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A NEW CHARACTERIZATION OF MATHIEU SIMPLE GROUPS BY THE
NUMBER OF SINGULAR ELEMENTS

TING REN, RULIN SHEN∗

Abstract. Given a finite group G, let π(G) denote the set of all primes that divide the order
of G. For a prime p ∈ π(G), we define p-singular elements as those elements of G whose
order is divisible by p. We denote the proportion of p-singular elements in G by µp(G). Let
µ(G) := {µp(G)|p ∈ π(G)} be the set of all proportions of p-singular elements for each prime p
that divides |G|. In this paper we prove if a finite group G has the same set of proportions as
a Mathieu simple group M , then G is isomorphic to M .

1. Introduction

Given a finite group G, let π(G) be the set of all primes that divide the order of G. For
each prime p ∈ π(G), we define p-singular elements as those elements of G whose order is
divisible by p, while p-regular elements are those whose order is not divisible by p. The number
of p-singular and p-regular elements plays a crucial role in understanding the structure of the
group, particularly in finite simple group theory.

Several researchers have investigated the properties of singular elements in different types
of groups. In 1995, Isaacs, Kantor, and Spaltenstein [1] studied the probability of an element
in a group being p-singular. In 1999, Guralnick and Libeck [3] studied p-singular elements in
Chevalley groups in characteristic p. In 2013, Babai, Guest, Praeger, and others [4] investigated
the proportions of r-regular elements in finite classical groups. In 2017, He and Chen [5] give
a new characterization of Mathieu simple Groups.

We denote the proportion of p-singular elements in G by µp(G). Let µ(G) := {µp(G)|p ∈
π(G)} the set of all proportions of p-singular elements for each prime p that divides |G|. In this
paper, we use this set to characterize Mathieu simple Groups. Our main result is the following
theorem:

Theorem 1.1. Let G be a finite group and M a Mathieu simple group. If µ(G) = µ(M), then
G ∼= M .
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2. Some Lemmas

In this section, we will give some useful lemmas. The notation p means a prime always, and
p′ means a set of primes that does not contain the prime p.

Lemma 2.1. [1, Lemma 2.2] If N �G, then µp(G) ≥ µp(G/N) + µp(N)/|G : N |.

Lemma 2.2. Let G be a finite group and N �G, X the set of G-conjugate class representives
of non-trivial p-elements in N . Then µp(G) = µp(G/N) +

∑
x∈X

(1− µp(CG(x))).

Proof. The number of singular elements in G is

Sp(G) = Sp(G/N) · |N |+
∑
x∈X

|G : CG(x)| ·Rp(CG(x)),

which implies that the ratio of p-singular elements in G is

µp(G) =
Sp(G)

|G|
=

Sp(G/N) · |N |+
k∑
i=1

|G : CG(x)| ·Rp(CG(x))

|G|

= µp(G/N) +

∑
x∈X

Rp(CG(xi))

|CG(xi)|

= µp(G/N) +
∑
x∈X

(1− µp(CG(x))).

Thus µp(G) = µp(G/N) +
∑
x∈X

(1− µp(CG(x))). �

Lemma 2.3. [2, Lemma 1] Let G be a finite group and P a Sylow p-subgroup of G. Then
µp(G) =

t
|P | with (t, p) = 1.

Lemma 2.4. Let N be the largest p′-normal subgroup of G. Then µp(G) = µp(G/N).

Proof. According to Lemma 2.2, we have

µp(G) = µp(G/N) +
∑
x∈X

(1− µp(CG(x))),

where X the set of G-conjugate class representives of non-trivial p-elements in N . Since p - |N |,
it is clear that

∑
x∈X

(1− µp(CG(x))) = 0. Thus µp(G) = µp(G/N). �

Lemma 2.5. Let N1 and N2 be two distinct normal subgroups of G. Suppose that G/N1
∼= S1

and G/N2
∼= S2 are simple. Then G/(N1 ∩N2) ∼= S1 × S2.

Proof. Since N1 and N2 are normal subgroups of G, we have N1N2�G. This leads to G/N1N2
∼=

G/N1

/
N1N2/N1, thus N1N2/N1 �G/N1. Moreover, G/N1 is a simple group, then N1N2/N1 =

N1 or N1N2/N1 = G/N1. If N1N2/N1 = N1, it is clear that N1 = N2, which contradicts
the assumption that N1 6= N2. Therefore, N1N2/N1 = G/N1, it implies N1N2 = G. Since
G/N1 = N1N2/N1

∼= N2/(N1 ∩N2), it follows that G/N2
∼= N1/(N1 ∩N2). And then S1 and

S2 are minimal normal subgroups of G/(N1 ∩N2), we obtain that G/(N1 ∩N2) ∼= S1×S2. �

Lemma 2.6. Let P be a p-subgroup of G and P ≤ Z(G). Then

µp(G) =
µp(G/P )

|P |
+ 1− 1

|P |
.
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Proof. We use the same notations as Lemma 2.2, then

µp(G) = µr(G/P ) +
∑

X∈P−{1}

(1− µp(CG(x)))

= µr(G/P ) + (|P | − 1)(1− µp(G)).

Thus µp(G) =
µp(G/P )

|P | + 1− 1
|P | . �

3. Proof of Theorem

In the following table we give the values of µp(M) in all Mathieu simple groups, which can
be obtained by the Atlas [6] easily.

Table 1. The values of µp(M) in Mathieu simple groups

M |M | µ2(M) µ3(M) µ5(M) µ7(M) µ11(M) µ23(M)

M11 24 · 32 · 5 · 11 9
16

2
9

1
5

2
11

M12 26 · 33 · 5 · 11 43
64

8
27

1
5

2
11

M22 27 · 32 · 5 · 7 · 11 39
128

1
9

1
5

2
7

2
11

M23 27 · 32 · 5 · 7 · 11 · 23 49
128

2
9

1
5

2
7

2
11

2
23

M24 210 · 33 · 5 · 7 · 11 · 23 539
1024

13
27

1
5

2
7

1
11

2
23

Claim 1. G is perfect.
Assuming that G is not perfect, and let p be a prime divisor of |G/G′|. By applying Lemma

2.1, we have µp(G) ≥ µp(G/G
′) ≥ µp(Zp) = 1 − 1

p
≥ 1

2
. In view to Table 1, if M = M11,

we observe that µp(G) < 1
2
for p 6= 2, a contradiction. Now if p = 2, there exists a maximal

normal subgroup of G, say N , such that G/N ∼= Z2, and then µ2(N) ≤ 1
8
. By Lemma 2.2, we

have 9
16

= 1
2
+
∑
x∈X

(1− µ2(CG(x))), that is 1
16

=
∑
x∈X

(1− µ2(CG(x))). So, G has one conjugacy

class of non-trivial 2-elements. Since µ2(N) ≤ 1
8
, which implies µ2(N) = 1

8
by Lemma 2.1 and

2.3. In light of Table 1, it is evident that µ3(N) ≤ 4
9
, µ5(N) ≤ 2

5
, µ11(N) ≤ 4

11
, these contradict

Lemma 2.1. Therefore, N is perfect. Since G/N is abelian and N �G, it follows that G′ �N ,
and then N/G′ ≤ G/G′. Let L be a maximal normal subgroup of N . This implies that N/L is
a non-abelian simple group, hence N = G′.

Let G > N > N0 ≥ N1 > 1 be a normal series of G, where N1 is a minimal normal subgroup
of G. Note that µ2(N) = 1

8
, it follows that the order of 2-elements in N are 2 and N has only

one conjugacy class of 2-elements. Thus, any {2}-subgroup of N is a elementary abelian group.
If N0 has an element of order 2, then all 2-elements of N are in N0. Hence |N/N0| is a prime.
and So N/N0 is solvable, a contradiction. Now we have 2 - |N0|, it implies N0 is solvable, and
yielding N1 is an elementary abelian group. Moreover, since N/N0 is a simple group, |N/N0|
has at least three prime divisors. Thus |N0| is the product of two prime, a prime or 1. Next we
divide three cases.

Case I. Assume that |N0| is the product of two primes. If N0 = N1, then N1
∼= Z2

3 . Thus
G/CG(N1) . GL(2, 3). Moreover, N1 may also be isomorphic to Z11×Z3, Z11×Z5 or Z5×Z3.
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Therefore, we have G/CG(N1) . Aut(Z33), G/CG(N1) . Aut(Z11 × Z5) or G/CG(N1) .

Aut(Z5 × Z3). But the fact that GL(2, 3), Aut(Z33), Aut(Z11 × Z5) and Aut(Z5 × Z3) are
solvable, it follows that N ≤ CG(N1), hence N0 = Z(N). If there exist a 2-element in G

that is not centered but normalizes N1, then only the 2-element in G-N normalizes N1, while
the 2-element in N is both centered and normalizes N1. Considering the case of |N1| is the
product of primes 5 and 11, then µ5 ≥ 2

5
, µ11(G) ≥ 5

11
, a contradictory. Now |N1| = 9, then

N0 = N1. Since (|N0|, |G/N |) = 1, N = N0 × N/N0 can be obtained. In such case, it is clear
that µ3(G) ≥ µ3(N0 o Z2), which implies µ3(G) ≤ 4

9
, a contradiction.

Case II. |N0| is a prime. We can get N1
∼= Z3, Z5 or Z11. When |N1| = 3, it is obvious that

µ3(G) ≥ 1
3
, contradiction. If |N1| = 5, then µ5(G) ≥ 2

5
, a contradiction. If |N1| = 11, then

µ11(G) ≥ 5
11
, a contradiction.

Case III. |N0| = 1, it is easy to prove that N is a simple group. According to Table of
Atlas [6], there does not exist such simple group, also a contradiction.

When M =M22 or M23, the fact that µp(M) < 1
2
for all p, which is a contradiction.

When M = M12, the fact that µp(M) < 1
2
if p 6= 2, which contradicts µr(G) ≥ 1

2
. Now if

p = 2, there exist a maximal normal subgroup of G, say N , then G/N ∼= Z2. Furthermore,
N5′ is a 5’-normal subgroup of G, such that G/N5′

∼= S, where S is non-abelian simple group.
As per Lemma 2.5, we have G/(N ∩ N5′) ∼= Z2 × S. Since S is a non-abelian simple group,
its prime divisors are at least 3. Referring to Table of Atlas (cf. [6]), S may be isomorphic
to A5 , A6, L2(11), M11 and M12. However, µ5(A5) = µ5(A6) = µ5(L2(11)) = 2

5
> µ5(G),

a contradictory. Therefore, S ∼= M11 or M12, it follows that G/(N ∩ N5′) ∼= Z2 × M11 or
G/(N ∩ N5′) ∼= Z2 ×M12. It is easy to compute µ2(Z2 ×M11) = 1

2
+ 1

2
· 9
16

= 25
32
> µ2(G)

and µ2(Z2 × M11) = 1
2
+ 1

2
· 43

64
= 107

128
> µ2(G), leading to G/(N ∩ N5′) � Z2 × M11 and

G/(N ∩N5′) � Z2 ×M12, yielding G/N � Z2.
In view to Table 1, when M = M24, it is evident that µp(G) < 1

2
for p 6= 2, a contradiction.

Now if p = 2, there exist a maximal normal subgroup of G, say N , which leads to G/N ∼= Z2.
The following steps are the same as in the previous paragraph, then G/(N ∩ N5′) ∼= Z2 × S.
We deduce from Table of Atlas [6] that S may be isomorphic to A5 , A6, L2(11), L2(23), M11,
A8, M12, M22, M23 and M24. However, by comparing the value of µ yields S ∼= A8 or M24.
It follows that G/(N ∩ N5′) ∼= Z2 × A8 or G/(N ∩ N5′) ∼= Z2 ×M24. It is easy to compute
µ2(Z2×A8) =

93
128

> µ2(G) and µ2(Z2×M24) =
1563
2048

> µ2(G), leading to G/(N∩N5′) � Z2×A8

and G/(N ∩N5′) � Z2 ×M24, that is G/N � Z2.
Hence, G is perfect.
Claim 2. G/N is a simple group.
By Lemma 2.3, we have if µ(G) = µ(M), yielding |G| = |M |. Denote by N the largest

p′-normal subgroup in G. Since µp(G) = 1
p
or 2

p
, we deduce from Lemma 2.4 that µp(G/N) =

µp(G), hence G/N has minimal normal subgroup N1/N . Note that p ‖ |G|, it implies that
N1/N is simple group. If N1/N ∼= Zp, then G/N has normal Sylow p-subgroup N1/N , we can
set G/N ∼= Zp o H. According to the N/C Theorem, we have H/CH(Zp) . Zp−1. As G is
complete group, which implies that H/CH(Zp) = 1, yielding G/N ∼= Zp ×H, a contradiction.
If N1/N ∼= S (S is non-abelian simple), note that N1/N is unique minimal normal of G/N , so
S . G/N . Aut(S). We know that the outer automorphism groups of finite simple groups are
solvable. As G is perfect, we have G/N is simple.
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By Table 1 we easily see µp(G) = 1
p
or 2

p
for all prime factor except 2 and 3. If G has

two different normal subgroups N1 and N2, which are the largest p′1 and p′2 normal subgroups
respectively, such that G/N1

∼= S1, G/N2
∼= S2, we conclude that G/(N1 ∩N2) ∼= S1 × S2.

According to the value of µ3(G), it follows that

µ3(G) ≥ µ3(S1 × S2) = 1− (1− µ3(S1))(1− µ3(S2)). (3.1)

If both S1 and S2 have factor 3, the inequality (3.1) does not hold by easy calculation, a
contradiction. Thus, there is no 3-factor in one of S1 and S2, which can be set as S1. It follows
using classification of simple group that S1

∼= Sz(2
2m+1), the power of 2 of G/N is 22m+1 ≥

26(m ≥ 1). Furthermore, |M |2 ≤ 210, it follows that m ≤ 2, that is S1
∼= Sz(8) or Sz(32).

It is easy to compute µ7(Sz(8)) = 3
7
> µ7(G), a contradiction. Moreover, |Sz(32)| - |G|, a

contradiction. Therefore, N1 = N2, which implies that there exist π′-maximal normal subgroup
in G, where π′ is the prime graph component not containing 2 and 3. This leads to G/N ∼= S.

Now N is {2, 3}-group. When M = M11, M22 and M23, if 3
∣∣|N |, then µ3(G) ≥ µ3(S) ≥ 1

3
,

which contradicts µ3(G) ≤ 2
9
. Hence N is {2}-group.

When M = M12, let N have a Sylow 3-subgroup P3, it is obvious that |P3| = 3 or 9. Since
G = NNG(P3), it follows that G/N ∼= NG(P3)/(N ∩NG(P3)), we obtain that the normal series
NG(P3) > N∩NG(P3) > P3 > 1. Furthermore, we known that CG(P3)�NG(P3) and there is no
inclusion relationship between CG(P3) and N ∩NG(P3), and so NG(P3) = CG(P3)(N ∩NG(P3)).
Thus, we conclude that NG(P3)

/
(N ∩ NG(P3)) ∼= CG(P3)

/
(N ∩ CG(P3)) ∼= S. Note that

N ∩ CG(P3) ∼= P3 × C1, it can be shown that CG(P3)/C1

/
(N ∩ CG(P3))/C1

∼= S. The fact
that P3

∼= Z3, Z9 or Z2
3 , it is clear that P3 ≤ Z(G). Applying Lemma 2.2 and 2.6, we have

µ3(G) = µ3(G/P3) +
∑
x∈X

(1− µ3(CG(x))), which implies

µ3(G) = µ3(G/N) +
∑
x∈X

(1− µ3(CG(P3)/C1))

= µ3(G/N) +
∑
x∈X

(1− µ3(CG(P3)/C1

/
(N ∩ CG(P3))/C1))

|P3|

= µ3(G/N) +
∑
x∈X

1

|P3|
(1− µ3(S))

Moreover, since µ3(S) ≤ µ3(G) and |P3| = 3 or 9, it is evident that µ3(S) = 1
3
, 1

9
, 2

9
or

4
9
. However, we can obtain the above equation does not hold for all the values of µ3(S) by

calculation, a contradiction. Hence N is a {2}-group.
Claim 3. G ∼= M , where M is Mathieu simple Groups.
Note that N is {2}-group of G if |G| < 210 ·33 ·5·7·11·23. Since |G| = |M | and µ(G) = µ(M),

referring to [6, Page 239-242], it follows that S can be uniquely determined as M11, M12, M22

andM23, respectively. It is evident that G ∼= M for |G| < 210 ·33 ·5·7·11·23. Now if |G| = |M24|,
we have N is {2, 3}-group in G. Referring to [6, Page 239-242], S is only isomorphic to M23

or M24. Furthermore, we conclude from Table 1 that µ11(M23) =
2
11
> µ11(M24) =

1
11
, which

contradicts Lemma 2.1. The fact that |G| = |M24| and µ(G) = µ(M24), it follows that G ∼= M24.
In summary, G is isomorphic to Mathieu simple Groups. This concludes the proof.
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