
DOI: 10.28919/ejma.2023.3.17
Eur. J. Math. Appl. (2023)3:17
URL: http://ejma.euap.org
© 2023 European Journal of Mathematics and Applications

FUZZY FRACTIONAL DERIVATIVE MODEL TO ASSESS THE
DYNAMICS OF HEPATITIS B INFECTION

SAUL C. MPESHE

Abstract. Hepatitis B virus infection shall remain a public health concern in many developed
and developing countries. In this paper, we formulate and analyse a simple fuzzy fractional
model of HBV infection to assess the dynamics of the disease using fractional-order differential
equations. To analyse the effect of the initial transmission of the disease, we computed the
basic reproduction number R0, and used it to perform stability analysis. The results show that
the disease-free and the endemic equilibrium are globally stable with respect to the value of
R0. Numerical simulations were performed to study the variations of each sub-population with
respect to time at different order (α). In general, results for the fractional model show that as
the order (α) increases, the population of the susceptible and exposed individuals decreases.
In contrast, the other sub-populations increase with an increase in α. Further results from
the numerical analysis show that increase in α, decreases the diameter of the fuzzy triangular
solutions for the susceptible and exposed individuals in the fuzzy fractional model.

1. Introduction

Hepatitis B is a viral infection that attacks the liver and can cause both acute and chronic
disease [1]. The virus that cause hepatitis B is a member of the family hepadnavirus [2].
According to WHO [1], the hepatitis virus (HBV) is most commonly transmitted from mother
to child during birth and delivery, as well as through contact with blood or other body fluids
during sex with an infected partner, unsafe injections or exposures to sharp instruments. WHO
estimates that 296 million people were living with chronic hepatitis B infection in 2019, with
1.5 million new infections each year, and in 2019, hepatitis B resulted approximately 820,000
deaths, mostly from cirrhosis and hepatocellular carcinoma (primary liver cancer).

HBV infection can either be acute or chronic. According to WHO [1], acute hepatitis B
occurs within the first 6 months after exposure to HBV. Adults, are able to clear the virus
without treatment. Those who clear the virus develops long-life immune. On other hand,
chronic hepatitis B is a lifelong infection with the HBV. The risk to develop a chronic hepatitis
B depends on the age at which a person become exposed to HBV. Less than 5% cases of hepatitis
B infection acquired in adulthood leads to chronic hepatitis, while about 95% cases of infection
in childhood leads to chronic hepatitis, forming a basis for strengthening and prioritizing infant
and childhood vaccination.

The burden of HBV infection is very high in Africa and other part of the world leading
to a major global health concern [3]. Mathematical models developed from different types of
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differential equations have been used to describe the transmission dynamics of several infectious
diseases and the possible control mechanisms available for the disease. Modeling the dynamics
of HBV infection have been a major concern for epidemiologists. The first attempt to model
HBV infection was by Anderson & May [4] who deterministically illustrated the effects of
carriers on the transmission of HBV. Following that, Anderson et al., [5] and Williams et
al., [6] developed mathematical models which included heterogeneous mixing with respect to
age and sexual activity.

Several types of mathematical models which been used to describe the spread of HBV in-
fection, including the deterministic models, stochastic models, and fractional order models.
Deterministic models for HBV which uses ordinary differential equations includes Mpeshe and
Nyerere [7,8], and Zada et al. [9] just to mention a few. Stochastic models for HBV which uses
stochastic differential equations includes Din, A., & Li, Y. [10,12] and [11]. However, ordinary
differential equations does not depend on the previous history of the systems, that is, they do
not have memory.

The evolution and control of epidemic processes in human population cannot be considered
without memory effect [13]. If people know the history of particular disease in their region,
they use different preventive measures, such as isolation of infected individuals and vaccination,
when possible. Fractional-order differential equations are potential tools to describe the effect
of memory and hence used to model infectious diseases. Fractional-order differential equations
models of HBV includes [14–17] and [18] just to mention a few.

The concept of fuzziness is very important in disease modeling because the infection occur in
fuzzy environment, and its decision to control the disease is fuzzy. Fuzziness is well established
through the idea of fuzzy set which involve assigning to each possible individual in the popula-
tion a value representing its degree of membership. For example, a fuzzy set representing our
concept of infection can assign a degree of membership of 1 to a high infection, 0.5 to a medium
infection, and 0 to a low infection. Fuzzy sets representing linguistic concepts such as low,
medium, and high, are often employed to define states of a variable called fuzzy variable [19].

Modelling with fuzzy sets and logic has motivated many researchers in science and social
sciences including epidemiology. In this paper, we present a fuzzy fractional-order model of
HBV infection in order to study its dynamics. The paper begins with presentation of some
fuzzy concepts followed by the model formulation and a description of parameters used in the
model. The feasibility solution, basic reproduction number, and global stability analysis of the
model are also discussed. Numerical simulations of the model are also established to study the
behaviour of the disease over a certain time period.

2. Model Formulation

2.1. The Model. The model considers only human populations with natural and disease-
dependent death rate for human. The population consists of susceptible humans (S), exposed
humans E, acutely infected humans (Ia), chronic carriers (Ic), and recovered humans (R). Table
1 shows the model parameters and their description as they have been used in this work.
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Table 1. Parameters and their description

Parameter Description
b recruitment rate in human due to births
µ natural death rate of human
ε rate of infection in human
βa transmission rate of acute HBV
βc transmission rate of chronic HBV
γa recovery rate of acute HBV
γc recovery rate of chronic carrier HBV
ω failure rate to clear acute HBV
d disease induced death rate of human
q vertical transmission rate in human

The mode of transmission of HBV in human is shown by Figure 1. Several assumptions
have been made in formulating this model as in Mpeshe and Nyerere [7], including following:
bq < µ + d + γc so that carriers would not increase rapidly; βa < βc because many infected
individuals are likely to be unaware of their condition and hence continue with their regular
behaviour; acute may become chronic carriers if they fail to clear the infection, and that a
chronic carrier mother may give birth to a chronic carrier child; both acutely and chronically
infected individuals can transmit HBV; and screening and treatment may help some chronic
carriers to recover.

Figure 1. Flow diagram for the HPB model

Using the parameters in Table 1 and Figure 1, an SEIR model is derived using first order
nonlinear ordinary differential equations as follows:

dS

dt
= b(1− qIc)− µS − (βaIa + βcIc)S,(1a)

dE

dt
= (βaIa + βcIc)S − (ε+ µ)E,(1b)

dIa
dt

= εE − (µ+ d+ ω + γa)Ia,(1c)

dIc
dt

= bqIc + ωIa − (µ+ d+ γc)Ic,(1d)

dR

dt
= γcIc + γaIa − µR.(1e)
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The fractional-order derivative model using Caputo derivative is now defined as

C
0D

α
t S = b(1− qIc)− µS − (βaIa + βcIc)S,(2a)

C
0D

α
t E = (βaIa + βcIc)S − (ε+ µ)E,(2b)

C
0D

α
t Ia = εE − (µ+ d+ ω + γa)Ia,(2c)

C
0D

α
t Ic = bqIc + ωIa − (µ+ d+ γc)Ic,(2d)

C
0D

α
t R = γcIc + γaIa − µR.(2e)

where C
0D

α
t is the Caputo derivative of order α ∈ (0, 1), with initial conditions

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, Ia(0) = Ia0 ≥ 0, Ic(0) = Ic0 ≥ 0, R(0) = R0 ≥ 0.

The order α indicates the index of memory in the system.

The fuzzy fractional-order derivative model in Caputo sense is now defined as

C
0D

α
t S̃ = b(1− qĨc)− µS̃ − (βaĨa + βcĨc)S̃,(3a)

C
0D

α
t Ẽ = (βaĨa + βcĨc)S̃ − (ε+ µ)Ẽ,(3b)

C
0D

α
t Ĩa = εẼ − (µ+ d+ ω + γa)Ĩa,(3c)

C
0D

α
t Ĩc = bqĨc + ωĨa − (µ+ d+ γc)Ĩc,(3d)

C
0D

α
t R̃ = γcĨc + γaĨa − µR̃.(3e)

with initial conditions S(0) = k̃(r)S0, E(0) = k̃(r)E0, Ia(0) = k̃(r)Ia0, Ic(0) = k̃(r)Ic0, R(0) =

k̃(r)R0, and k̃(r) = (ul(r), uc(r)) = (r − 1, 1− r) for 0 ≤ r ≤ 1.

2.2. Feasible Region and Equilibria. To show that the model solution exist and is in the
positive region R5

+, we show that C
0D

α
t xi ≥ 0 in the region R5

+. Using the model system (3) we
have

C
0D

α
t S̃|S̃=0 = b > 0,(4a)

C
0D

α
t Ẽ|Ẽ=0 = (βaĨa + βcĨc)S̃ ≥ 0,(4b)

C
0D

α
t Ĩa|Ĩa=0 = εẼ ≥ 0,(4c)

C
0D

α
t Ĩc|Ĩc=0 = ωĨa ≥ 0,(4d)

C
0D

α
t R̃|R̃=0 = γcĨc + γaĨa ≥ 0.(4e)

Hence, the model solution is feasible and positive in Ω = (S̃, Ẽ, Ĩa, Ĩc, R̃) ≥ 0 ∈ R5
+.

Further more, from (3) we find that

(5) C
0D

α
t Ñ = b− µÑ − d(Ĩa + Ĩc) ≤ b− µÑ.

Solving this inequality as t→∞ gives,

(6) Ñ(t) ≤ b

µ
.

Hence, the model solution is positively invariant in R5
+, This means that the model solution

will remain in the feasible region Ω if it starts in Ω.
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2.3. Equilibrium Points and Basic Reproduction Number. To determine the disease-
free and endemic equilibrium points, we set the left-hand side of (3) equal to zero. For Ẽ =

Ĩa = Ĩc = R̃ = 0, the disease-free equilibrium is

(7) E0 = (
b

µ
, 0, 0, 0, 0),

If Ẽ 6= 0, Ĩa 6= 0, Ĩc 6= 0, and R̃ 6= 0, the endemic equilibrium is E∗ = (S̃∗, Ẽ∗, Ĩa
∗
, Ĩc

∗
, R̃∗)

where,

S̃∗ =
(ε+ µ)(µ+ d+ ω + γa)(−bq + µ+ d+ γc)

εβa(−bq + µ+ d+ γc) + εβcω
,(8a)

Ẽ∗ =
1

ε
(µ+ d+ ω + γa)Ĩ

∗
a ,(8b)

Ĩ∗a =
(−bq + µ+ d+ γc)(b− µS̃∗)

bqω + βaS̃∗(−bq + µ+ d+ γc) + βcωS̃∗
,(8c)

Ĩ∗c =
ωĨ∗a

−bq + µ+ d+ γc
(8d)

R̃∗ =
1

µ
(γcĨ

∗
c + γaĨ

∗
a)(8e)

For E∗ to exist in the feasible region Ω, the condition 0 < S̃∗ < b
µ
, or equivalently, b

µ
1
S̃∗ ≥ 1 is

sufficiently necessary. Thus, define the basic reproduction number R0 by

(9) R0 =
b

µ

1

S̃∗
,

then

(10) R0 =
b

µ

εβa(−bq + µ+ d+ γc) + εβcω

(ε+ µ)(µ+ d+ ω + γa)(−bq + µ+ d+ γc)
,

3. Stability of the Disease-Free Equilibrium

In assessing the stability of equilibrium points, we omit from the analysis the equation in-
volving R̃ for its value can be obtained when the values of S̃, Ẽ, Ĩa and Ĩc are known. Thus,
we reduce the model system (3) to

C
0 D

α
t S̃ = b(1− qĨc)− µS̃ − (βaĨa + βcĨc)S̃,(11a)

C
0 D

α
t Ẽ = (βaĨa + βcĨc)S̃ − (ε+ µ)Ẽ,(11b)

C
0 D

α
t Ĩa = εẼ − (µ+ d+ ω + γa)Ĩa,(11c)

C
0 D

α
t Ĩc = bqĨc + ωĨa − (µ+ d+ γc)Ĩc.(11d)

with the feasible region Ω = {(S̃, Ẽ, Ĩa, Ĩc) ≥ 0 ∈ R4
+ : S̃ + Ẽ + Ĩa + Ĩc ≤ b

µ
.}

Theorem 1. The disease-free equilibrium of the HBV model (11) is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1.

Proof. In this case, we show that the Jacobian matrix J(E0) of the fuzzy fractional derivative
HBV model (11) at E0 = ( b

µ
, 0, 0) has negative eigenvalues. Further computations show that
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J(E0) of the fuzzy fractional derivative HBV model at E0 is

(12) J(E0) =


−µ 0 −βa bµ −bq − βc bµ
0 −(ε+ µ) βa

b
µ

βc
b
µ

0 ε −(µ+ d+ ω + γa) 0

0 0 ω bq − (µ+ d+ γc)


From J(E0) we find that one of the eigenvalue is λ1 = −µ. The remaining eigenvalues are the
eigenvalues of the reduced 3× 3 matrix

(13) J∗(E0) =

 −(ε+ µ) βa
b
µ

βc
b
µ

ε −(µ+ d+ ω + γa) 0

0 ω bq − (µ+ d+ γc)

 .
Observe that the remaining matrix J∗(E0) is a Metzler stable matrix whose eigenvalues are
all negative. Hence, the Jacobian matrix J(E0) has all its eigenvalues negative, and thus, the
disease-free equilibrium is locally asymptotically stable. �

Theorem 2. The disease-free equilibrium is of the HBV model (11) is globally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

Proof. In this case, we define a Lyapunov function V and show that C0Dα
t V ≤ 0. Now, consider

the Lyapunov function

(14) V = ω1Ẽ + ω2Ĩa + ω3Ĩc

The fuzzy fractional Caputo derivative of V is then

(15) C
0D

α
t V = ω1

C
0D

α

t Ẽ + ω2
C
0D

α

t Ĩa + ω3
C
0D

α

t Ĩc

From the model system (11) we have

C
0D

α
t V = ω1[(βaĨa + βcĨc)S̃ − (ε+ µ)Ẽ] + ω2[εẼ − (µ+ d+ ω + γa)Ĩa]

+ ω3[bqĨc + ωĨa − (µ+ d+ γc)Ĩc]

≤ ω1[(βaĨa + βcĨc)S̃
∗ − (ε+ µ)Ẽ] + ω2[εẼ − (µ+ d+ ω + γa)Ĩa]

+ ω3[bqĨc + ωĨa − (µ+ d+ γc)Ĩc]

= ω1βaĨaS̃
∗ + ω3ωĨa − (µ+ d+ ω + γa)Ĩa − ω1(ε+ µ)Ẽ

+ ω2εẼ + ω1βcĨcS̃
∗ − ω3(−bq + µ+ d+ γc)Ĩc

(16)

If we choose ω1 = ε(−bq+µ+d+γc), ω2 = (ε+µ)(−bq+µ+d+γc), ω3 = εβcS̃
∗, and simplify

the equation, we have

C
0D

α
t V ≤ ε(−bq + µ+ d+ γc)βaĨaS̃

∗ + εβcωĨaS̃
∗

− (ε+ µ)(−bq + µ+ d+ γc)(µ+ d+ ω + γa)Ĩa

= (ε+ µ)(−bq + µ+ d+ γc)(µ+ d+ ω + γa)Ĩa(R0 − 1)

(17)

Since at disease-free equilibrium R0 < 1, then it follows that C0Dα
t V ≤ 0. Thus, the disease-free

equilibrium is globally asymptotically stable at R0 < 1. �
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4. Stability of the Endemic Equilibrium

The local stability of the disease-free equilibrium implies that the endemic equilibrium is also
locally stable [20–22]. Therefore, in this section, we only establish the global stability of the
endemic equilibrium.

Theorem 3. The endemic equilibrium of the HBV model (11) is globally asymptotically stable
if R0 > 1 and unstable if R0 < 1.

Proof. To prove this theorem, we apply the Lyapunov functional approach for fractional differ-
ential equations.

Definition 4 ( [21]). Let V (xi(t)) =
∑n

i ωiφi(xi(t)) be a C1 function defined on some domain
in Rn

+ and xi(t) is a solution of the model system C
0D

α
t xi(t) = f(xi(t)), xi(0) = x0, α ∈ (0, 1).

Then the Caputo derivative of V along xi(t) is given by

(18) C
0D

α
t V (xi(t)) =

n∑
i

ωi
C
0D

α

t φi(xi(t)).

From the Definition 4, define φi(xi(t)) by φi(xi(t)) = xi(t) − x∗i − x∗i ln xi(t)
x∗i

where x∗ is the
equilibrium point of the model system (11). Then, we have the following corollary:

Corollary 5 ( [21]). Let x(t) ∈ R+ be a continuous differentiable function . Then, for any
t ≥ 0, α ∈ (0, 1), and x∗ ≥ 0, we have

C
0D

α
t V (xi(t)) =

n∑
i

C
0D

α

t (xi(t)− x∗i − x∗i ln
xi(t)

x∗i
)

≤
n∑
i

ωi(1−
x∗i
xi(t)

)C0D
α
t xi(t).

(19)

Now, consider the Lyapunov function

V = ω1(S̃ − S̃∗ − S̃∗ ln
S̃

S̃∗
) + ω2(Ẽ − Ẽ∗ − Ẽ∗ ln

Ẽ

Ẽ∗
)

+ ω3(Ĩa − Ĩa
∗ − Ĩa

∗
ln

Ĩa

Ĩa
∗ ) + ω4(Ĩc − Ĩc

∗ − Ĩc
∗

ln
Ĩc

Ĩc
∗ ).

(20)

Applying the Definition 4 and Corollary 5, the Caputo derivative of V is then

C
0D

α
t V ≤ ω1(1−

S̃∗

S̃
)C0D

α
t S̃ + ω2(1−

Ẽ∗

Ẽ
)C0D

α
t Ẽ + ω3(1−

Ĩa
∗

Ĩa
)C0D

α
t Ĩa

+ ω4(1−
Ĩc

∗

Ĩc
)C0D

α
t Ĩc.

(21)

From the model system (11) we have

C
0 D

α
t V ≤ ω1(1−

S̃∗

S̃
)[b(1− qĨc)− µS̃ − (βaĨa + βcĨc)S̃]

+ ω2(1−
Ẽ∗

Ẽ
)[(βaĨa + βcĨc)S̃ − (ε+ µ)Ẽ]

+ ω3(1−
Ĩa

∗

Ĩa
)[εẼ − (µ+ d+ ω + γa)Ĩa]

+ ω4(1−
Ĩc

∗

Ĩc
)[bqĨc + ωĨa − (µ+ d+ γc)Ĩc].

(22)

https://doi.org/10.28919/ejma.2023.3.17


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2023.3.17 8

At endemic equilibrium, b = bqĨ∗c − µS̃∗ − (βaĨ
∗
a + βcĨ

∗
c )S̃∗, (ε + µ) = (βaĨ

∗
a + βcĨ

∗
c ) S̃

∗

Ẽ∗ , (µ +

d+ ω + γa) = ε Ẽ
∗

Ĩa
∗ , and −bq + (µ+ d+ γc) = ω Ĩ∗a

Ĩ∗c
. Thus,

C
0 D

α
t V ≤ ω1(1−

S̃∗

S̃
)[bqĨ∗c − µS̃∗ − (βaĨ

∗
a + βcĨ

∗
c )S̃

∗ − bqĨc − µS̃ − (βaĨa + βcĨc)S̃]

+ ω2(1−
Ẽ∗

Ẽ
)[(βaĨa + βcĨc)S̃ − (βaĨ

∗
a + βcĨ

∗
c )
S̃∗

Ẽ∗
Ẽ]

+ ω3(1−
I∗a
Ia

)[εẼ − ε Ẽ
∗

Ĩa
∗ Ĩa] + ω4(1−

Ĩa
∗

Ĩc
)[ωĨa − ω

Ĩ∗a
Ĩ∗c
Ĩc].

(23)

Further simplification gives

(24) C
0D

α
t V ≤ −ω1µS̃(1− S̃∗

S̃
)2 + F (P )

where P = (S̃, Ẽ, Ĩa, Ĩc) ≥ 0 and

F (P ) = ω1(1−
S̃∗

S̃
)(1− Ĩc

Ĩ∗c
)bqĨ∗c

+ [ω1(1−
S̃∗

S̃
)(1− S̃Ĩa

S̃∗Ĩ∗a
) + ω2(1−

Ẽ∗

Ẽ
)(
S̃Ĩa

S̃∗Ĩ∗a
− Ẽ

Ẽ∗
)]βaĨ

∗
a S̃

∗

+ [ω1(1−
S̃∗

S̃
)(1− S̃Ĩc

S̃∗Ĩ∗c
) + ω2(1−

Ẽ∗

Ẽ
)(
S̃Ĩc

S̃∗Ĩ∗c
− Ẽ

Ẽ∗
)]βcĨ

∗
c S̃

∗

+ ω3(1−
Ĩa

∗

Ĩa
)(
Ẽ

Ẽ∗
− Ĩa

Ĩ∗a
)εẼ∗ + ω4(1−

Ĩ∗c
Ĩc
)(
Ĩa

Ĩ∗a
− Ĩc

Ĩ∗c
)ωĨa

∗

(25)

If we choose ω2 = ω1, ω3 = ω1
βaĨ∗a S̃

∗

εẼ∗ , and ω4 = ω1
βcĨ∗c S̃

∗

ωĨa
∗ , and simplify further, gives

F (P ) = ω1(1−
S̃∗

S̃
)(1− Ĩc

Ĩ∗c
)bqĨ∗c + ω1(3−

S∗

S
− Ĩ∗aẼ

∗

ĨaẼ
− S̃ĨaẼ

∗

S̃∗Ĩ∗aẼ
)βaĨ

∗
a S̃

∗

+ ω1(3−
S̃∗

S̃
− Ẽ

Ẽ∗
− Ĩa

Ĩ∗a
(
Ĩ∗c
Ĩc
− 1)− S̃ĨcẼ

∗

S̃∗Ĩ∗c Ẽ
)βcĨ

∗
c S̃

∗
(26)

In general (1 − x∗

x
) ≥ 0 and (1 − x

x∗
) ≤ 0 if the x∗ is the equilibrium point, therefore,

((1− S̃∗

S̃
)(1− Ĩc

Ĩ∗c
)) ≤ 0. Using the property of arithmetic mean ensures that F (P ) is non-positive

in P. Thus, C
0D

α
t V ≤ 0 in P and is zero when P = P ∗. Following the LaSalle’s invariant

principle, it is concluded that P ∗ is globally asymptotically stable. �

5. Numerical Simulations

In this section, numerical simulation are carried out using parameter values given in Table
2. Numerical simulation help to study the persistence of the disease when introduced in a
closed or isolated system. The initial values used in to simulate the fractional-order model
are S = 1000, E = 10, Ia = 10, Ic = 1, and R = 1. For the fuzzy fractional-order model
S(0) = E(0) = Ia(0) = Ic(0) = R(0) = 1. According to WHO [1], the incubation period is
30 to 180 days. For the purpose of simulation we use 30 days and therefore, ε = 1/30 per
day. According to the Southern Cross Medical Library (SCML), the recory from acute HBV
infection is 4 to 8 weeks or several months. For the purpose of simulation we use 4 weeks and
therefore, γa = 1/28 per day. The parameters and their sources are shown in the Table 2.

https://doi.org/10.28919/ejma.2023.3.17
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Table 2. Parameters and their description

Parameter Description Range value Source
b birth rate in human 1 assumed
ε rate of infection 1/30 [1]
µ natural death rate of human 0.00004521 [22]
d disease induced death rate of human 0.0013 [23]
βa transmission rate of acute HBV 0.00015 [7]
βc transmission rate of chronic HBV 0.0025 [7]
γa recovery rate of acute HBV 1/28 [24]
γc recovery rate of chronic carrier HBV 1/180 assumed
ω failure rate to clear acute HBV 0.05 [7]
q vertical transmission rate in human 0.001 [7]

The graph in Figure 2 shows the dynamical behaviour of state variables for different values
of fractional order derivative α for time over 100 days. From Figure 2a, we observe that the
population of susceptible individuals decreases as the value of order (α) increases. However,
there is a rapid increase in exposed individuals in the first 50 days for α = 1, surpassing all
orders, and then, it falls as shown in Figure 2b. The same results are exhibited for acute and
chronic individuals as in Figure 2c and 2d. The population of recovered individuals appear to
increase as α increases as shown in Figure 2e.

(a) Susceptible (b) Exposed

(c) Acute (d) Chronic

(e) Recovered

Figure 2. Three simple graphs

https://doi.org/10.28919/ejma.2023.3.17
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The graph in Figure 3, shows the dynamical behaviour of state variables for different values
of the fuzzy fractional order derivative model to the variation of r-cut. It can be observed
that the obtained graphs are fuzzy triangular functions. A variation in fractional order α also
affects the dynamics of the fuzzy fractional model. When the order increases from 0.5 to 1,
the diameter of the fuzzy solution for susceptible individuals decreases, while that of chronic
individuals increases as in Figure 3a and 3d. The diameter for the exposed, acute and recovered
individuals is almost the same as shown in Figure 3b, 3c, and 3e. When α = 1, then the solution
curves converge to the curves of integer order model.

(a) Susceptible (b) Exposed

(c) Acute (d) Chronic

(e) Recovered

Figure 3. Three simple graphs

6. Discussion

In this paper, we used a fuzzy fractional order modeling approach in Caputo sense to in-
vestigate the dynamics of HBV infection. To study the effect of initial transmission of the
disease we computed the basic reproduction number R0 of the model and used it to analyse
the stability of the disease equilibrium points. Analysis of the equilibrium points indicate that
the disease-free equilibrium of the model is globally asymptotically stable when R0 < 1 and
unstable otherwise. This means that there is a possibility of controlling the disease provided
that R0 < 1. We also found that the disease-endemic equilibrium is globally asymptotically
stable when R0 > 1, showing that the disease when introduced in the population can persist
for a long time.

To analyse the variation of sub-population in the model with respect to time we performed
numerical simulations for both the fractional order model and the fuzzy fractional-order model
at different values of the order α. The results of numerical simulations of the fractional-order
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model as in Figure 2 show that, whenever there is an increase in α the susceptible and exposed
population decreases, while the population of acute, chronic, and recovered individuals increases
as α increases. The results of numerical simulations of the fuzzy fractional-order model as shown
as in Figure 3 exhibit fuzzy triangular solutions with increase in diameter as α decreases for
the susceptible individuals, while for chronic individuals the diameter increases as α increases.

7. Conclusion

HBV infection will remain a potential threat to many countries in the world because of its
nature of infection. The virus can cause chronic infection and set people at high risk of death
from cirrhosis and liver cancer. HBV infection occur in fuzzy environment, and hence placing
much concern to application of fuzziness in modeling its dynamics. The results of the analysis
show that the disease is persistent when introduced in the society causing threat to human
health. Effective educational campaign about the dynamical transmission of the disease will
help to make people on safe motherhood practices and the importance of attending clinics for
screening and treatment where possible.
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