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THE THEOREM OF BOCHNER FOR ADJOINTABLE OPERATORS
VALUED MAPS

KOAMI GBEMOU! AND YAOGAN MENSAH2*

ABSTRACT. In this paper, we obtain a generalisation of Bochner’s theorem to positive definite
functions defined on a locally compact abelian group with values in the space of adjointable

operators on a Hilbert C*-module.

1. INTRODUCTION

Initially, Bochner’s theorem gives a characterization of the Fourier transform of a positive
finite Borel measure on the real line. In its general form, the Bochner’s theorem links positive
definite functions on a locally compact abelian group to a finite positive Borel measure on the
dual group via the Fourier-Stieltjes transform. Bochner’s theorem has many generalizations.
Examples include references [7—8, 12—14], this list is of course non exhaustive.

In [7] the author extends the Bochner’s theorem to the case of positive definite maps from a
locally compact abelian group G into B(#), the space of bounded linear operators on a separable
complex Hilbert space H. In this paper, we extend the results in |7] to positive definite functions
from a locally compact abelian group G into the space End% (M) of adjointable operators on
a self-dual Hilbert C*-module M.

The rest of the paper is organized as follows. In Section 2, we provide basic informations
about C*-algebras and Hilbert C*-modules that we may need. In Section 3, we obtain some
results about positive definite functions from G into End’(M). Finally, in Section 4, we state

the theorem of Bochner in the framework that we have considered.

2. C*-ALGEBRAS AND HILBERT C*-MODULES

We recall here basic informations about C*-algebras and Hilbert C*-modules that we may
need in this article. Interested readers are referred to |1, 9] for more details on C*-algebras
and [10, 1] for more details on Hilbert C*-modules.
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Let A be an algebra over C. A map A — A, a > a* is called an involution if

Va,b € A and Vo € C. A x-algebra is an algebra with involution.
A Banach algebra is a Banach space A which is also an algebra such that

labl| < [[alll|b], Va,b € A.
A C*-algebra is a *-Banach algebra A such that
Va € A, laall = Jla]®.

By the Gelfand-Naimark theorem, any C*-algebra can be realized as a concrete norm-closed
subalgebra of the algebra B(#) of the bounded linear operators on some Hilbert space H |9, page
2|. A C*-algebra A is called unital if it has a unit (denoted by 14). An element a of the C*-
algebra A is called self-adjoint if a* = a and it is called positive if there exists b € A such
that a = b*b. Positive elements are automatically self-adjoint. We denote by AT the set of all
positive elements of A. The space AT is a convex cone. Also we will use the following result:
If a,b € AT are such that b < a, then [|b]| < ||al|.

A pre-Hilbert module over a C*-algebra A is a complex vector space M which is also a right

A-module such that there is a map
MM = A, (2,y) = (2,y)
with the following properties. For z,y,z2 € M, A € C, a € A,

(x, \y + 2) = Mz, y) + (x, 2),
(z,ya) = (,y)a,
(y,2) = (z,9)",

(x,z) € AT,

(x,x) =0=2=0.

The equality
1
]| = ||z, z)[|2
defines a norm on M. Moreover, if M is complete with respect to this norm, then M is called

a Hilbert A-module or a Hilbert C*-module over A.

Let us give some examples.

(1) Every complex Hilbert space H is a Hilbert module over C. The inner product is the
usual scalar product on H.
(2) Every C*-algebra A is a Hilbert module over A. The inner product is defined by

(r,y) =2y, wz,yecA
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(3) Let Ex, k = 1,--- ,n be Hilbert C*-modules over the same C*-algebra A. The direct

sum é E}. equipped with the module action and the inner product given by the formula
k=1

n

<$, y> = Z<x17 yz)

i=1
where x = (z1,29...2,) and y = (Y1, Y2 - . - Yn)-
From the above first two examples, one notices that Hilbert C*-module generalizes C*-algebra
and Hilbert space.
Let us denote by M’ the set of all bounded A-linear maps from M into A. The relations

(Af)(z) = Mf(z) and (fa)(z) = a" f(2),
where A € C, f € M,z € M, a € A, introduce respectively on M’ a structure of vector space

over C and a structure of right A-module. Also, M’ is complete under the norm

I71F= sup /()]

el <

There is a natural isometric embedding of M into M’ via the map = — (x,-). The Hilbert
C*-module M is called self-dual if M' = M.

We denote by End4(M), the set of bounded C-linear and A-linear endomorphisms of M.
Such maps will be called operators on M. We say that an operator T on M is adjointable if
there exists an operator T on M, called the adjoint of T', such that
(1) Ve,y e M, (Tx,y) = (x, T"y).

It is known that an element of End4(M) may not have necessairily an adjoint. An operator
that has an adjoint is called adjointable. In the sequel, we denote by End’ (M) the set of all
adjointable operators on M.

3. ADJOINTABLE OPERATORS VALUED POSITIVE DEFINITE FUNCTIONS
Let GG be a locally compact abelian group. We denote by G the dual group of G.

Definition 3.1. A function f: G — A is said to be positive deﬁm’te if

VN € N, Vay, -+ ,ay € A, Vg1, -+ ,gn € G, ZZaZf gja c A"

=1 j=1
Definition 3.2. An element T € Endy(M) is said to be positive if Yo € M,(Tx,x) is a
positive element of the C*-algebra A.

Definition 3.3. A function ¢ : G — End’(M) is said to be positive definite for any v € M,
the function ¢, : G — A defined by
(2) 2(9) = (p(9)z, 7)
1s positive definite; in other words if
Ve M,VN e N, Vay, - ,any € A, Vg1, ,gn € G, Zaz — gj)T, 7)a; c A"
i=1 j=1

Lemma 3.4. Leta,be A. Ifa e AT and a+b e A", then b* = 0.
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Proof. Set ¢ = a + b. There exists a;,c; € A such that a = afa; and ¢ = c¢j¢;. Then,

b=c—a=cjce; —ajay. Thus, b* = (¢fc; — ajar)* = ey — aja; = b. O

Theoreme 3.5. Let ¢ : G — End’y(M) be a positive definite function. Then, ¢(0) is a positive
element of Endy(M).

Proof. Assume that ¢ : G — End’(M) is a positive definite function. Forz € M, ¢, : G = A
is positive definite. Then, VN € N, Vay,--- ,ax € A, Vg1,--- , gy € G,

N N
(3) D) aiealg — gi)a; € AL
i=1 j=1
Now, if we take N =1, a; = 14, g1 = 0, then we obtain from (3) ¢,(0) € AT, in other words
(p(0)x,z) € AT. Thus ¢(0) is a positive element of End’(M). O
Theoreme 3.6. Let ¢ : G — End (M) be a positive definite function. Then, for any element
g in G, one has p(—g) = ¢(g)".

Proof. Assume that ¢ : G — End’ (M) is a positive definite function. Forx € M, ¢, : G — A
is positive definite. If we take N =2, a; = 14, as = a,91 = g, go = 0, then we obtain from (3)

(4) ((0)z,7) + (p(g)x, x)a” + alp(—g)z, z) + alp(0)z, z)a” € AT.

Since (p(0)z,z) and a(p(0)z,z)a* belong to A", then we deduce from Lemma 3.4 that
(p(g)x,zya* + a{p(—g)z, x) is a self-adjoint element of A, that is

() ({p(g)z, x)a” + alp(=g)z, )" = (p(g)z, x)a” + alp(=g)z,z).

If we take successively a = 14 and a = 114 we obtain

(6) (p(g)z,z)" + (p(=g)z,2)" = {p(9)z, z) + (p(—g)z, x)
and
(7) (p(g)z,2)" — (p(—g)z,x)" = —(p(9)z, z) + (¢p(—g)z, ).

*

Now, we add equalities (6) and (7) to obtain (¢(g)z,z)* = (p(—g)z,x). So,
(p(=g)z, z) = (r, (g9)x) = (p(9)"x, 2).

Thus, p(—g) = »(9)*
0

Theoreme 3.7. Let ¢ : G — End%(M) be a positive definite function. Assume that for
all v € M, p.(0) is 0 or v,(0) is an invertible element of Z(A) (the center of A). Then,

Vg € G, [le(g)ll < 2[le)]-
Proof. Let us assume that ¢ : G — End’% (M) is a positive definite function. We recall (4):
(8) ((0)z,7) + (p(g)x, x)a” + alp(—g)r, z) + alp(0)z, z)a” € AT.

Now, if ¢,(0) = 0 we have (p(g9)z, z)a* + a(p(—g)z,z) € AT. Taking a = —p,(g) and using
the fact that p(—g) = ¢(g)*, we have


https://doi.org/10.28919/ejma.2023.3.18

Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2023.3.18 5

— [@2(9)0a(9)" + ©2(9)pa(9)] € AT,
=02(9)"02(9) = 02(9)pe(g)" =0

because . (9)*¢.(g9) and ¢, (g)p.(g)* are positive elements in A. Then, we have

lez(9))1* = lle2(9) ¢a(9)]| = 0.

This implies ¢, (g) = 0, Vo € M. Then, ¢(g) = 0. Therefore, ||¢(g)|| < 2||¢(0)].
Now, if ¢,(0) # 0 is invertible, then we set a = —¢,(g),(0)~! in (8) to obtain

02(0) — 02(9)92(0) " 0u(9)" — 0ul9) 0 (0) " pu(g)* +
©02(9)2(0) "L, (0)p.(g)* Lp.(g) € AT. Taking into account the fact that ¢,(0) is a positive
element of A, hence self-adjoint, we have

©2(0) — 02 (9):(0)"a(g)* € AT
=0:(0) = ©:(0) 02 (9)pa(9)" € A (because ¢,(0)~" € Z(A)),
=02(0)* — pa(9)pa(9)* € A

(multiplication by ¢,(0)).

Taking the norm, we obtain

lea(9)a(9) 1l < lla(0)]®
=l (9)I* < Il (0)]
== (@ < lle=(0)]-
Therefore, if ||z|| = ||y|| = 1, we have ||[{©(g9)z,v)|| < 2||¢(0)|. This implies
le(@)ll == sup  J{p(g)z, y)|| < 2@ (0)]. u

==L, [[yll=1

4. ON A THEOREM OF BOCHNER

We denote by E(@) the Borel o-field of G , the dual group of the locally compact group G.

Definition 4.1. A measure m : Z(@) — End (M) is called positive reqular if
(1) VE € 5(G), m(E) is a positive element in Endy(M).

(2) Vo € M, the measure m,, : Z(@) — A is a regular vector measure.

Definition 4.2. A measure m : $(G) — End’y(M) is said to be bounded if there exists a > 0
such that |m(E)|| < a, VE € X(G).

Now, we consider on End (M) the weakest topology that makes continuous all the functions
oy + Endy(M) - A, T — ¢, ,(T) = (Tz,y). A map ¢ : G — Endi(M) is said to be
continuous if Ve > 0, Vx,y € M, 3N, ,, neighbourhood of 0 in G such that if g — ¢' € N, 5,
then [[{(¢(9) — ¥ (") z, )| <e.

Let ¢ : G = End’ (M) be a positive definite and continuous function. Let z € M. Then,
the map ¢, : G — A is positive definite and continuous. Using the Gelfand-Naimark theorem
and Theorem 2.8 of 7], we obtain a regular positive bounded measure p, : X(G) — A such
that
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9) eal9) = [ (i),
That is
(10) (p(g)z, ) Z/a(%g)dux(v),

~

Consider E € 3(G). Define the map
TE: M — A x— () = p(E).

Consider the map I'g : M x M — A defined by

S = eS| i e - eSS

(11) Lp(r,y) = |7a(

Theoreme 4.3. The map I'g : M x M — A has the following properties

(1) ' is A-linear in the second variable and A-involution linear in the first variable.
(2) FE(:Evy) = FE(y,l'>*, Vl',y e M.
(3) I'g is bounded apart from E.

Proof. If we set p,,(E) =g(x,y), then we have

(p(g)z,y) = /A (7, 9)Aptay (7)-

G
Then, using the properties of the A-valued product (-, -), we obtain that I'g is and A-linear in
y and A-involution linear in x. Then, we deduce the property (1). Moreover, the observation
that the measure p, in the equality (9) is the same for all g € G and the fact that (p(g)x,y) =
(p(—9)y, z)* conduct to the property (2). From the property (2) it is sufficient to show that
I'g(x, x) is bounded to obtain the property (3). Note that

I (2, 2)|| = [ (E)] < [l

where ||u,|| denote the total variation of p, given by

*

A

sl = (@) = [ ) = [ (2,0)da(3) = ((0)2.0)
On the other hand, (p(0)z,z) < ||@(0)||||z|*>. Thus, [|[Te(z, )| < ||¢(0)]]]z]|*. We conclude
that I'g(z,y) is bounded apart from E. O

From Theorem 4.3 we deduce the existence of a unique self-adjoint element m,(E) of

End’ (M) such that

(12 Ca(e,y) = (mo(E), ).

Moreover, m(E) is a positive element of End’ (M) since
(B, ) = T(2,2) = 1a( ) € A",

~

Fix x € M and consider the map my , : 3(G) = M, E — my,(E) = m,(E)z.

Theoreme 4.4. Assume that M is a self-dual Hilbert A-module. Then, the map my, , : Z(@) —

M, E — my,(E) is a reqular vector measure.
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Proof. Take y € M' = M. Set E = OL_jl FE,, where the F,, are pairwise disjoint elements of

¥(G). Then,

y(meo(E)) =(me(E)r,y) =Te(,y) =T s . (2,9)

n=1

=N Tuw ) = > ylmga(En) = y(> me.(Ey))

because I'()(z,y) is the linear combinaison of four o-additive regular vector measures. Thus

My (E) = 2—:1 My - (Ey). Moreover, my, , is regular. O

One proves that the function f : G — C, v — (7,9) := ~(g) is integrable with respect to
my , by following the similar proof in |7, page 63]. Finally, observe that

( /A (7, 9)dmy.(7),y) = /A(%g)d<m¢,x(7)7y>

G G

Z/A(%g)d<m¢(7)w,y>
G
= /A (7, 9)dptzy

G

= (p(9)z,y).

We summarize all the above computations to obtain the following Bochner-like theorem.

Theoreme 4.5. Let A be a unital C*-algebra. Let M be a self-dual Hilbert A-module. Let
¢ : G = End(M) be a positive definite function such that for x € M, ,(0) is 0 or is
invertible in A with inverse in the center of A. Then, there exists a positive reqular vector

~

measure my, : (G) — Endy(M) such that
(13) cla)e = [ (gd(m (3)0). Vg €.
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