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COMMON FIXED POINT THEOREMS FOR INTERPOLATIVE
MAPPINGS IN BICOMPLEX-VALUED b-METRIC SPACES WITH AN

APPLICATION TO NON-LINEAR MATRIX EQUATIONS

LUCAS WANGWE∗

Abstract. This manuscript plans to prove a common fixed point theorem for interpolative
contraction mappings in Bicomplex-valued b-metric spaces. Our results generalize and ex-
tend several works in literature. We provide an example for verification of our results. To
demonstrate the effectiveness of our main result, we give an application to non-linear matrix
equations.

1. Introduction

Bakhtin [3] and Czerwik [7] generalized metric space to b-metric spaces and developed Ba-
nach’s contraction principle [4] to these spaces. The study of bicomplex numbers was initiated
in 1982 by [33] who gave some properties of bicomplex numbers. In 1934, Dragoni [10] estab-
lished the first rudiments of function theory on bicomplex numbers. In 1991, Price [27] gave an
introduction to multicomplex spaces and functions. In 2011, Azam et al. [2] gave the concepts
of new spaces called complex valued metric spaces and established the existence of fixed point
theorems under the contraction condition in rational expression. Marzouki et al. [24] gave a
generalized common fixed point theorem in complex-valued b-metric spaces. Rao et al. [30]
proved a common fixed point theorem in complex-valued b-metric spaces. In 2020, Datta et
al. [9] by combining the concepts mentioned above proved some common fixed point theorems
for contractive mappings in bicomplex valued b-metric spaces. In 2021, Beg et al. [5] proved
the fixed point in bicomplex valued metric spaces. Mani et al. [23] proved the results for the
solution of a Fredholm integral equation via a common fixed point theorem on bicomplex valued
b-metric space.

Recently, the study of nonlinear matrix equations was given by Garai and Dey [11] who gave
a common solution to a pair of non-linear matrix equations via fixed point results. Nashine
et al. [26] found a common positive solution of two nonlinear matrix equations using fixed
point Results. Joseph et al. [14] gave some results by solving a system of linear equations
via a bicomplex valued metric. The complex-valued metric has several applications in the
branches of Mathematics, including algebraic geometry, number theory, applied Mathematics,
hydrodynamics, mechanical engineering, thermodynamics and electrical engineering.
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Furthermore, Karapinar [18] converted the classical Kannan [17] contraction to interpolative
Kannan mapping in metric spaces. Since then, several finding has been presented for various
type of interpolative mappings in different spaces. Karapinar et al. [19] generalized the results
on interpolative Hardy-Rogers type contractions. Yesikaya [37] gave the results on interpolative
Hardy-Rogers Suzuki-type contractive mappings. Gautam et al. [12, 13] proved fixed point
results for ω-interpolative Chatterjea type contraction in quasi-partial b-metric spaces. Mishra
et al. [25] introduced an interpolative Reich-Rus-Ciric and Hardy-Rogers contraction on quasi-
partial b-metric spaces and related fixed point results. Alansari and Ali [1] gave some results on
interpolative presic type contractions. Wangwe and Kumar [35] proved fixed point results for
interpolative ψ-Hardy-Rogers type contraction mappings in quasi-partial b-metric spaces with
applications.

This manuscript aims to prove some common fixed point theorems for interpolative contrac-
tion mappings in bicomplex valued b-metric spaces. In particular, we generalize and extend the
results proved by Beg et al. [5], Mani et al. [23], Datta et al. [9], Nashine et al. [26] and Joseph
et al. [14].

2. Preliminaries

In this section, we give some preliminaries of definitions and theorems for developing new
results.

We denote the set of complex numbers and bicomplex numbers as C0,C1,C2.
Segre [33] defined the complex number as follows:

z = z1 + z2i1,

where z1, z2 ∈ C0, i21 = −1. Define

C1 = {z : z = z1 + z2i1, z1, z2 ∈ C0}.

Let z ∈ C1. The norm ‖.‖ : C1 → C+
0 is then defined by

‖z‖ =
√
z2

1 + z2
2 .

The concept of bicomplex number was given by

θ = κ1 + κ2i1 + κ3i2 + κ4i1i2,(1)

where κ1, κ2, κ3, κ4 ∈ R and the independent units i1, i2 are such that

i21 = i22 = −1,

i1i2 = i2i1.

We denote

i1i2 = j,

which is known as a hyperbolic unit and such that

j2 = (i1i2)2 = i21i
2
2 = 1,

i1j = i1(i1i2) = i21i2 = ji1 = −i2,

i2j = ji2 = −i1.
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The set of bicomplex numbers C2 is defined as:

C2 = {θ : θ = κ1 + κ2i1 + κ3i2 + κ4i1i2, κ1, κ2, κ3, κ4 ∈ C0}.

In another way:

C2 = {θ : θ = z1 + i2z2, z1, z2 ∈ C0},(2)

where

z1 = κ1 + κ2i1 ∈ C1,

z2 = κ3 + κ4i1 ∈ C1.

The operations on bicomplex numbers. If θ = z1 + i1z2 and σ = $1 + i2$2, then the sum and
subtraction is given by

θ + σ = z1 + i1z2 +$1 + i2$2 = (z1 +$1) + i2(z2 +$2),

θ − σ = z1 − i1z2 +$1 + i2$2 = (z1 −$1) + i2(z2 −$2),

and the product is given by

θ.σ = (z1 + i1z2).($1 + i2$2) = (z1$1 − z2$2) + i2(z1$2 − z2$1).

In C2 there are four idempotents (unchanged) elements, that are 0, 1, e1 = 1+i1i2
2

and e2 = 1−i1i2
2

out of which e1 and e2 are non-trivial such that e1 + e2 = 1 and e1.e2 = 0.
So, every bicomplex number z1 + i1z2 can uniquely be expressed as the combination of e1

and e2, namely

θ = z1 + i1z2 = (z1 − i1z2)e1 + (z1 + i1z2)e2.(3)

This representation of θ is known as the idempotent representation of bicomplex numbers and
the complex coefficient θ1 = (z1−i1z2) and θ2 = (z1+i1z2) are known as idempotent components
of the bicomplex number θ. That is

θ = z1 + i1z2 = θ1e1 + θ2e2.(4)

An element θ = z1 + i1z2 ∈ C2 is non-singular if and and only if |z2
1 + z2

2|| 6= 0 and singular if
and only if |z2

1 + z2
2|| = 0. The inverse of θ is defined as

θ−1 =
z1 − i1z2

z2
1 + z2

2

.

The norm ‖.‖ of C2 is a positive real valued function ‖.‖ : C2 → C+
0 which is defined by

‖θ‖ = ‖z1 + i1z2‖ =
√
z2

1 + z2
2 ,

=

√
|z1 − i1z2|2 + |z1 + i1z2|2

2
,

=
√
κ2

1 + κ2
2 + κ2

3,

where

θ = κ1 + κ2i+ κ3i2 + κ4i1i2,

= z1 + i2z2.
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The vector space C2 for the defined norm is a normed linear space, and C2 is complete. Therefore
C2 is a Banach space. If θ, σ ∈ C2, then

‖θ.σ‖ ≤
√

2‖θ‖‖σ‖,

hold instead of

‖θ.σ‖ ≤ ‖θ‖‖σ‖,

and therefore C2 is not a Banach algebra.
For any two bicomplex numbers θ, σ ∈ C2. It follows that

(1) θ 4i2 σ ⇐⇒ ‖θ‖ ≤ ‖σ‖,
(2) ‖θ + σ‖ ≤ ‖σ‖+ ‖σ‖,
(3) ‖λθ‖ ≤ λ‖σ‖, where λ ∈ R,
(4) ‖θ.σ‖ ≤

√
2‖θ‖‖σ‖, and the equality holds only when at least one of θ and σ is degen-

erated.
(5) ‖θ−1‖ = ‖θ‖−1 if θ is a degenerated with 0 ≺ θ ∈ C2.
(6) ‖ θ

σ
‖ = ‖θ‖

‖σ‖ , if θ ∈ C2 is degenerated.

Now, we give the partial order relation 4i2 on C2 as below: Let C2 be the set of bicomplex
numbers and θ = z1 + i2z2, σ = $1 + i2$2 ∈ C2. Then θ �i2 σ if and only if z1 �i2 $1 and
z2 �i2 $2 i.e., θ 4i2 σ if one of the following axioms satisfied:

(1) z1 = $1, z2 = $2,
(2) z2 � $1, z2 = $2,
(3) z1 = $1, z2 � $2,
(4) z1 � $1, z2 � $2.

In particular we can write θ �i2 σ if θ 4i2 σ and θ 6= σ, i.e., one of (2) − (4) is satisfied. We
write θ ≺i2 σ, if only (4) is satisfied.

The metric function in bicomplex-valued b-metric spaces is as follows:

Definition 2.1. [9] Let Υ be a non-empty set and s ≥ 1 be a given real number. A function
dB : Υ×Υ→ C2 is called a bicomplex b-metric on Υ, such that

(BCM1) 0 �i2 dB(ϑ,$) and dB(ϑ,$) = 0 if and only if ϑ = $ for all ϑ,$ ∈ Υ,
(BCM2) dB(ϑ,$) = dB($,ϑ) for all θ, ϑ ∈ Υ,
(BCM3) dB(ϑ,$) �i2 s[dB(ϑ, %) + d(%,$)] for all ϑ,$, % ∈ Υ.

Then (Υ, dB) is called a bicomplex-valued b-metric on Υ.

The following are examples which satisfy the axioms of bicomplex-valued b-metric spaces.

Example 2.1. [9] Let Υ = [0, 1] ∈ C2 be a set of bicomplex b-metric. Define dB : C2×C2 → C2

by

dB(ϑ,$) = ‖ϑ−$‖2 + i2‖ϑ−$‖2.

Then (C2, dB) is a bicomplex-valued b-metric space.

Example 2.2. [23] Let Υ = C2. Define a metric dB : C2 × C2 → C2 by

dB(ϑ,$) = |ϑ−$|ei2k,

where k ∈ [0, π
2
]. Then (C2, dB) is a complex-valued b-metric space with s = 2.
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Example 2.3. [9] Let Υ = [0, 1]. Consider a metric dB : Υ×Υ→ C2 by

dB(ϑ,$) = (1 + i1 + i2 + i1i2)|ϑ−$|2.

Then (C2, dB) is a complex-valued b-metric space with s = 2.

Definition 2.2. [9] Let (Υ, dB) be a bicomplex valued b-metric space. A point ϑ ∈ Υ is
said to be an interior point of a set D ⊆ Υ whenever we can find 0 < $ ∈ C satisfying
B(ϑ,$) = {$ ∈ Υ : dB(ϑ,$) �i2 $} ∈ D, where B(ϑ,$) is an open ball. Then, B(ϑ,$) =

{$ ∈ Υ : dB(ϑ,$) �i2 $} is a closed ball.

We give the fundamental properties on bicomplex-valued b-metric spaces.

Definition 2.3. [9] Let (Υ, dB) be a bicomplex-valued b-metric space. Let {ϑn} be a sequence
in Υ and ϑ ∈ Υ.

(i) If for every sequence {ϑn} is said to be a convergent sequence and converge to a point
ϑ if, for any 0 ≺i2 r ∈ C2, there is a natural number n0 ∈ N such that

dB(ϑn, ϑ) ≺i2 r,

for all n ≥ n0.
We write this by

lim
n→∞

ϑn = ϑ or ϑn → ϑ as n→∞.

(ii) A sequence ϑΩ is said to be a Cauchy sequence in (Υ, dB) if for any 0 ≺i2 r ∈ C2 there
is a natural number n0 ∈ R such that

dB(ϑn, ϑn+m) ≺i2 r,

for all n,m ∈ N an n > n0.
(iii) If every Cauchy sequence in Υ is convergent in Υ then (Υ, dB) is said to be a complete

bicomplex-valued b-metric space.

Lemma 2.1. [9] Let (Υ, dB) be a bicomplex-valued b-metric space. A sequence and (ϑn) is
convergences to ϑn ∈ Υ if and only if

lim
n→∞

‖dB(ϑn, ϑ)‖ = 0.

Lemma 2.2. [9] Let (Υ, dB) be a bicomplex-valued b-metric space. {ϑn} is a Cauchy sequence
in Υ if and only if

lim
n,m→∞

‖dB(ϑn, ϑn+m)‖ = 0.

Definition 2.4. [15,34] Let S and T be two self-mapping of a non-empty set Υ.

(i) A point ϑ ∈ Υ is called a fixed point of S if Sϑ = ϑ.
(ii) A point ϑ ∈ Υ is called a coincidence point of S and T if Sϑ = T ϑ, and the point ϑ ∈ Υ

such that ϑ = Sϑ = T ϑ is called point of coincidence of S and T .
(iii) A point ϑ ∈ Υ is called a common fixed point of S and T if ϑ = Sϑ = T ϑ.
(iv) Let S, T : Υ → Υ be two self mappings then S and T are said to be weakly compatible

if ST ϑ = T Sϑ whenever Sϑ = T ϑ.
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We establish some preliminary results:
Joseph et al. [14] proved a common fixed point theorem on a bicomplex valued metric space,

as follows:

Theorem 2.1. [14] Let (Υ, dB) be a complete bicomplex valued metric space and S, T : Υ→ Υ

be self mappings such that

dB(Sϑ,S$) �i2 αdB(ϑ,$) +
βdB(ϑ,Sϑ)dB($, T $) + γdB($,Sϑ)dB(ϑ, T $)

1 + dB(ϑ,$)
,

for all ϑ,$ ∈ Υ, where α, β, γ are non-negative reals with α+
√

2β +
√

2γ < 1. Then S and T
have a unique common fixed point.

Azam et al. [2] generalized Dass and Gupta [8] contraction mapping from metric space to
complex-valued metric space as follows:

Theorem 2.2. [2] Let (Υ, d) be a complete complex-value metric space and S, T : Υ→ Υ be
two mappings. If S and T satisfy

d(Sϑ, T $) � λd(ϑ,$) + µ
d(ϑ,Sϑ)d($, T $)

1 + d(x, y)
,

for all ϑ,$ ∈ υ, where λ, µ are non-negative real with λ+µ < 1. Then S and T have a unique
common fixed point in Υ.

Mani et al. [23] proved the following theorem in bicomplex valued b-metric spaces.

Theorem 2.3. [23] Let (Υ, dB) be a complete bicomplex valued b-metric space with coefficient
s ≥ 1 and S, T : Υ→ Υ. If there exists λ1, λ2, λ3, λ4 : Υ→ [0, 1

s
] such that for all ϑ,$ ∈ Υ;

(i) λ1(T σ) ≤ λ1(ϑ), λ2(T ϑ) ≤ λ2(ϑ), λ3(T ϑ) ≤ λ3(ϑ) and λ4(T ϑ) ≤ λ4(ϑ),
(ii) λ1(sϑ) ≤ λ1(ϑ), λ2(sϑ) ≤ λ2(ϑ), λ3(sϑ) ≤ λ3(ϑ) and λ4(sϑ) ≤ λ4(ϑ),
(iii) λ1 + λ2 + λ3 + λ4 < 1,
(iii) Also,

dB(Sϑ, T $) �i2 λ1(ϑ)dB(ϑ,$) + λ2(ϑ)
dB(ϑ,S$)(1 + dB(ϑ, T ϑ))

1 + dB(ϑ,$)

+λ3(ϑ)
dB($,S$)(1 + dB(ϑ, T ϑ))

1 + dB(ϑ,$)
+

λ4(ϑ) max{dB(ϑ,Sϑ), dB($, T $)}.

Then S and T have a unique common fixed point in Υ.

Applying the notions from Kannan [16] and Krein et al. [21], Karapinar [18] introduced the
following results for interpolative Kannan contraction as follows:

Definition 2.5. [18] Let (Υ, d) be a metric space, the mapping T : Υ → Υ is said to be
interpolative Kannan contraction mappings if

d(T ϑ, T $) ≤ c[d(ϑ, T ϑ)]δ.[d($, T $)]1−δ,(5)

for all ϑ,$ ∈ Υ with ϑ 6= T ϑ, where c ∈ [0, 1) and δ ∈ (0, 1).

Theorem 2.4. [18] Let (Υ, d) be a complete metric space and T be an interpolative Kannan
type contraction. Then T has a unique fixed point in Υ.

https://doi.org/10.28919/ejma.2023.3.19
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Reich [31], Rus [32] and Ćirić [6] improved Banach [4] and Kannan [16] fixed point theorem
as

Theorem 2.5. [20] Let (Υ, d) be a complete metric space. T : Υ→ Υ be a mapping such that

d(T ϑ, T $) ≤ λd(ϑ,$) + ζd(ϑ, T ϑ) + ηd($, T $),(6)

for all ϑ,$ ∈ Υ where λ+ ζ + η < 1. Then T possesses a unique fixed point in Υ.

Karapinar et al. [20] proved the results for Interpolative Reich-Rus-Ćirić type contractions
on partial metric spaces as follows.

Theorem 2.6. [20] Let (Υ, p) be a complete metric space. T : Υ→ Υ be a mapping such that

p(T ϑ, T $) ≤ c[p(ϑ,$)]δ.[p(ϑ, T ϑ)]α.[p($, T $)]1−α−δ,(7)

for all ϑ,$ ∈ Υ\Fix(T ) where Fix(T ) = {ϑ ∈ Υ, T ϑ = ϑ}. Then T has a fixed point in Υ.

3. Main Results

The following are our main results:

Theorem 3.1. Let (Υ, dB, s) be a complete bicomplex valued b-metric space with s ≥ 2 and let
S, T : Υ→ Υ be two-self interpolative Ćirić rational type mappings, such that

dB(Sϑ, T $) �i2 τ
[
dB(ϑ,$)

]β1
.
[
dB(ϑ,Sϑ)

]β2
.[

dB($, T $)
]β3
.
[dB(ϑ,Sϑ)(1 + dB(ϑ, T ϑ))

1 + dB(ϑ,$)

]β4
.
[dB($,S$)(1 + dB(ϑ, T ϑ))

1 + dB(ϑ,$)

]1−β1−β2−β3−β4
,(8)

for all ϑ,$ ∈ Υ,
∑4

Ω=1 βi < 1 and τ ∈ [0, 1
s
]. Then, S and T have a unique common fixed

point in Υ.

Proof. Let ϑ0 be an arbitrary point in Υ. We can construct a sequence {ϑ2n} in Υsatisfying

ϑ2n+1 = Sϑ2n,(9)

and

ϑ2n+2 = T ϑ2n+1,(10)

for all n ∈ N0. By definition 2.4, a point ϑ2n ∈ Υ is called a common fixed point of S and T if
ϑ2n = Sϑ2n = T ϑ2n+1.

Again, we can choose

ϑ2n+2 = Sϑ2n+1,(11)

and

ϑ2n+3 = T ϑ2n+2,(12)

for all n ∈ N0. Using definition 2.4, a point ϑ2n+1 ∈ Υ is called a common fixed point of S and
T if ϑ2n+1 = Sϑ2n+1 = T ϑ2n+2.

Suppose that ϑ2n+1 6= Sϑ2n and ϑ2n+2 6= T ϑ2n+1. Using (9) and (10), we have

dB(ϑ2n+1, ϑ2n+2) = dB(Sϑ2n, T ϑ2n+1) 6= 0,(13)

https://doi.org/10.28919/ejma.2023.3.19
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for all n ∈ N0.
Let ϑ = ϑ2n and $ = ϑ2n+1 in (8), we obtain

dB(Sϑ2n, T ϑ2n+1) �i2 τ
[
dB(ϑ2n, ϑ2n+1)

]β1
.
[
dB(ϑ2n,Sϑ2n)

]β2
.[

dB(ϑ2n+1, T ϑ2n+1)
]β3
.[dB(ϑ2n,Sϑ2n)(1 + dB(ϑ2n, T ϑ2n))

1 + dB(ϑ2n, ϑ2n+1)

]β4
.
[dB(ϑ2n+1,Sϑ2n+1)(1 + dB(ϑ2n, T ϑ2n))

1 + dB(ϑ2n, ϑ2n+1)

]1−β1−β2−β3−β4
,

�i2 τ
[
dB(ϑ2n, ϑ2n+1)

]β1
.
[
dB(ϑ2n, ϑ2n+1)

]β2
.[

dB(ϑ2n+1, ϑ2n+2)
]β3
.[dB(ϑ2n, ϑ2n+1)(1 + dB(ϑ2n, ϑ2n+1))

1 + dB(ϑ2n, ϑ2n+1)

]β4
.
[dB(ϑ2n+1, ϑ2n+2)(1 + dB(ϑ2n, ϑ2n+1))

1 + dB(ϑ2n, ϑ2n+1)

]1−β1−β2−β3−β4
,

�i2 τ
[
dB(ϑ2n, ϑ2n+1)

]β1
.
[
dB(ϑ2n, ϑ2n+1)

]β2
.[

dB(ϑ2n+1, ϑ2n+2)
]β3
.
[
dB(ϑ2n, ϑ2n+1)

]β4
.
[
dB(ϑ2n+1, ϑ2n+2)

]1−β1−β2−β3−β4
,

�i2 τ
[
dB(ϑ2n, ϑ2n+1)

]β1+β2+β4

.
[
dB(ϑ2n+1, ϑ2n+2)

]1−β1−β2−β4
,[

dB(ϑ2n+1, ϑ2n+2)
]1−(1−β1−β2−β4)

�i2 τ
[
dB(ϑ2n, ϑ2n+1)

]β1+β2+β4
,

dB(ϑ2n+1, ϑ2n+2) �i2 τ
1

β1+β2+λβ4 dB(ϑ2n, ϑ2n+1).(14)

Let ω = τ
1

β1+β2+λβ4 < 1 in (14), we have

dB(ϑ2n+1, ϑ2n+2) �i2 ωdB(ϑ2n, ϑ2n+1).(15)

Repeating the above procedures n-times by induction the inequality (14) deduce to

‖dB(ϑ2n+1, ϑ2n+2)‖ �i2 ωn‖dB(ϑ2n, ϑ2n+1)‖.(16)

From Lemma 2.1 and Definition 2.3, we get

lim
n→∞

‖dB(ϑ2n+1, ϑ2n+2)‖ → 0 as n→∞,

which is a contradiction.
Let n,m ∈ N, m > n, such that

https://doi.org/10.28919/ejma.2023.3.19


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2023.3.19 9

‖dB(ϑ2n+1, ϑ2n+m)‖ �i2 s[dB(ϑ2n+1, ϑ2n+2) + d(ϑ2n+2, ϑ2n+m)],

�i2 sdB(ϑ2n+1, ϑ2n+2) + s2dB(ϑ2n+2, ϑ2n+3) + d(ϑ2n+3, ϑ2n+4) + . . . ,

�i2 sωn‖dB(ϑ2n, ϑ2n+1)‖+ s2ωn+1‖dB(ϑ2n, ϑ2n+1)‖

+s3ωn+2‖dB(ϑ2n, ϑ2n+1)‖.+ . . . ,

�i2 [sωn + s2ωn+1 + s3ωn+2 + . . . , ]‖dB(ϑ2n, ϑ2n+1)‖

�i2 sn[1 + sωn + s2ωn+1 + . . . , ]‖dB(ϑ2n, ϑ2n+1)‖

�i2
sωn

1− sωn
‖dB(ϑ2n, ϑ2n+1)‖.(17)

By taking n,m→∞ in (17), using Lemma 2.2 we get

‖dB(ϑ2n, ϑ2n+m)‖ → 0,

Hence, {ϑ2n} is a Cauchy sequence.
Since (Υ, dB) is a complete bicomplex valued b-metric space, there exists a fixed point ϑ? ∈ Υ

such that

lim
n→∞

dB(ϑ2n, ϑ
?) = 0.

lim
n→∞

ϑ2n = ϑ?.

Suppose that r ∈ Υ such that

‖dB(ϑ?,Sϑ?)‖ = ‖r‖ > 0.

By (BCM3), Definition 2.3 and 2.4, we get

r = dB(ϑ?,Sϑ?) �i2 s[dB(ϑ?, ϑ2n+2) + dB(x2n+2,Sϑ?)],

�i2 sdB(ϑ?, ϑ2n+2) + sdB(x2n+2,Sϑ?),

�i2 sdB(ϑ?, ϑ2n+2) + sdB(T ϑ2n+1,Sϑ?),

�i2 sdB(ϑ?, ϑ2n+2) + sdB(Sϑ?, T ϑ2n+1),(18)

Let ϑ = ϑ? and $ = ϑ2n+1 in (8) and (18), we obtain

dB(ϑ?,Sϑ?) �i2 sdB(ϑ?, ϑ2n+2) + τs
[
dB(ϑ?, ϑ2n+1)

]β1
.
[
dB(ϑ?,Sϑ?)

]β2
.[

dB(ϑ2n+1, T ϑ2n+1)
]β3
.
[dB(ϑ?,Sϑ?)(1 + dB(ϑ?, T ϑ?))

1 + dB(ϑ?, ϑ2n+1)

]β4
.
[dB(ϑ2n+1,Sϑ2n+1)(1 + dB(ϑ?, T ϑ?))

1 + dB(ϑ?, ϑ2n+1)

]1−β1−β2−β3−β4
,

‖dB(ϑ?,Sϑ?)‖ �i2 ‖r‖ = 0.

which is a contradiction. Therefore ‖dB(ϑ?,Sϑ?)‖ 4i2 ‖r‖ = 0. Thus ϑ? = Sϑ?. Similarly, we
can show that ϑ? = T ϑ?. Hence ϑ? is a common fixed point of S and T .

For the uniqueness of common fixed point of S and T . Let $? be another common fixed
point in Υ such that $? 6= ϑ? by definition 2.4, $? = S$? = T $?. Let ϑ = ϑ? and $ = $? in
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(8), then we have

dB(ϑ?, $?) = dB(Sϑ?, T $?),

dB(Sϑ?, T $?) �i2 τ
[
dB(ϑ?, $?)

]β1
.
[
dB(ϑ?,Sϑ?)

]β2
.[

dB($?, T $?)
]β3
.
[dB(ϑ?,Sϑ?)(1 + dB(ϑ?, T ϑ?))

1 + dB(ϑ?, $?)

]β4
.
[dB($?,S$?)(1 + dB(ϑ?, T ϑ?))

1 + dB(ϑ?, $?)

]1−β1−β2−β3−β4
,(19)

dB(ϑ?, $?) �i2 τ
[
dB(ϑ?, $?)

]β1
.
[
dB(ϑ?, ϑ?)

]β2
.[

dB($?, $?)
]β3
.
[dB(ϑ?, ϑ?)(1 + dB(ϑ?, ϑ?))

1 + dB(ϑ?, $?)

]β4
.
[dB($?, $?)(1 + dB(ϑ?, ϑ?))

1 + dB(ϑ?, $?)

]1−β1−β2−β3−β4
,

dB(Sϑ?, T $?) �i2 0.(20)

Consequently, we have

‖dB(ϑ?, $?)‖ = 0,

which implies that ϑ? = $?. Hence ϑ? is a unique common fixed point of S and T . �

Motivated by Mani et al. [23], we proved the following theorem in bicomplex valued b-metric
space, for the creativity of Theorem 3.1.

Theorem 3.2. Let (Υ, dB) be a complete bicomplex valued b-metric space with coefficient
s = 2 and S, T : Υ→ Υ, if there exists δ1, δ2, δ3, δ4, δ5; Υ→ [0, 1

s
] such that for all ϑ,$ ∈ Υ;

(i) δ1(T ϑ) �i2 δ1(ϑ), δ2(T ϑ) �i2 δ2(ϑ), δ3(T ϑ) �i2 δ3(ϑ) and δ4(T ϑ) �i2 δ4(ϑ),
(ii) δ1(sϑ) �i2 δ1(ϑ), δ2(sϑ) �i2 δ2(ϑ), δ3(sϑ) ≤ δ3(ϑ), δ4(sϑ) �i2 δ4(ϑ) and δ5(sϑ) �i2 δ5(ϑ),
(iii)

∑5
n=1 δn < 1.

(iv) Also,

dB(Sϑ, T $) �i2 δ1(ϑ)
[
dB(ϑ,$)

]β1
.δ2(ϑ)

[
dB(ϑ,Sϑ)

]β2
.

δ3(ϑ)
[
dB($, T $)

]β3
.δ4(ϑ)

[dB(ϑ,Sϑ)(1 + dB(ϑ, T ϑ))

1 + dB(ϑ,$)

]β4
.δ5(ϑ)

[dB($,S$)(1 + dB(ϑ, T ϑ))

1 + dB(ϑ,$)

]1−β1−β2−β3−β4
,(21)

for all ϑ,$ ∈ Υ,
∑4

n=1 βi < 1 and τ ∈ [0, 1
s
]. Then, S and T have a unique common

fixed point in Υ.

Proof. The proof of this theorem follow the similar proof of Theorem (3.1). This completes the
proof. �

We provide the following example for verification of our results in Theorem 3.1.

Example 3.1. Let X = [0, 1) and dB : Υ×Υ→ C2 given by

dB(ϑ,$) = |ϑ−$|2ei2k,
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where k ∈ [0, 2π]. Then, (Υ, dB) is a complete complex-valued b-metric space with s = 2.
Define S, T : Υ→ Υ by

Sϑ =
ϑ

4
.

and

T ϑ =
ϑ3

8
,

for all ϑ,$ ∈ Υ. Assume that ei2k = cos k + i2 sin k. To verify the hypothesis used in Theorem
3.1, let us calculate the following bicomplex-valued b-metric of the following points.

dB(Sϑ, T $) = dB

(ϑ
4
,
$3

8

)
=
∣∣∣∣∣∣ϑ

4
− $3

8

∣∣∣∣∣∣2ei22π =
∣∣∣∣∣∣2ϑ−$3

8

∣∣∣∣∣∣2ei22π

=
∣∣∣∣∣∣2ϑ−$3

8

∣∣∣∣∣∣2‖ cos 2π + i2 sin 2π‖ =
∣∣∣∣∣∣2ϑ−$3

8

∣∣∣∣∣∣2 = 0.0081,

dB(ϑ,$) = ‖ϑ−$‖2ei22π = ‖ϑ−$‖2‖ cos 2π + i2 sin 2π‖ = 0.4,

dB(ϑ,Sϑ) = dB

(
ϑ,
ϑ

4

)
=
∣∣∣∣∣∣ϑ− ϑ

4

∣∣∣∣∣∣2ei22π =
∣∣∣∣∣∣4ϑ− ϑ

4

∣∣∣∣∣∣2ei22π

=
∣∣∣∣∣∣4ϑ− ϑ

4

∣∣∣∣∣∣2‖ cos 2π + i2 sin 2π‖ =
∣∣∣∣∣∣3ϑ

4

∣∣∣∣∣∣2 = 0.09,

dB($, T $) = dB

(
$,

$3

8

)
=
∣∣∣∣∣∣$ − $3

8

∣∣∣∣∣∣2ei22π =
∣∣∣∣∣∣8$ −$3

8

∣∣∣∣∣∣2ei22π

=
∣∣∣∣∣∣8$ −$3

8

∣∣∣∣∣∣2‖ cos 2π + i2 sin 2π‖ =
∣∣∣∣∣∣8$ −$3

8

∣∣∣∣∣∣2 = 0.039601,

dB(ϑ, T ϑ) = dB

(
ϑ,
ϑ3

8

)
=
∣∣∣∣∣∣ϑ− ϑ3

8

∣∣∣∣∣∣2ei22π =
∣∣∣∣∣∣8ϑ− ϑ3

8

∣∣∣∣∣∣2ei22π

=
∣∣∣∣∣∣8ϑ− ϑ3

8

∣∣∣∣∣∣2‖ cos 2π + i2 sin 2π‖ =
∣∣∣∣∣∣8ϑ− ϑ3

8

∣∣∣∣∣∣2 = 0.153664,

dB($,S$) = dB

(
ϑ,
$

4

)
=
∣∣∣∣∣∣$ − $

4

∣∣∣∣∣∣2ei22π =
∣∣∣∣∣∣4$ −$

4

∣∣∣∣∣∣2ei22π

=
∣∣∣∣∣∣3$

4

∣∣∣∣∣∣2‖ cos 2π + i2 sin 2π‖ =
∣∣∣∣∣∣3$

4

∣∣∣∣∣∣2 = 0.0225,

Using the above equalities and ϑ = 0.4, $ = 0.2, β1 = 0.1, β2 = 0.3, β3 = 0.2, β4 = 0.1 and
τ = 1

2
in (8), we get

0.0081 �i2 0.5
[
0.4
]0.1

.
[
0.09

]0.3

.[
0.039601

]0.2

.
[0.09(1 + 0.153664)

1 + 0.4

]0.1

.
[0.0225(1 + 0.153664)

1 + 0.4

]1−0.1−0.3−0.2−0.1

,

0.0081 �i2 0.5
[
0.4
]0.1

.
[
0.09

]0.3

.[
0.039601

]0.2

.
[
0.0741641142

]0.1

.
[
0.018541028

]0.3

,

0.0081 �i2 0.5
[
0.912443536

]
.
[
0.485593374

]
.[

0.524253369
]
.
[
0.7709378

]
.
[
0.302301389

]
,

‖0.0081‖ �i2 ‖0.02706706746‖.
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Hence, the hypothesis of Theorem 3.1 is verified. Thus, a pair of mappings S and T has
unique common fixed points in Υ.

3.1. An application to Non-linear Matrix Equations in Bicomplex Valued b-metric
space. In this section, we prove the unique common solution of the non-linear matrix equation
using quasi-partial b-metric space for the demonstration of the hypothesis given in Theorem
3.1 in bicomplex valued b-metric space. The study of non-linear matrix equation originated
by Ran and Reurings [28, 29] using Banach contraction principle concepts in partially ordered
sets. The Hermitian solution of the equation ϑ = Q +Aϑ−1A∗ is the matrix equation arising
from the Gaussian process. The equation admits both positive definite solution and negative
definite solution if and only if A is non-singular. If A is singular, no negative definite solution
exists. This type of equation has several applications that arise in the analysis of control theory,
optimal solution, ladder networks, dynamic programming and system theory [36,38–40].

The symbol ‖.‖ denotes the spectral norm of the matrix A, that is

‖A‖ =
√
λ+(A?A)

such that λ+(A?A) is the largest eigenvalue of A?A where A? is the conjugate transpose of A.
We give the lemmas for future use.

Lemma 3.1. [29] If A,B � 0 are n× n matrices. Then

0 ≤ tr(A,B) ≤ ‖B‖|tr(A)|.(22)

Lemma 3.2. [22,29] Let A ∈ H(n) A,B � In, then

‖A‖ < 1.(23)

Consider the following pairs of non-linear matrix equations motivated from [11,26].

ϑ = Q+
m∑

Ω=1

A∗ΩS(ϑ)An,(24)

$ = Q+
m∑
n=1

B∗nT ($)Bn,

where Q ∈ p(n), An is n×Ω matrices, A∗n,B∗n stands for conjugate transpose of An,Bn ∈ H(n)

and S, T ; p(n) → p(n) are maps from the set of all n × n Hermitian matrices into itself such
that S, T (0) = 0.

The equations (24) can be written interns of sequence

ϑ2n+1 = ϑ = Q1 +
m∑
n=1

A∗nS(ϑ)An,

ϑ2n+2 = $ = Q2 +
m∑
n=1

B∗nT ($)Bn.(25)

Define a bicomplex valued b-metric dB : Υ×Υ→ C2 by

dB(ϑ,$) = |ϑ−$|2ei2k,

where k ∈ [0, 2π]. Then, (Υ, dB) is a complete complex-valued b-metric space with s = 2.
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Theorem 3.3. Consider the class of non-linear matrix equation (24) and suppose the following
condition holds.

(i) there exists Q1, Q2 ∈ p(n), such that

m∑
n=1

A∗nS(Q1)An i2 � 0,
m∑
n=1

B∗nT (Q2)Bn i2 � 0.

(ii) for all A,B ∈ p(Ω) , we have

m∑
n=1

A∗nAn ≺i2 In,
m∑
n=1

B∗nBn ≺i2 In.

(iii) there exists ϑ,$ ∈ p(n), such that

Q1 +
m∑
n=1

A∗nS(ϑ)An 4i2 Q2 +
∑m

n=1 B∗nT ($)Bn.

For A = B, we have

Q1 +
m∑
n=1

A∗nS(ϑ)An 4i2 Q2 +
∑m

n=1A∗ΩT ($)AΩ.

(iv) For ϑ,$ ∈ p(n) and ϑ �i2 $ with τ ∈ [0, 1
s
], s = 2 ,

dB(Sϑ, T $) = ‖Sϑ− T $‖tr,

‖Sϑ− T $‖tr �i2 τ
[
‖ϑ−$‖tr

]β1
.
[
‖ϑ− Sϑ‖tr

]β2
.[

‖$ − T $‖tr
]β3
.
[‖ϑ− S$‖tr(1 + ‖ϑ− T ϑ‖tr)

1 + ‖ϑ−$‖tr

]β4
.
[‖$ − S$‖tr(1 + ‖ϑ− T ϑ‖tr)

1 + ‖ϑ−$‖tr

]1−β1−β2−β3−β4
.

Then, the non linear matrix equation (24) has a unique common solution in p(n) ⊆
H(n).

Proof. Suppose that ϑ,$ ∈ p(Ω) in such a way that ϑ �i2 $. Define S, T : Υ→ Υ by

Sϑ = Q1 +
m∑

Ω=1

A∗nS(ϑ)An,

T $ = Q2 +
m∑
n=1

B∗nT ($)Bn.(26)

By equation (22) and (26) with (i)− (iv), we have

dB(Sϑ, T $) = ‖Sϑ− T $‖tr = ‖Q1 +
m∑
n=1

A∗nS(ϑ)An −Q2 −
m∑
n=1

A∗nT ($)An‖2ei2k,

= ‖Q1 −Q2 +
m∑
n=1

A∗nAn‖S(ϑ)− T ($)‖‖2ei2k,
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dB(ϑ−$) = ‖ϑ−$‖2ei2k,

dB(ϑ,Sϑ) = ‖ϑ− Sϑ‖tr = ‖ϑ−Q1 −
m∑
n=1

A∗nS(ϑ)An‖2ei2k,

= ‖ϑ− Sϑ‖tr = ‖ϑ−Q1 −
m∑
n=1

A∗nAn‖S(ϑ)‖‖2ei2k,

dB($, T $) = ‖$ − T $‖tr = ‖ϑ−Q2 −
m∑
n=1

A∗nT ($)An‖2ei2k,

= ‖$ − S$‖tr = ‖$ −Q2 −
m∑
n=1

A∗nAn‖T ($)‖‖2ei2k,

dB(ϑ,S$) = ‖ϑ− S$‖tr = ‖ϑ−Q1 −
m∑
n=1

A∗nS($)An‖2ei2k,

= ‖ϑ− S$‖tr = ‖ϑ−Q1 −
m∑
n=1

A∗nAn‖S($)‖‖2ei2k,

dB(ϑ, T ϑ) = ‖ϑ− Sϑ‖tr = ‖ϑ−Q2 −
m∑
n=1

A∗nT (ϑ)An‖2ei2k,

= ‖ϑ− T ϑ‖tr = ‖ϑ−Q2 −
m∑
n=1

A∗nAn‖T (ϑ)‖‖2ei2k,

dB($,S$) = ‖$ − S$‖tr = ‖$ −Q1 −
m∑
n=1

A∗nS($)An‖2ei2k,

= ‖$ − S$‖tr = ‖$ −Q1 −
m∑
n=1

A∗nAn‖S($)‖‖2ei2k.

By using the above equalities in (8), we obtain

‖Sϑ− T $‖tr �i2 τ
[
‖ϑ−$‖tr

]β1
.
[
‖ϑ− Sϑ‖tr

]β2
.[

‖$ − T $‖tr
]β3
.
[‖ϑ− S$‖tr(1 + ‖ϑ− T ϑ‖tr)

1 + ‖ϑ−$‖tr

]β4
.
[‖$ − S$‖tr(1 + ‖ϑ− T ϑ‖tr)

1 + ‖ϑ−$‖tr

]1−β1−β2−β3−β4
,

which is equivalent to

dB(Sϑ, T $) �i2 τ
[
dB(ϑ,$)

]β1
.
[
dB(ϑ,Sϑ)

]β2
.[

dB($, T $)
]β3
.
[dB(ϑ,S$)(1 + dB(ϑ, T ϑ))

1 + dB(ϑ,$)

]β4
.
[dB($,S$)(1 + dB(ϑ, T ϑ))

1 + dB(ϑ,$)

]1−β1−β2−β3−β4
.

Using the conditions in Theorem 3.1, we have applied Theorem 3.3 as an application using two
non-linear matrix equations. Thus our proof is completed. �
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4. Conclusions

The main contribution of this study to fixed point theory is the fixed point result given
in Theorem 3.1. This theorem provides thecommon fixed point theorems for interpolative
contraction mappings in bicomplex valued b-metric spaces. This paper, inspired by the results
obtained by Beg et al. [5], Mani et al. [23], Datta et al. [9], Nashine et al. [26] and Joseph et
al. [14]. We also provided an illustrative example to support the results and an application to
the non-linear matrix equations.
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