
DOI: 10.28919/ejma.2023.3.18
Eur. J. Math. Appl. (2023)3:18
URL: http://ejma.euap.org
© 2023 European Journal of Mathematics and Applications

THE THEOREM OF BOCHNER FOR ADJOINTABLE OPERATORS
VALUED MAPS

KOAMI GBEMOU1 AND YAOGAN MENSAH1,2,∗

Abstract. In this paper, we obtain a generalisation of Bochner’s theorem to positive definite
functions defined on a locally compact abelian group with values in the space of adjointable
operators on a Hilbert C∗-module.

1. Introduction

Initially, Bochner’s theorem gives a characterization of the Fourier transform of a positive
finite Borel measure on the real line. In its general form, the Bochner’s theorem links positive
definite functions on a locally compact abelian group to a finite positive Borel measure on the
dual group via the Fourier-Stieltjes transform. Bochner’s theorem has many generalizations.
Examples include references [5–8,12–14], this list is of course non exhaustive.

In [7] the author extends the Bochner’s theorem to the case of positive definite maps from a
locally compact abelian groupG into B(H), the space of bounded linear operators on a separable
complex Hilbert spaceH. In this paper, we extend the results in [7] to positive definite functions
from a locally compact abelian group G into the space End∗A(M) of adjointable operators on
a self-dual Hilbert C∗-moduleM.

The rest of the paper is organized as follows. In Section 2, we provide basic informations
about C∗-algebras and Hilbert C∗-modules that we may need. In Section 3, we obtain some
results about positive definite functions from G into End∗A(M). Finally, in Section 4, we state
the theorem of Bochner in the framework that we have considered.

2. C∗-algebras and Hilbert C∗-modules

We recall here basic informations about C∗-algebras and Hilbert C∗-modules that we may
need in this article. Interested readers are referred to [4, 9] for more details on C∗-algebras
and [10,11] for more details on Hilbert C∗-modules.
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Let A be an algebra over C. A map A → A, a 7→ a∗ is called an involution if

a∗∗ = a,

(a+ b)∗ = a∗ + b∗,

(αa)∗ = αa∗,

(ab)∗ = b∗a∗.

∀a, b ∈ A and ∀α ∈ C. A ∗-algebra is an algebra with involution.
A Banach algebra is a Banach space A which is also an algebra such that

‖ab‖ ≤ ‖a‖‖b‖, ∀a, b ∈ A.

A C∗-algebra is a ∗-Banach algebra A such that

∀a ∈ A, ‖a∗a‖ = ‖a‖2.

By the Gelfand-Naimark theorem, any C∗-algebra can be realized as a concrete norm-closed
subalgebra of the algebra B(H) of the bounded linear operators on some Hilbert spaceH [9, page
2]. A C∗-algebra A is called unital if it has a unit (denoted by 1A). An element a of the C∗-
algebra A is called self-adjoint if a∗ = a and it is called positive if there exists b ∈ A such
that a = b∗b. Positive elements are automatically self-adjoint. We denote by A+ the set of all
positive elements of A. The space A+ is a convex cone. Also we will use the following result:
If a, b ∈ A+ are such that b ≤ a, then ‖b‖ ≤ ‖a‖.

A pre-Hilbert module over a C∗-algebra A is a complex vector spaceM which is also a right
A-module such that there is a map

M×M→ A, (x, y) 7→ 〈x, y〉

with the following properties. For x, y, z ∈M, λ ∈ C, a ∈ A,

〈x, λy + z〉 = λ〈x, y〉+ 〈x, z〉,

〈x, ya〉 = 〈x, y〉a,

〈y, x〉 = 〈x, y〉∗,

〈x, x〉 ∈ A+,

〈x, x〉 = 0⇒ x = 0.

The equality

‖x‖ = ‖〈x, x〉‖
1
2

defines a norm onM. Moreover, ifM is complete with respect to this norm, thenM is called
a Hilbert A-module or a Hilbert C∗-module over A.

Let us give some examples.

(1) Every complex Hilbert space H is a Hilbert module over C. The inner product is the
usual scalar product on H.

(2) Every C∗-algebra A is a Hilbert module over A. The inner product is defined by

〈x, y〉 = x∗y, x, y ∈ A.
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(3) Let Ek, k = 1, · · · , n be Hilbert C∗-modules over the same C∗-algebra A. The direct
sum

n
⊕
k=1

Ek equipped with the module action and the inner product given by the formula

〈x, y〉 =
n∑

i=1

〈xi, yi〉

where x = (x1, x2 . . . xn) and y = (y1, y2 . . . yn).

From the above first two examples, one notices that Hilbert C∗-module generalizes C∗-algebra
and Hilbert space.

Let us denote byM′ the set of all bounded A-linear maps fromM into A. The relations

(λf)(x) = λf(x) and (fa)(x) = a∗f(x),

where λ ∈ C, f ∈ M′, x ∈ M, a ∈ A, introduce respectively onM′ a structure of vector space
over C and a structure of right A-module. Also,M′ is complete under the norm

‖f‖ = sup
‖x‖≤1

‖f(x)‖.

There is a natural isometric embedding ofM intoM′ via the map x 7→ 〈x, ·〉. The Hilbert
C∗-moduleM is called self-dual ifM′ =M.

We denote by EndA(M), the set of bounded C-linear and A-linear endomorphisms of M.
Such maps will be called operators on M. We say that an operator T on M is adjointable if
there exists an operator T ∗ onM, called the adjoint of T , such that

(1) ∀x, y ∈M, 〈Tx, y〉 = 〈x, T ∗y〉.

It is known that an element of EndA(M) may not have necessairily an adjoint. An operator
that has an adjoint is called adjointable. In the sequel, we denote by End∗A(M) the set of all
adjointable operators onM.

3. Adjointable operators valued positive definite functions

Let G be a locally compact abelian group. We denote by Ĝ the dual group of G.

Definition 3.1. A function f : G→ A is said to be positive definite if

∀N ∈ N, ∀a1, · · · , aN ∈ A, ∀g1, · · · , gN ∈ G,
N∑
i=1

N∑
j=1

aif(gi − gj)a∗j ∈ A+.

Definition 3.2. An element T ∈ End∗A(M) is said to be positive if ∀x ∈ M, 〈Tx, x〉 is a
positive element of the C∗-algebra A.

Definition 3.3. A function ϕ : G→ End∗A(M) is said to be positive definite for any x ∈ M,
the function ϕx : G→ A defined by

(2) ϕx(g) = 〈ϕ(g)x, x〉

is positive definite; in other words if

∀x ∈M, ∀N ∈ N, ∀a1, · · · , aN ∈ A, ∀g1, · · · , gN ∈ G,
N∑
i=1

N∑
j=1

ai〈ϕ(gi − gj)x, x〉a∗j ∈ A+.

Lemma 3.4. Let a, b ∈ A. If a ∈ A+ and a+ b ∈ A+, then b∗ = b.
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Proof. Set c = a + b. There exists a1, c1 ∈ A such that a = a∗1a1 and c = c∗1c1. Then,
b = c− a = c∗1c1 − a∗1a1. Thus, b∗ = (c∗1c1 − a∗1a1)∗ = c∗1c1 − a∗1a1 = b. �

Theoreme 3.5. Let ϕ : G→ End∗A(M) be a positive definite function. Then, ϕ(0) is a positive
element of End∗A(M).

Proof. Assume that ϕ : G→ End∗A(M) is a positive definite function. For x ∈M, ϕx : G→ A
is positive definite. Then, ∀N ∈ N, ∀a1, · · · , aN ∈ A, ∀g1, · · · , gN ∈ G,

(3)
N∑
i=1

N∑
j=1

aiϕx(gi − gj)a∗j ∈ A+.

Now, if we take N = 1, a1 = 1A, g1 = 0, then we obtain from (3) ϕx(0) ∈ A+, in other words
〈ϕ(0)x, x〉 ∈ A+. Thus ϕ(0) is a positive element of End∗A(M). �

Theoreme 3.6. Let ϕ : G→ End∗A(M) be a positive definite function. Then, for any element
g in G, one has ϕ(−g) = ϕ(g)∗.

Proof. Assume that ϕ : G→ End∗A(M) is a positive definite function. For x ∈M, ϕx : G→ A
is positive definite. If we take N = 2, a1 = 1A, a2 = a, g1 = g, g2 = 0, then we obtain from (3)

(4) 〈ϕ(0)x, x〉+ 〈ϕ(g)x, x〉a∗ + a〈ϕ(−g)x, x〉+ a〈ϕ(0)x, x〉a∗ ∈ A+.

Since 〈ϕ(0)x, x〉 and a〈ϕ(0)x, x〉a∗ belong to A+, then we deduce from Lemma 3.4 that
〈ϕ(g)x, x〉a∗ + a〈ϕ(−g)x, x〉 is a self-adjoint element of A, that is

(5) (〈ϕ(g)x, x〉a∗ + a〈ϕ(−g)x, x〉)∗ = 〈ϕ(g)x, x〉a∗ + a〈ϕ(−g)x, x〉.

If we take successively a = 1A and a = i1A we obtain

(6) 〈ϕ(g)x, x〉∗ + 〈ϕ(−g)x, x〉∗ = 〈ϕ(g)x, x〉+ 〈ϕ(−g)x, x〉

and

(7) 〈ϕ(g)x, x〉∗ − 〈ϕ(−g)x, x〉∗ = −〈ϕ(g)x, x〉+ 〈ϕ(−g)x, x〉.

Now, we add equalities (6) and (7) to obtain 〈ϕ(g)x, x〉∗ = 〈ϕ(−g)x, x〉. So,

〈ϕ(−g)x, x〉 = 〈x, ϕ(g)x〉 = 〈ϕ(g)∗x, x〉.

Thus, ϕ(−g) = ϕ(g)∗.
�

Theoreme 3.7. Let ϕ : G → End∗A(M) be a positive definite function. Assume that for
all x ∈ M, ϕx(0) is 0 or ϕx(0) is an invertible element of Z(A) (the center of A). Then,
∀g ∈ G, ‖ϕ(g)‖ ≤ 2‖ϕ(0)‖.

Proof. Let us assume that ϕ : G→ End∗A(M) is a positive definite function. We recall (4):

(8) 〈ϕ(0)x, x〉+ 〈ϕ(g)x, x〉a∗ + a〈ϕ(−g)x, x〉+ a〈ϕ(0)x, x〉a∗ ∈ A+.

Now, if ϕx(0) = 0 we have 〈ϕ(g)x, x〉a∗ + a〈ϕ(−g)x, x〉 ∈ A+. Taking a = −ϕx(g) and using
the fact that ϕ(−g) = ϕ(g)∗, we have
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− [ϕx(g)ϕx(g)∗ + ϕx(g)ϕx(g)∗] ∈ A+,

⇒ϕx(g)∗ϕx(g) = ϕx(g)ϕx(g)∗ = 0

because ϕx(g)∗ϕx(g) and ϕx(g)ϕx(g)∗ are positive elements in A. Then, we have

‖ϕx(g)‖2 = ‖ϕx(g)∗ϕx(g)‖ = 0.

This implies ϕx(g) = 0, ∀x ∈M. Then, ϕ(g) ≡ 0. Therefore, ‖ϕ(g)‖ ≤ 2‖ϕ(0)‖.
Now, if ϕx(0) 6= 0 is invertible, then we set a = −ϕx(g)ϕx(0)−1 in (8) to obtain
ϕx(0)− ϕx(g)ϕx(0)∗−1ϕx(g)∗ − ϕx(g)ϕx(0)−1ϕx(g)∗ +

ϕx(g)ϕx(0)−1ϕx(0)ϕx(g)∗−1ϕx(g) ∈ A+. Taking into account the fact that ϕx(0) is a positive
element of A, hence self-adjoint, we have

ϕx(0)− ϕx(g)ϕx(0)−1ϕx(g)∗ ∈ A+.

⇒ϕx(0)− ϕx(0)−1ϕx(g)ϕx(g)∗ ∈ A+ (because ϕx(0)−1 ∈ Z(A)),

⇒ϕx(0)2 − ϕx(g)ϕx(g)∗ ∈ A+ (multiplication by ϕx(0)).

Taking the norm, we obtain

‖ϕx(g)ϕx(g)∗‖ ≤ ‖ϕx(0)‖2

⇒‖ϕx(g)‖2 ≤ ‖ϕx(0)‖2

⇒‖ϕx(g)‖ ≤ ‖ϕx(0)‖.

Therefore, if ‖x‖ = ‖y‖ = 1, we have ‖〈ϕ(g)x, y〉‖ ≤ 2‖ϕ(0)‖. This implies
‖ϕ(g)‖ := sup

‖x‖=1, ‖y‖=1

‖〈ϕ(g)x, y〉‖ ≤ 2‖ϕ(0)‖. �

4. On a theorem of Bochner

We denote by Σ(Ĝ) the Borel σ-field of Ĝ, the dual group of the locally compact group G.

Definition 4.1. A measure m : Σ(Ĝ)→ End∗A(M) is called positive regular if

(1) ∀E ∈ Σ(Ĝ), m(E) is a positive element in End∗A(M).
(2) ∀x ∈M, the measure mx : Σ(Ĝ)→ A is a regular vector measure.

Definition 4.2. A measure m : Σ(Ĝ)→ End∗A(M) is said to be bounded if there exists α > 0

such that ‖m(E)‖ ≤ α, ∀E ∈ Σ(Ĝ).

Now, we consider on End∗A(M) the weakest topology that makes continuous all the functions
ϕx,y : End∗A(M) → A, T 7→ ϕx,y(T ) = 〈Tx, y〉. A map ψ : G → End∗A(M) is said to be
continuous if ∀ε > 0, ∀x, y ∈ M, ∃Nε,x,y neighbourhood of 0 in G such that if g − g′ ∈ Nε,x,y,
then ‖〈(ψ(g)− ψ(g′))x, y〉‖ < ε.

Let ϕ : G → End∗A(M) be a positive definite and continuous function. Let x ∈ M. Then,
the map ϕx : G→ A is positive definite and continuous. Using the Gelfand-Naimark theorem
and Theorem 2.8 of [7], we obtain a regular positive bounded measure µx : Σ(Ĝ) → A such
that
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(9) ϕx(g) =

∫
Ĝ

(γ, g)dµx(γ).

That is

(10) 〈ϕ(g)x, x〉 =

∫
Ĝ

(γ, g)dµx(γ),

Consider E ∈ Σ(Ĝ). Define the map

τE :M→A, x 7→ τE(x) = µx(E).

Consider the map ΓE :M×M→ A defined by

(11) ΓE(x, y) =

[
τE(

x+ y

2
)− τE(

x− y
2

)

]
+ i

[
τE(

x+ iy

2
)− τE(

x− iy
2

)

]
Theoreme 4.3. The map ΓE :M×M→ A has the following properties

(1) ΓE is A-linear in the second variable and A-involution linear in the first variable.
(2) ΓE(x, y) = ΓE(y, x)∗, ∀x, y ∈M.
(3) ΓE is bounded apart from E.

Proof. If we set µx,y(E) = ΓE(x, y), then we have

〈ϕ(g)x, y〉 =

∫
Ĝ

(γ, g)dµx,y(γ).

Then, using the properties of the A-valued product 〈·, ·〉, we obtain that ΓE is and A-linear in
y and A-involution linear in x. Then, we deduce the property (1). Moreover, the observation
that the measure µx in the equality (9) is the same for all g ∈ G and the fact that 〈ϕ(g)x, y〉 =

〈ϕ(−g)y, x〉∗ conduct to the property (2). From the property (2) it is sufficient to show that
ΓE(x, x) is bounded to obtain the property (3). Note that

‖ΓE(x, x)‖ = ‖µx(E)‖ 6 ‖µx‖

where ‖µx‖ denote the total variation of µx given by

‖µx‖ = µx(Ĝ) =

∫
Ĝ

dµx(γ) =

∫
Ĝ

(γ, 0)dµx(γ) = 〈ϕ(0)x, x〉.

On the other hand, 〈ϕ(0)x, x〉 6 ‖ϕ(0)‖‖x‖2. Thus, ‖ΓE(x, x)‖ ≤ ‖ϕ(0)‖‖x‖2. We conclude
that ΓE(x, y) is bounded apart from E. �

From Theorem 4.3 we deduce the existence of a unique self-adjoint element mϕ(E) of
End∗A(M) such that

(12) ΓE(x, y) = 〈mϕ(E)x, y〉.

Moreover, mϕ(E) is a positive element of End∗A(M) since

〈mϕ(E)x, x〉 = Γ(x, x) = µx(E) ∈ A+.

Fix x ∈M and consider the map mϕ,x : Σ(Ĝ)→M, E 7→ mϕ,x(E) = mϕ(E)x.

Theoreme 4.4. Assume thatM is a self-dual Hilbert A-module. Then, the map mϕ,x : Σ(Ĝ)→
M, E 7→ mϕ,x(E) is a regular vector measure.
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Proof. Take y ∈ M′ = M. Set E =
∞
∪

n=1
En where the En are pairwise disjoint elements of

Σ(Ĝ). Then,

y(mϕ,x(E)) =〈mϕ(E)x, y〉 = ΓE(x, y) = Γ ∞
∪

n=1
En

(x, y)

=
∞∑
n=1

ΓEn(x, y) =
∞∑
n=1

y(mϕ,x(En)) = y(
∞∑
n=1

mϕ,x(En))

because Γ(·)(x, y) is the linear combinaison of four σ-additive regular vector measures. Thus

mϕ,x(E) =
∞∑
n=1

mϕ,x(En). Moreover, mϕ,x is regular. �

One proves that the function f : Ĝ → C, γ 7→ (γ, g) := γ(g) is integrable with respect to
mϕ,x by following the similar proof in [7, page 63]. Finally, observe that

〈
∫
Ĝ

(γ, g)dmϕ,x(γ), y〉 =

∫
Ĝ

(γ, g)d〈mϕ,x(γ), y〉

=

∫
Ĝ

(γ, g)d〈mϕ(γ)x, y〉

=

∫
Ĝ

(γ, g)dµx,y

= 〈ϕ(g)x, y〉.

We summarize all the above computations to obtain the following Bochner-like theorem.

Theoreme 4.5. Let A be a unital C∗-algebra. Let M be a self-dual Hilbert A-module. Let
ϕ : G → End∗A(M) be a positive definite function such that for x ∈ M, ϕx(0) is 0 or is
invertible in A with inverse in the center of A. Then, there exists a positive regular vector
measure mϕ : Σ(Ĝ)→ End∗A(M) such that

(13) ϕ(g)x =

∫
Ĝ

(γ, g)d(mϕ(γ)x), ∀g ∈ G.
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