THE THEOREM OF BOCHNER FOR ADJOINTABLE OPERATORS VALUED MAPS

KOAMI GBEMOU¹ AND YAOGAN MENSAH^{1,2,*}

ABSTRACT. In this paper, we obtain a generalisation of Bochner's theorem to positive definite functions defined on a locally compact abelian group with values in the space of adjointable operators on a Hilbert C^* -module.

1. INTRODUCTION

Initially, Bochner's theorem gives a characterization of the Fourier transform of a positive finite Borel measure on the real line. In its general form, the Bochner's theorem links positive definite functions on a locally compact abelian group to a finite positive Borel measure on the dual group via the Fourier-Stieltjes transform. Bochner's theorem has many generalizations. Examples include references [5–8, 12–14], this list is of course non exhaustive.

In [7] the author extends the Bochner's theorem to the case of positive definite maps from a locally compact abelian group G into $\mathcal{B}(\mathcal{H})$, the space of bounded linear operators on a separable complex Hilbert space \mathcal{H} . In this paper, we extend the results in [7] to positive definite functions from a locally compact abelian group G into the space $End^*_{\mathcal{A}}(\mathcal{M})$ of adjointable operators on a self-dual Hilbert C^* -module \mathcal{M} .

The rest of the paper is organized as follows. In Section 2, we provide basic informations about C^* -algebras and Hilbert C^* -modules that we may need. In Section 3, we obtain some results about positive definite functions from G into $End^*_{\mathcal{A}}(\mathcal{M})$. Finally, in Section 4, we state the theorem of Bochner in the framework that we have considered.

2. C^* -Algebras and Hilbert C^* -modules

We recall here basic informations about C^* -algebras and Hilbert C^* -modules that we may need in this article. Interested readers are referred to [4, 9] for more details on C^* -algebras and [10, 11] for more details on Hilbert C^* -modules.

 $^{^1\}mathrm{Department}$ of Mathematics, University of Lomé, Togo

²ICMPA-UNESCO-CHAIRE, UNIVERSITY OF ABOMEY-CALAVI, BENIN

^{*}Corresponding Author

E-mail addresses: bengbemou3@gmail.com, mensahyaogan2@gmail.com.

Key words and phrases. positive definite function; C^* -algebra; Hilbert C^* -module; Fourier transform; theorem of Bochner.

This paper is dedicated to Professor Kinvi Kangni. Received 28/07/2023.

Let \mathcal{A} be an algebra over \mathbb{C} . A map $\mathcal{A} \to \mathcal{A}$, $a \mapsto a^*$ is called an *involution* if

$$a^{**} = a,$$

$$(a+b)^* = a^* + b^*,$$

$$(\alpha a)^* = \overline{\alpha} a^*,$$

$$(ab)^* = b^* a^*.$$

 $\forall a, b \in \mathcal{A} \text{ and } \forall \alpha \in \mathbb{C}. A *-algebra \text{ is an algebra with involution.}$ A Banach algebra is a Banach space \mathcal{A} which is also an algebra such that

$$\|ab\| \le \|a\| \|b\|, \, \forall a, b \in \mathcal{A}$$

A C^* -algebra is a *-Banach algebra \mathcal{A} such that

$$\forall a \in \mathcal{A}, \|a^*a\| = \|a\|^2.$$

By the Gelfand-Naimark theorem, any C^* -algebra can be realized as a concrete norm-closed subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of the bounded linear operators on some Hilbert space \mathcal{H} [9, page 2]. A C^* -algebra \mathcal{A} is called *unital* if it has a unit (denoted by $1_{\mathcal{A}}$). An element *a* of the C^* algebra \mathcal{A} is called *self-adjoint* if $a^* = a$ and it is called *positive* if there exists $b \in \mathcal{A}$ such that $a = b^*b$. Positive elements are automatically self-adjoint. We denote by \mathcal{A}^+ the set of all positive elements of \mathcal{A} . The space \mathcal{A}^+ is a convex cone. Also we will use the following result: If $a, b \in \mathcal{A}^+$ are such that $b \leq a$, then $||b|| \leq ||a||$.

A pre-Hilbert module over a C^* -algebra \mathcal{A} is a complex vector space \mathcal{M} which is also a right \mathcal{A} -module such that there is a map

 $\mathcal{M} \times \mathcal{M} \to \mathcal{A}, (x, y) \mapsto \langle x, y \rangle$

with the following properties. For $x, y, z \in \mathcal{M}, \lambda \in \mathbb{C}, a \in \mathcal{A}$,

$$\begin{split} \langle x, \lambda y + z \rangle &= \lambda \langle x, y \rangle + \langle x, z \rangle, \\ \langle x, ya \rangle &= \langle x, y \rangle a, \\ \langle y, x \rangle &= \langle x, y \rangle^*, \\ \langle x, x \rangle &\in \mathcal{A}^+, \\ \langle x, x \rangle &= 0 \Rightarrow x = 0. \end{split}$$

The equality

$$||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$$

defines a norm on \mathcal{M} . Moreover, if \mathcal{M} is complete with respect to this norm, then \mathcal{M} is called a *Hilbert* \mathcal{A} -module or a *Hilbert* C^* -module over \mathcal{A} .

Let us give some examples.

- (1) Every complex Hilbert space \mathcal{H} is a Hilbert module over \mathbb{C} . The inner product is the usual scalar product on \mathcal{H} .
- (2) Every C^* -algebra \mathcal{A} is a Hilbert module over \mathcal{A} . The inner product is defined by

$$\langle x, y \rangle = x^* y, \quad x, y \in \mathcal{A}.$$

(3) Let E_k , $k = 1, \dots, n$ be Hilbert C^* -modules over the same C^* -algebra \mathcal{A} . The direct $\sup_{k=1}^{n} E_k$ equipped with the module action and the inner product given by the formula

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x_i, y_i \rangle$$

where $x = (x_1, x_2 \dots x_n)$ and $y = (y_1, y_2 \dots y_n)$.

From the above first two examples, one notices that Hilbert C^* -module generalizes C^* -algebra and Hilbert space.

Let us denote by \mathcal{M}' the set of all bounded \mathcal{A} -linear maps from \mathcal{M} into \mathcal{A} . The relations

$$(\lambda f)(x) = \overline{\lambda} f(x)$$
 and $(fa)(x) = a^* f(x)$,

where $\lambda \in \mathbb{C}$, $f \in \mathcal{M}', x \in \mathcal{M}, a \in \mathcal{A}$, introduce respectively on \mathcal{M}' a structure of vector space over \mathbb{C} and a structure of right \mathcal{A} -module. Also, \mathcal{M}' is complete under the norm

$$||f|| = \sup_{||x|| \le 1} ||f(x)||.$$

There is a natural isometric embedding of \mathcal{M} into \mathcal{M}' via the map $x \mapsto \langle x, \cdot \rangle$. The Hilbert C^* -module \mathcal{M} is called *self-dual* if $\mathcal{M}' = \mathcal{M}$.

We denote by $End_{\mathcal{A}}(\mathcal{M})$, the set of bounded \mathbb{C} -linear and \mathcal{A} -linear endomorphisms of \mathcal{M} . Such maps will be called *operators* on \mathcal{M} . We say that an operator T on \mathcal{M} is *adjointable* if there exists an operator T^* on \mathcal{M} , called the *adjoint* of T, such that

(1)
$$\forall x, y \in \mathcal{M}, \langle Tx, y \rangle = \langle x, T^*y \rangle.$$

It is known that an element of $End_{\mathcal{A}}(\mathcal{M})$ may not have necessairily an adjoint. An operator that has an adjoint is called *adjointable*. In the sequel, we denote by $End_{\mathcal{A}}^*(\mathcal{M})$ the set of all adjointable operators on \mathcal{M} .

3. Adjointable operators valued positive definite functions

Let G be a locally compact abelian group. We denote by \widehat{G} the dual group of G.

Definition 3.1. A function $f: G \to \mathcal{A}$ is said to be positive definite if

$$\forall N \in \mathbb{N}, \forall a_1, \cdots, a_N \in \mathcal{A}, \forall g_1, \cdots, g_N \in G, \sum_{i=1}^N \sum_{j=1}^N a_i f(g_i - g_j) a_j^* \in \mathcal{A}^+$$

Definition 3.2. An element $T \in End^*_{\mathcal{A}}(\mathcal{M})$ is said to be positive if $\forall x \in \mathcal{M}, \langle Tx, x \rangle$ is a positive element of the C^{*}-algebra \mathcal{A} .

Definition 3.3. A function $\varphi : G \to End^*_{\mathcal{A}}(\mathcal{M})$ is said to be positive definite for any $x \in \mathcal{M}$, the function $\varphi_x : G \to \mathcal{A}$ defined by

(2)
$$\varphi_x(g) = \langle \varphi(g)x, x \rangle$$

is positive definite; in other words if

$$\forall x \in \mathcal{M}, \, \forall N \in \mathbb{N}, \, \forall a_1, \cdots, a_N \in \mathcal{A}, \, \forall g_1, \cdots, g_N \in G, \, \sum_{i=1}^N \sum_{j=1}^N a_i \langle \varphi(g_i - g_j) x, x \rangle a_j^* \in \mathcal{A}^+.$$

Lemma 3.4. Let $a, b \in \mathcal{A}$. If $a \in \mathcal{A}^+$ and $a + b \in \mathcal{A}^+$, then $b^* = b$.

Proof. Set c = a + b. There exists $a_1, c_1 \in \mathcal{A}$ such that $a = a_1^* a_1$ and $c = c_1^* c_1$. Then, $b = c - a = c_1^* c_1 - a_1^* a_1$. Thus, $b^* = (c_1^* c_1 - a_1^* a_1)^* = c_1^* c_1 - a_1^* a_1 = b$.

Theoreme 3.5. Let $\varphi : G \to End^*_{\mathcal{A}}(\mathcal{M})$ be a positive definite function. Then, $\varphi(0)$ is a positive element of $End^*_{\mathcal{A}}(\mathcal{M})$.

Proof. Assume that $\varphi : G \to End_{\mathcal{A}}^*(\mathcal{M})$ is a positive definite function. For $x \in \mathcal{M}$, $\varphi_x : G \to \mathcal{A}$ is positive definite. Then, $\forall N \in \mathbb{N}, \forall a_1, \cdots, a_N \in \mathcal{A}, \forall g_1, \cdots, g_N \in G$,

(3)
$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_i \varphi_x (g_i - g_j) a_j^* \in \mathcal{A}^+$$

Now, if we take N = 1, $a_1 = 1_A$, $g_1 = 0$, then we obtain from (3) $\varphi_x(0) \in \mathcal{A}^+$, in other words $\langle \varphi(0)x, x \rangle \in \mathcal{A}^+$. Thus $\varphi(0)$ is a positive element of $End^*_{\mathcal{A}}(\mathcal{M})$.

Theoreme 3.6. Let $\varphi : G \to End^*_{\mathcal{A}}(\mathcal{M})$ be a positive definite function. Then, for any element g in G, one has $\varphi(-g) = \varphi(g)^*$.

Proof. Assume that $\varphi: G \to End_{\mathcal{A}}^*(\mathcal{M})$ is a positive definite function. For $x \in \mathcal{M}, \varphi_x: G \to \mathcal{A}$ is positive definite. If we take N = 2, $a_1 = 1_{\mathcal{A}}, a_2 = a, g_1 = g, g_2 = 0$, then we obtain from (3)

(4)
$$\langle \varphi(0)x, x \rangle + \langle \varphi(g)x, x \rangle a^* + a \langle \varphi(-g)x, x \rangle + a \langle \varphi(0)x, x \rangle a^* \in \mathcal{A}^+.$$

Since $\langle \varphi(0)x, x \rangle$ and $a \langle \varphi(0)x, x \rangle a^*$ belong to \mathcal{A}^+ , then we deduce from Lemma 3.4 that $\langle \varphi(g)x, x \rangle a^* + a \langle \varphi(-g)x, x \rangle$ is a self-adjoint element of \mathcal{A} , that is

(5)
$$(\langle \varphi(g)x, x \rangle a^* + a \langle \varphi(-g)x, x \rangle)^* = \langle \varphi(g)x, x \rangle a^* + a \langle \varphi(-g)x, x \rangle.$$

If we take successively $a = 1_{\mathcal{A}}$ and $a = i 1_{\mathcal{A}}$ we obtain

(6)
$$\langle \varphi(g)x, x \rangle^* + \langle \varphi(-g)x, x \rangle^* = \langle \varphi(g)x, x \rangle + \langle \varphi(-g)x, x \rangle$$

and

(7)
$$\langle \varphi(g)x, x \rangle^* - \langle \varphi(-g)x, x \rangle^* = -\langle \varphi(g)x, x \rangle + \langle \varphi(-g)x, x \rangle.$$

Now, we add equalities (6) and (7) to obtain $\langle \varphi(g)x, x \rangle^* = \langle \varphi(-g)x, x \rangle$. So,

$$\langle \varphi(-g)x, x \rangle = \langle x, \varphi(g)x \rangle = \langle \varphi(g)^*x, x \rangle$$

Thus, $\varphi(-g) = \varphi(g)^*$.

Theoreme 3.7. Let $\varphi : G \to End^*_{\mathcal{A}}(\mathcal{M})$ be a positive definite function. Assume that for all $x \in \mathcal{M}$, $\varphi_x(0)$ is 0 or $\varphi_x(0)$ is an invertible element of $\mathcal{Z}(\mathcal{A})$ (the center of \mathcal{A}). Then, $\forall g \in G$, $\|\varphi(g)\| \leq 2\|\varphi(0)\|$.

Proof. Let us assume that $\varphi: G \to End^*_A(\mathcal{M})$ is a positive definite function. We recall (4):

(8)
$$\langle \varphi(0)x, x \rangle + \langle \varphi(g)x, x \rangle a^* + a \langle \varphi(-g)x, x \rangle + a \langle \varphi(0)x, x \rangle a^* \in \mathcal{A}^+.$$

Now, if $\varphi_x(0) = 0$ we have $\langle \varphi(g)x, x \rangle a^* + a \langle \varphi(-g)x, x \rangle \in \mathcal{A}^+$. Taking $a = -\varphi_x(g)$ and using the fact that $\varphi(-g) = \varphi(g)^*$, we have

$$- [\varphi_x(g)\varphi_x(g)^* + \varphi_x(g)\varphi_x(g)^*] \in \mathcal{A}^+,$$

$$\Rightarrow \varphi_x(g)^*\varphi_x(g) = \varphi_x(g)\varphi_x(g)^* = 0$$

because $\varphi_x(g)^*\varphi_x(g)$ and $\varphi_x(g)\varphi_x(g)^*$ are positive elements in \mathcal{A} . Then, we have

$$\|\varphi_x(g)\|^2 = \|\varphi_x(g)^*\varphi_x(g)\| = 0.$$

This implies $\varphi_x(g) = 0, \forall x \in \mathcal{M}$. Then, $\varphi(g) \equiv 0$. Therefore, $\|\varphi(g)\| \leq 2\|\varphi(0)\|$. Now, if $\varphi_x(0) \neq 0$ is invertible, then we set $a = -\varphi_x(g)\varphi_x(0)^{-1}$ in (8) to obtain

 $\varphi_x(0) - \varphi_x(g)\varphi_x(0)^{*-1}\varphi_x(g)^* - \varphi_x(g)\varphi_x(0)^{-1}\varphi_x(g)^* + \varphi_x(g)\varphi_x(0)^{-1}\varphi_x(0)\varphi_x(g)^{*-1}\varphi_x(g) \in \mathcal{A}^+$. Taking into account the fact that $\varphi_x(0)$ is a positive element of \mathcal{A} , hence self-adjoint, we have

$$\varphi_x(0) - \varphi_x(g)\varphi_x(0)^{-1}\varphi_x(g)^* \in \mathcal{A}^+.$$

$$\Rightarrow \varphi_x(0) - \varphi_x(0)^{-1}\varphi_x(g)\varphi_x(g)^* \in \mathcal{A}^+ \text{ (because } \varphi_x(0)^{-1} \in \mathcal{Z}(\mathcal{A})\text{)},$$

$$\Rightarrow \varphi_x(0)^2 - \varphi_x(g)\varphi_x(g)^* \in \mathcal{A}^+ \text{ (multiplication by } \varphi_x(0)\text{)}.$$

Taking the norm, we obtain

$$\|\varphi_x(g)\varphi_x(g)^*\| \le \|\varphi_x(0)\|^2$$

$$\Rightarrow \|\varphi_x(g)\|^2 \le \|\varphi_x(0)\|^2$$

$$\Rightarrow \|\varphi_x(g)\| \le \|\varphi_x(0)\|.$$

Therefore, if ||x|| = ||y|| = 1, we have $||\langle \varphi(g)x, y\rangle|| \le 2||\varphi(0)||$. This implies

 $\|\varphi(g)\| := \sup_{\|x\|=1, \|y\|=1} \|\langle \varphi(g)x, y \rangle\| \le 2\|\varphi(0)\|.$

4. On a theorem of Bochner

We denote by $\Sigma(\widehat{G})$ the Borel σ -field of \widehat{G} , the dual group of the locally compact group G.

Definition 4.1. A measure $m: \Sigma(\widehat{G}) \to End^*_{\mathcal{A}}(\mathcal{M})$ is called positive regular if

- (1) $\forall E \in \Sigma(\widehat{G}), m(E) \text{ is a positive element in } End_{\mathcal{A}}^*(\mathcal{M}).$
- (2) $\forall x \in \mathcal{M}$, the measure $m_x : \Sigma(\widehat{G}) \to \mathcal{A}$ is a regular vector measure.

Definition 4.2. A measure $m : \Sigma(\widehat{G}) \to End^*_{\mathcal{A}}(\mathcal{M})$ is said to be bounded if there exists $\alpha > 0$ such that $||m(E)|| \leq \alpha, \forall E \in \Sigma(\widehat{G}).$

Now, we consider on $End^*_{\mathcal{A}}(\mathcal{M})$ the weakest topology that makes continuous all the functions $\varphi_{x,y} : End^*_{\mathcal{A}}(\mathcal{M}) \to \mathcal{A}, T \mapsto \varphi_{x,y}(T) = \langle Tx, y \rangle$. A map $\psi : G \to End^*_{\mathcal{A}}(\mathcal{M})$ is said to be continuous if $\forall \varepsilon > 0, \forall x, y \in \mathcal{M}, \exists N_{\varepsilon,x,y}$ neighbourhood of 0 in G such that if $g - g' \in N_{\varepsilon,x,y}$, then $\|\langle (\psi(g) - \psi(g')) x, y \rangle\| < \varepsilon$.

Let $\varphi : G \to End^*_{\mathcal{A}}(\mathcal{M})$ be a positive definite and continuous function. Let $x \in \mathcal{M}$. Then, the map $\varphi_x : G \to \mathcal{A}$ is positive definite and continuous. Using the Gelfand-Naimark theorem and Theorem 2.8 of [7], we obtain a regular positive bounded measure $\mu_x : \Sigma(\widehat{G}) \to \mathcal{A}$ such that

(9)
$$\varphi_x(g) = \int_{\widehat{G}} (\gamma, g) d\mu_x(\gamma)$$

That is

(10)
$$\langle \varphi(g)x, x \rangle = \int_{\widehat{G}} (\gamma, g) d\mu_x(\gamma)$$

Consider $E \in \Sigma(\widehat{G})$. Define the map

$$\tau_E : \mathcal{M} \to \mathcal{A}, \ x \mapsto \tau_E(x) = \mu_x(E).$$

Consider the map $\Gamma_E : \mathcal{M} \times \mathcal{M} \to \mathcal{A}$ defined by

(11)
$$\Gamma_E(x,y) = \left[\tau_E(\frac{x+y}{2}) - \tau_E(\frac{x-y}{2})\right] + i\left[\tau_E(\frac{x+iy}{2}) - \tau_E(\frac{x-iy}{2})\right]$$

Theoreme 4.3. The map $\Gamma_E : \mathcal{M} \times \mathcal{M} \to \mathcal{A}$ has the following properties

- (1) Γ_E is \mathcal{A} -linear in the second variable and \mathcal{A} -involution linear in the first variable.
- (2) $\Gamma_E(x,y) = \Gamma_E(y,x)^*, \forall x, y \in \mathcal{M}.$
- (3) Γ_E is bounded apart from E.

Proof. If we set $\mu_{x,y}(E) = \Gamma_E(x,y)$, then we have

$$\langle \varphi(g)x,y\rangle = \int_{\widehat{G}}(\gamma,g)d\mu_{x,y}(\gamma)d\mu_{x$$

Then, using the properties of the \mathcal{A} -valued product $\langle \cdot, \cdot \rangle$, we obtain that Γ_E is and \mathcal{A} -linear in y and \mathcal{A} -involution linear in x. Then, we deduce the property (1). Moreover, the observation that the measure μ_x in the equality (9) is the same for all $g \in G$ and the fact that $\langle \varphi(g)x, y \rangle = \langle \varphi(-g)y, x \rangle^*$ conduct to the property (2). From the property (2) it is sufficient to show that $\Gamma_E(x, x)$ is bounded to obtain the property (3). Note that

$$\|\Gamma_E(x,x)\| = \|\mu_x(E)\| \leqslant \|\mu_x\|$$

where $\|\mu_x\|$ denote the total variation of μ_x given by

$$\|\mu_x\| = \mu_x(\hat{G}) = \int_{\hat{G}} d\mu_x(\gamma) = \int_{\hat{G}} (\gamma, 0) d\mu_x(\gamma) = \langle \varphi(0)x, x \rangle.$$

On the other hand, $\langle \varphi(0)x, x \rangle \leq \|\varphi(0)\| \|x\|^2$. Thus, $\|\Gamma_E(x,x)\| \leq \|\varphi(0)\| \|x\|^2$. We conclude that $\Gamma_E(x,y)$ is bounded apart from E.

From Theorem 4.3 we deduce the existence of a unique self-adjoint element $m_{\varphi}(E)$ of $End^*_{\mathcal{A}}(\mathcal{M})$ such that

(12)
$$\Gamma_E(x,y) = \langle m_{\varphi}(E)x, y \rangle.$$

Moreover, $m_{\varphi}(E)$ is a positive element of $End_{\mathcal{A}}^*(\mathcal{M})$ since

$$\langle m_{\varphi}(E)x, x \rangle = \Gamma(x, x) = \mu_x(E) \in \mathcal{A}^+.$$

Fix $x \in \mathcal{M}$ and consider the map $m_{\varphi,x} : \Sigma(\widehat{G}) \to \mathcal{M}, E \mapsto m_{\varphi,x}(E) = m_{\varphi}(E)x$.

Theoreme 4.4. Assume that \mathcal{M} is a self-dual Hilbert \mathcal{A} -module. Then, the map $m_{\varphi,x} : \Sigma(\widehat{G}) \to \mathcal{M}, E \mapsto m_{\varphi,x}(E)$ is a regular vector measure.

Proof. Take $y \in \mathcal{M}' = \mathcal{M}$. Set $E = \bigcup_{n=1}^{\infty} E_n$ where the E_n are pairwise disjoint elements of $\Sigma(\widehat{G})$. Then,

$$y(m_{\varphi,x}(E)) = \langle m_{\varphi}(E)x, y \rangle = \Gamma_E(x, y) = \Gamma_{\bigcup_{n=1}^{\infty} E_n}(x, y)$$
$$= \sum_{n=1}^{\infty} \Gamma_{E_n}(x, y) = \sum_{n=1}^{\infty} y(m_{\varphi,x}(E_n)) = y(\sum_{n=1}^{\infty} m_{\varphi,x}(E_n))$$

because $\Gamma_{(\cdot)}(x, y)$ is the linear combinaison of four σ -additive regular vector measures. Thus $m_{\varphi,x}(E) = \sum_{n=1}^{\infty} m_{\varphi,x}(E_n)$. Moreover, $m_{\varphi,x}$ is regular.

One proves that the function $f: \widehat{G} \to \mathbb{C}, \gamma \mapsto (\gamma, g) := \gamma(g)$ is integrable with respect to $m_{\varphi,x}$ by following the similar proof in [7, page 63]. Finally, observe that

$$\begin{split} \langle \int_{\widehat{G}} (\gamma, g) dm_{\varphi, x}(\gamma), y \rangle &= \int_{\widehat{G}} (\gamma, g) d\langle m_{\varphi, x}(\gamma), y \rangle \\ &= \int_{\widehat{G}} (\gamma, g) d\langle m_{\varphi}(\gamma) x, y \rangle \\ &= \int_{\widehat{G}} (\gamma, g) d\mu_{x, y} \\ &= \langle \varphi(g) x, y \rangle. \end{split}$$

We summarize all the above computations to obtain the following Bochner-like theorem.

Theoreme 4.5. Let \mathcal{A} be a unital C^* -algebra. Let \mathcal{M} be a self-dual Hilbert \mathcal{A} -module. Let $\varphi : G \to End^*_{\mathcal{A}}(\mathcal{M})$ be a positive definite function such that for $x \in \mathcal{M}$, $\varphi_x(0)$ is 0 or is invertible in \mathcal{A} with inverse in the center of \mathcal{A} . Then, there exists a positive regular vector measure $m_{\varphi} : \Sigma(\widehat{G}) \to End^*_{\mathcal{A}}(\mathcal{M})$ such that

(13)
$$\varphi(g)x = \int_{\widehat{G}} (\gamma, g) d(m_{\varphi}(\gamma)x), \, \forall g \in G.$$

References

- Y. Zhang, Bounded gaps between primes, Ann. Math. 179 (2014) 1121-1174. https://doi.org/10.4007/ annals.2014.179.3.7.
- [2] O. Avayu, E. Almeida, Y. Prior, T. Ellenbogen, Composite functional metasurfaces for multispectral achromatic optics, Nat. Commun. 8 (2017) 14992. https://doi.org/10.1038/ncomms14992.
- [3] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.
- [4] W. Averson, An invitation to C^{*}-algebras, Springer-Verlag, New York, 1976.
- [5] W. H. Barker, The spherical Bochner theorem on semisimple Lie groups, J. Funct. Anal. 20 (1975) 179-207. https://doi.org/10.1016/0022-1236(75)90040-3.
- K. Chadan, Generalization of Bochner's theorem for functions of the positive type, J. Phys. A: Math. Theor. 40 (2007) 14395. https://doi.org/10.1088/1751-8113/40/48/006.
- [7] P. L. Falb, On a theorem of Bochner, Publ. Math. l'I.H.É.S. 36 (1969) 59-67. https://doi.org/10.1007/ BF02684597.
- [8] Y. Kakihara, On a Hilbert module over an operator algebra and its applications to harmonic analysis, Kodai Math. J. 6 (1983) 289-300. https://doi.org/10.2996/kmj/1138036796
- [9] E. Kaniuth, A. T.-M. Lau, Fourier and Fourier-Stieltjes algebras on locally compact groups, Mathematical Surveys and Monographs, 231 Amer. Math. Soc., 2018.
- [10] E.C. Lance, Hilbert C*-modules a Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge University Press, Cambridge, England, 1995.

- [11] V. M. Manuilov, E. V. Troitsky, Hilbert C*-Modules, Translations of Mathematical Monographs, 226, Amer. Math. Soc., 2005.
- M. Rabaoui, A Bochner type theorem for inductive limits of Gelfand pairs, Ann. Inst. Fourier. 58 (5) (2008) 1551-1573. https://doi.org/10.5802/aif.2392.
- [13] I. Toure, K. Kangni, Harmonic analysis on internally Gelfand pairs associated to groupoids, Int. J. Anal. Appl. 17 (2019) 928-939. https://doi.org/10.28924/2291-8639.
- [14] K. D. Wodome, K. Kangni, V. S. K. Assiamoua, On an extension of Bochner's theorem, Far East J. Math. Sci. 67 (2012) 1-19. http://www.pphmj.com/abstract/6859.htm.