suζdx = A

∫
Ω

ζdx.

A simple calculations show that Ae − (Ae)2 bounded above by 1
4
. So, we choose A large

enough such that A ≥ λ/4. Then, we have∫
Ω

(−∆)suζdx ≥ λ

4

∫
Ω

ζdx

≥ λ

∫
Ω

(Ae− (Ae)2)ζdx

= λ

∫
Ω

u(1− u)ζdx.

So, equation (12) is satisfy and u is the weak supersolution of (2).
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Next, we construct a weak subsolution u of system (2). Let u = 1−µ
2‖φ1‖∞

φ1 where µ =
√

λ1
λ
∈

(0, 1). A simple calculations show that u ≤ 1
2
and λ1 < λ[1− (1−µ

2
)]. Now, we are in a position

enaples us to verify that u is the positive weak subsolution of (2).
A calculation shows that∫

Ω

(−∆)suζdx =
1− µ

2 ‖φ1‖∞

∫
Ω

(−∆)sφ1ζdx

=
1− µ

2 ‖φ1‖∞

∫
Ω

λ1φ1ζdx

≤ 1− µ
2 ‖φ1‖∞

∫
Ω

λ[1− (
1− µ

2
)]φ1ζdx

≤ λ
1− µ

2 ‖φ1‖∞

∫
Ω

[1− (
1− µ

2 ‖φ1‖∞
φ1)]φ1ζdx

= λ

∫
Ω

1− µ
2 ‖φ1‖∞

φ1[1− 1− µ
2 ‖φ1‖∞

φ1]ζdx

= λ

∫
Ω

u(1− u)ζdx.

Hence u is a weak subsolution for system (2). Moreover, since u ≤ 1/2, we can choose A large
such that u ≤ u. Thus, there exists a weak solution u of (2 ) with u ≤ u ≤ u. This completes
the proof of Theorem 3.4.
Acknowledgement: We would like to express our sincere gratitude to the reviewers and the
editor for their valuable comments and suggestions on our manuscript.
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