# A NEW CHARACTERIZATION OF MATHIEU SIMPLE GROUPS BY THE NUMBER OF SINGULAR ELEMENTS 

TING REN, RULIN SHEN*


#### Abstract

Given a finite group $G$, let $\pi(G)$ denote the set of all primes that divide the order of $G$. For a prime $p \in \pi(G)$, we define $p$-singular elements as those elements of $G$ whose order is divisible by $p$. We denote the proportion of $p$-singular elements in $G$ by $\mu_{p}(G)$. Let $\mu(G):=\left\{\mu_{p}(G) \mid p \in \pi(G)\right\}$ be the set of all proportions of $p$-singular elements for each prime $p$ that divides $|G|$. In this paper we prove if a finite group $G$ has the same set of proportions as a Mathieu simple group $M$, then $G$ is isomorphic to $M$.


## 1. Introduction

Given a finite group $G$, let $\pi(G)$ be the set of all primes that divide the order of $G$. For each prime $p \in \pi(G)$, we define $p$-singular elements as those elements of $G$ whose order is divisible by $p$, while $p$-regular elements are those whose order is not divisible by $p$. The number of $p$-singular and $p$-regular elements plays a crucial role in understanding the structure of the group, particularly in finite simple group theory.

Several researchers have investigated the properties of singular elements in different types of groups. In 1995, Isaacs, Kantor, and Spaltenstein [1] studied the probability of an element in a group being $p$-singular. In 1999, Guralnick and Libeck [3] studied $p$-singular elements in Chevalley groups in characteristic $p$. In 2013, Babai, Guest, Praeger, and others [4] investigated the proportions of $r$-regular elements in finite classical groups. In 2017, He and Chen [5] give a new characterization of Mathieu simple Groups.

We denote the proportion of $p$-singular elements in $G$ by $\mu_{p}(G)$. Let $\mu(G):=\left\{\mu_{p}(G) \mid p \in\right.$ $\pi(G)\}$ the set of all proportions of $p$-singular elements for each prime $p$ that divides $|G|$. In this paper, we use this set to characterize Mathieu simple Groups. Our main result is the following theorem:

Theorem 1.1. Let $G$ be a finite group and $M$ a Mathieu simple group. If $\mu(G)=\mu(M)$, then $G \cong M$.

[^0]
## 2. Some Lemmas

In this section, we will give some useful lemmas. The notation $p$ means a prime always, and $p^{\prime}$ means a set of primes that does not contain the prime $p$.

Lemma 2.1. [1, Lemma 2.2] If $N \unlhd G$, then $\mu_{p}(G) \geq \mu_{p}(G / N)+\mu_{p}(N) /|G: N|$.
Lemma 2.2. Let $G$ be a finite group and $N \unlhd G, X$ the set of $G$-conjugate class representives of non-trivial p-elements in $N$. Then $\mu_{p}(G)=\mu_{p}(G / N)+\sum_{x \in X}\left(1-\mu_{p}\left(C_{G}(x)\right)\right)$.
Proof. The number of singular elements in $G$ is

$$
S_{p}(G)=S_{p}(G / N) \cdot|N|+\sum_{x \in X}\left|G: C_{G}(x)\right| \cdot R_{p}\left(C_{G}(x)\right),
$$

which implies that the ratio of $p$-singular elements in $G$ is

$$
\begin{aligned}
\mu_{p}(G) & =\frac{S_{p}(G)}{|G|}=\frac{S_{p}(G / N) \cdot|N|+\sum_{i=1}^{k}\left|G: C_{G}(x)\right| \cdot R_{p}\left(C_{G}(x)\right)}{|G|} \\
& =\mu_{p}(G / N)+\frac{\sum_{x \in X} R_{p}\left(C_{G}\left(x_{i}\right)\right)}{\left|C_{G}\left(x_{i}\right)\right|} \\
& =\mu_{p}(G / N)+\sum_{x \in X}\left(1-\mu_{p}\left(C_{G}(x)\right)\right) .
\end{aligned}
$$

Thus $\mu_{p}(G)=\mu_{p}(G / N)+\sum_{x \in X}\left(1-\mu_{p}\left(C_{G}(x)\right)\right)$.
Lemma 2.3. [2, Lemma 1] Let $G$ be a finite group and $P$ a Sylow p-subgroup of $G$. Then $\mu_{p}(G)=\frac{t}{|P|}$ with $(t, p)=1$.
Lemma 2.4. Let $N$ be the largest $p^{\prime}$-normal subgroup of $G$. Then $\mu_{p}(G)=\mu_{p}(G / N)$.
Proof. According to Lemma 2.2, we have

$$
\mu_{p}(G)=\mu_{p}(G / N)+\sum_{x \in X}\left(1-\mu_{p}\left(C_{G}(x)\right)\right),
$$

where $X$ the set of $G$-conjugate class representives of non-trivial $p$-elements in $N$. Since $p \nmid|N|$, it is clear that $\sum_{x \in X}\left(1-\mu_{p}\left(C_{G}(x)\right)\right)=0$. Thus $\mu_{p}(G)=\mu_{p}(G / N)$.

Lemma 2.5. Let $N_{1}$ and $N_{2}$ be two distinct normal subgroups of $G$. Suppose that $G / N_{1} \cong S_{1}$ and $G / N_{2} \cong S_{2}$ are simple. Then $G /\left(N_{1} \cap N_{2}\right) \cong S_{1} \times S_{2}$.

Proof. Since $N_{1}$ and $N_{2}$ are normal subgroups of $G$, we have $N_{1} N_{2} \unlhd G$. This leads to $G / N_{1} N_{2} \cong$ $G / N_{1} / N_{1} N_{2} / N_{1}$, thus $N_{1} N_{2} / N_{1} \unlhd G / N_{1}$. Moreover, $G / N_{1}$ is a simple group, then $N_{1} N_{2} / N_{1}=$ $N_{1}$ or $N_{1} N_{2} / N_{1}=G / N_{1}$. If $N_{1} N_{2} / N_{1}=N_{1}$, it is clear that $N_{1}=N_{2}$, which contradicts the assumption that $N_{1} \neq N_{2}$. Therefore, $N_{1} N_{2} / N_{1}=G / N_{1}$, it implies $N_{1} N_{2}=G$. Since $G / N_{1}=N_{1} N_{2} / N_{1} \cong N_{2} /\left(N_{1} \cap N_{2}\right)$, it follows that $G / N_{2} \cong N_{1} /\left(N_{1} \cap N_{2}\right)$. And then $S_{1}$ and $S_{2}$ are minimal normal subgroups of $G /\left(N_{1} \cap N_{2}\right)$, we obtain that $G /\left(N_{1} \cap N_{2}\right) \cong S_{1} \times S_{2}$.

Lemma 2.6. Let $P$ be a p-subgroup of $G$ and $P \leq Z(G)$. Then

$$
\mu_{p}(G)=\frac{\mu_{p}(G / P)}{|P|}+1-\frac{1}{|P|}
$$

Proof. We use the same notations as Lemma 2.2, then

$$
\begin{aligned}
\mu_{p}(G) & =\mu_{r}(G / P)+\sum_{X \in P-\{1\}}\left(1-\mu_{p}\left(C_{G}(x)\right)\right) \\
& =\mu_{r}(G / P)+(|P|-1)\left(1-\mu_{p}(G)\right) .
\end{aligned}
$$

Thus $\mu_{p}(G)=\frac{\mu_{p}(G / P)}{|P|}+1-\frac{1}{|P|}$.

## 3. Proof of Theorem

In the following table we give the values of $\mu_{p}(M)$ in all Mathieu simple groups, which can be obtained by the Atlas [6] easily.

Table 1. The values of $\mu_{p}(M)$ in Mathieu simple groups

| $M$ | $\|M\|$ | $\mu_{2}(M)$ | $\mu_{3}(M)$ | $\mu_{5}(M)$ | $\mu_{7}(M)$ | $\mu_{11}(M)$ | $\mu_{23}(M)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $M_{11}$ | $2^{4} \cdot 3^{2} \cdot 5 \cdot 11$ | $\frac{9}{16}$ | $\frac{2}{9}$ | $\frac{1}{5}$ |  | $\frac{2}{11}$ |  |
| $M_{12}$ | $2^{6} \cdot 3^{3} \cdot 5 \cdot 11$ | $\frac{43}{64}$ | $\frac{8}{27}$ | $\frac{1}{5}$ |  | $\frac{2}{11}$ |  |
| $M_{22}$ | $2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ | $\frac{39}{128}$ | $\frac{1}{9}$ | $\frac{1}{5}$ | $\frac{2}{7}$ | $\frac{2}{11}$ |  |
| $M_{23}$ | $2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$ | $\frac{49}{128}$ | $\frac{2}{9}$ | $\frac{1}{5}$ | $\frac{2}{7}$ | $\frac{2}{11}$ | $\frac{2}{23}$ |
| $M_{24}$ | $2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$ | $\frac{539}{1024}$ | $\frac{13}{27}$ | $\frac{1}{5}$ | $\frac{2}{7}$ | $\frac{1}{11}$ | $\frac{2}{23}$ |

Claim 1. $G$ is perfect.
Assuming that $G$ is not perfect, and let $p$ be a prime divisor of $\left|G / G^{\prime}\right|$. By applying Lemma 2.1, we have $\mu_{p}(G) \geq \mu_{p}\left(G / G^{\prime}\right) \geq \mu_{p}\left(Z_{p}\right)=1-\frac{1}{p} \geq \frac{1}{2}$. In view to Table 1 , if $M=M_{11}$, we observe that $\mu_{p}(G)<\frac{1}{2}$ for $p \neq 2$, a contradiction. Now if $p=2$, there exists a maximal normal subgroup of $G$, say $N$, such that $G / N \cong Z_{2}$, and then $\mu_{2}(N) \leq \frac{1}{8}$. By Lemma 2.2, we have $\frac{9}{16}=\frac{1}{2}+\sum_{x \in X}\left(1-\mu_{2}\left(C_{G}(x)\right)\right)$, that is $\frac{1}{16}=\sum_{x \in X}\left(1-\mu_{2}\left(C_{G}(x)\right)\right)$. So, $G$ has one conjugacy class of non-trivial 2-elements. Since $\mu_{2}(N) \leq \frac{1}{8}$, which implies $\mu_{2}(N)=\frac{1}{8}$ by Lemma 2.1 and 2.3. In light of Table 1, it is evident that $\mu_{3}(N) \leq \frac{4}{9}, \mu_{5}(N) \leq \frac{2}{5}, \mu_{11}(N) \leq \frac{4}{11}$, these contradict Lemma 2.1. Therefore, $N$ is perfect. Since $G / N$ is abelian and $N \unlhd G$, it follows that $G^{\prime} \unlhd N$, and then $N / G^{\prime} \leq G / G^{\prime}$. Let $L$ be a maximal normal subgroup of $N$. This implies that $N / L$ is a non-abelian simple group, hence $N=G^{\prime}$.

Let $G>N>N_{0} \geq N_{1}>1$ be a normal series of $G$, where $N_{1}$ is a minimal normal subgroup of $G$. Note that $\mu_{2}(N)=\frac{1}{8}$, it follows that the order of 2-elements in $N$ are 2 and $N$ has only one conjugacy class of 2 -elements. Thus, any $\{2\}$-subgroup of $N$ is a elementary abelian group. If $N_{0}$ has an element of order 2, then all 2-elements of $N$ are in $N_{0}$. Hence $\left|N / N_{0}\right|$ is a prime. and So $N / N_{0}$ is solvable, a contradiction. Now we have $2 \nmid\left|N_{0}\right|$, it implies $N_{0}$ is solvable, and yielding $N_{1}$ is an elementary abelian group. Moreover, since $N / N_{0}$ is a simple group, $\left|N / N_{0}\right|$ has at least three prime divisors. Thus $\left|N_{0}\right|$ is the product of two prime, a prime or 1 . Next we divide three cases.

Case I. Assume that $\left|N_{0}\right|$ is the product of two primes. If $N_{0}=N_{1}$, then $N_{1} \cong Z_{3}^{2}$. Thus $G / C_{G}\left(N_{1}\right) \lesssim \mathrm{GL}(2,3)$. Moreover, $N_{1}$ may also be isomorphic to $Z_{11} \times Z_{3}, Z_{11} \times Z_{5}$ or $Z_{5} \times Z_{3}$.

Therefore, we have $G / C_{G}\left(N_{1}\right) \lesssim \operatorname{Aut}\left(Z_{33}\right), G / C_{G}\left(N_{1}\right) \lesssim \operatorname{Aut}\left(Z_{11} \times Z_{5}\right)$ or $G / C_{G}\left(N_{1}\right) \lesssim$ $\operatorname{Aut}\left(Z_{5} \times Z_{3}\right)$. But the fact that $\mathrm{GL}(2,3), \operatorname{Aut}\left(Z_{33}\right), \operatorname{Aut}\left(Z_{11} \times Z_{5}\right)$ and $\operatorname{Aut}\left(Z_{5} \times Z_{3}\right)$ are solvable, it follows that $N \leq C_{G}\left(N_{1}\right)$, hence $N_{0}=Z(N)$. If there exist a 2-element in $G$ that is not centered but normalizes $N_{1}$, then only the 2 -element in $G$ - $N$ normalizes $N_{1}$, while the 2-element in $N$ is both centered and normalizes $N_{1}$. Considering the case of $\left|N_{1}\right|$ is the product of primes 5 and 11 , then $\mu_{5} \geq \frac{2}{5}, \mu_{11}(G) \geq \frac{5}{11}$, a contradictory. Now $\left|N_{1}\right|=9$, then $N_{0}=N_{1}$. Since $\left(\left|N_{0}\right|,|G / N|\right)=1, N=N_{0} \times N / N_{0}$ can be obtained. In such case, it is clear that $\mu_{3}(G) \geq \mu_{3}\left(N_{0} \rtimes Z_{2}\right)$, which implies $\mu_{3}(G) \leq \frac{4}{9}$, a contradiction.

Case II. $\left|N_{0}\right|$ is a prime. We can get $N_{1} \cong Z_{3}, Z_{5}$ or $Z_{11}$. When $\left|N_{1}\right|=3$, it is obvious that $\mu_{3}(G) \geq \frac{1}{3}$, contradiction. If $\left|N_{1}\right|=5$, then $\mu_{5}(G) \geq \frac{2}{5}$, a contradiction. If $\left|N_{1}\right|=11$, then $\mu_{11}(G) \geq \frac{5}{11}$, a contradiction.

Case III. $\left|N_{0}\right|=1$, it is easy to prove that $N$ is a simple group. According to Table of Atlas [6], there does not exist such simple group, also a contradiction.

When $M=M_{22}$ or $M_{23}$, the fact that $\mu_{p}(M)<\frac{1}{2}$ for all $p$, which is a contradiction.
When $M=M_{12}$, the fact that $\mu_{p}(M)<\frac{1}{2}$ if $p \neq 2$, which contradicts $\mu_{r}(G) \geq \frac{1}{2}$. Now if $p=2$, there exist a maximal normal subgroup of $G$, say $N$, then $G / N \cong Z_{2}$. Furthermore, $N_{5^{\prime}}$ is a $5^{\prime}$-normal subgroup of $G$, such that $G / N_{5^{\prime}} \cong S$, where $S$ is non-abelian simple group. As per Lemma 2.5, we have $G /\left(N \cap N_{5^{\prime}}\right) \cong Z_{2} \times S$. Since $S$ is a non-abelian simple group, its prime divisors are at least 3. Referring to Table of Atlas (cf. [6]), $S$ may be isomorphic to $A_{5}, A_{6}, L_{2}(11), M_{11}$ and $M_{12}$. However, $\mu_{5}\left(A_{5}\right)=\mu_{5}\left(A_{6}\right)=\mu_{5}\left(L_{2}(11)\right)=\frac{2}{5}>\mu_{5}(G)$, a contradictory. Therefore, $S \cong M_{11}$ or $M_{12}$, it follows that $G /\left(N \cap N_{5^{\prime}}\right) \cong Z_{2} \times M_{11}$ or $G /\left(N \cap N_{5^{\prime}}\right) \cong Z_{2} \times M_{12}$. It is easy to compute $\mu_{2}\left(Z_{2} \times M_{11}\right)=\frac{1}{2}+\frac{1}{2} \cdot \frac{9}{16}=\frac{25}{32}>\mu_{2}(G)$ and $\mu_{2}\left(Z_{2} \times M_{11}\right)=\frac{1}{2}+\frac{1}{2} \cdot \frac{43}{64}=\frac{107}{128}>\mu_{2}(G)$, leading to $G /\left(N \cap N_{5^{\prime}}\right) \not \equiv Z_{2} \times M_{11}$ and $G /\left(N \cap N_{5^{\prime}}\right) \nsubseteq Z_{2} \times M_{12}$, yielding $G / N \nsubseteq Z_{2}$.

In view to Table 1 , when $M=M_{24}$, it is evident that $\mu_{p}(G)<\frac{1}{2}$ for $p \neq 2$, a contradiction. Now if $p=2$, there exist a maximal normal subgroup of $G$, say $N$, which leads to $G / N \cong Z_{2}$. The following steps are the same as in the previous paragraph, then $G /\left(N \cap N_{5^{\prime}}\right) \cong Z_{2} \times S$. We deduce from Table of Atlas [6] that $S$ may be isomorphic to $A_{5}, A_{6}, L_{2}(11), L_{2}(23), M_{11}$, $A_{8}, M_{12}, M_{22}, M_{23}$ and $M_{24}$. However, by comparing the value of $\mu$ yields $S \cong A_{8}$ or $M_{24}$. It follows that $G /\left(N \cap N_{5^{\prime}}\right) \cong Z_{2} \times A_{8}$ or $G /\left(N \cap N_{5^{\prime}}\right) \cong Z_{2} \times M_{24}$. It is easy to compute $\mu_{2}\left(Z_{2} \times A_{8}\right)=\frac{93}{128}>\mu_{2}(G)$ and $\mu_{2}\left(Z_{2} \times M_{24}\right)=\frac{1563}{2048}>\mu_{2}(G)$, leading to $G /\left(N \cap N_{5^{\prime}}\right) \not \equiv Z_{2} \times A_{8}$ and $G /\left(N \cap N_{5^{\prime}}\right) \nsubseteq Z_{2} \times M_{24}$, that is $G / N \nsubseteq Z_{2}$.

Hence, $G$ is perfect.
Claim 2. $G / N$ is a simple group.
By Lemma 2.3, we have if $\mu(G)=\mu(M)$, yielding $|G|=|M|$. Denote by $N$ the largest $p^{\prime}$-normal subgroup in $G$. Since $\mu_{p}(G)=\frac{1}{p}$ or $\frac{2}{p}$, we deduce from Lemma 2.4 that $\mu_{p}(G / N)=$ $\mu_{p}(G)$, hence $G / N$ has minimal normal subgroup $N_{1} / N$. Note that $p \||G|$, it implies that $N_{1} / N$ is simple group. If $N_{1} / N \cong Z_{p}$, then $G / N$ has normal Sylow $p$-subgroup $N_{1} / N$, we can set $G / N \cong Z_{p} \rtimes \bar{H}$. According to the $N / C$ Theorem, we have $\bar{H} / C_{\bar{H}}\left(Z_{p}\right) \lesssim Z_{p-1}$. As $G$ is complete group, which implies that $\bar{H} / C_{\bar{H}}\left(Z_{p}\right)=1$, yielding $G / N \cong Z_{p} \times \bar{H}$, a contradiction. If $N_{1} / N \cong S$ ( $S$ is non-abelian simple), note that $N_{1} / N$ is unique minimal normal of $G / N$, so $S \lesssim G / N \lesssim \operatorname{Aut}(S)$. We know that the outer automorphism groups of finite simple groups are solvable. As $G$ is perfect, we have $G / N$ is simple.

By Table 1 we easily see $\mu_{p}(G)=\frac{1}{p}$ or $\frac{2}{p}$ for all prime factor except 2 and 3 . If $G$ has two different normal subgroups $N_{1}$ and $N_{2}$, which are the largest $p_{1}^{\prime}$ and $p_{2}^{\prime}$ normal subgroups respectively, such that $G / N_{1} \cong S_{1}, G / N_{2} \cong S_{2}$, we conclude that $G /\left(N_{1} \cap N_{2}\right) \cong S_{1} \times S_{2}$. According to the value of $\mu_{3}(G)$, it follows that

$$
\begin{equation*}
\mu_{3}(G) \geq \mu_{3}\left(S_{1} \times S_{2}\right)=1-\left(1-\mu_{3}\left(S_{1}\right)\right)\left(1-\mu_{3}\left(S_{2}\right)\right) \tag{3.1}
\end{equation*}
$$

If both $S_{1}$ and $S_{2}$ have factor 3, the inequality (3.1) does not hold by easy calculation, a contradiction. Thus, there is no 3 -factor in one of $S_{1}$ and $S_{2}$, which can be set as $S_{1}$. It follows using classification of simple group that $S_{1} \cong S_{z}\left(2^{2 m+1}\right)$, the power of 2 of $G / N$ is $2^{2 m+1} \geq$ $2^{6}(m \geq 1)$. Furthermore, $|M|_{2} \leq 2^{10}$, it follows that $m \leq 2$, that is $S_{1} \cong S_{z}(8)$ or $S_{z}(32)$. It is easy to compute $\mu_{7}\left(S_{z}(8)\right)=\frac{3}{7}>\mu_{7}(G)$, a contradiction. Moreover, $\left|S_{z}(32)\right| \nmid|G|$, a contradiction. Therefore, $N_{1}=N_{2}$, which implies that there exist $\pi^{\prime}$-maximal normal subgroup in $G$, where $\pi^{\prime}$ is the prime graph component not containing 2 and 3 . This leads to $G / N \cong S$.

Now $N$ is $\{2,3\}$-group. When $M=M_{11}, M_{22}$ and $M_{23}$, if $3\left||N|\right.$, then $\mu_{3}(G) \geq \mu_{3}(S) \geq \frac{1}{3}$, which contradicts $\mu_{3}(G) \leq \frac{2}{9}$. Hence $N$ is $\{2\}$-group.

When $M=M_{12}$, let $N$ have a Sylow 3-subgroup $P_{3}$, it is obvious that $\left|P_{3}\right|=3$ or 9 . Since $G=N N_{G}\left(P_{3}\right)$, it follows that $G / N \cong N_{G}\left(P_{3}\right) /\left(N \cap N_{G}\left(P_{3}\right)\right)$, we obtain that the normal series $N_{G}\left(P_{3}\right)>N \cap N_{G}\left(P_{3}\right)>P_{3}>1$. Furthermore, we known that $C_{G}\left(P_{3}\right) \unlhd N_{G}\left(P_{3}\right)$ and there is no inclusion relationship between $C_{G}\left(P_{3}\right)$ and $N \cap N_{G}\left(P_{3}\right)$, and so $N_{G}\left(P_{3}\right)=C_{G}\left(P_{3}\right)\left(N \cap N_{G}\left(P_{3}\right)\right)$. Thus, we conclude that $N_{G}\left(P_{3}\right) /\left(N \cap N_{G}\left(P_{3}\right)\right) \cong C_{G}\left(P_{3}\right) /\left(N \cap C_{G}\left(P_{3}\right)\right) \cong S$. Note that $N \cap C_{G}\left(P_{3}\right) \cong P_{3} \times C_{1}$, it can be shown that $C_{G}\left(P_{3}\right) / C_{1} /\left(N \cap C_{G}\left(P_{3}\right)\right) / C_{1} \cong S$. The fact that $P_{3} \cong Z_{3}, Z_{9}$ or $Z_{3}^{2}$, it is clear that $P_{3} \leq Z(G)$. Applying Lemma 2.2 and 2.6, we have $\mu_{3}(G)=\mu_{3}\left(G / P_{3}\right)+\sum_{x \in X}\left(1-\mu_{3}\left(C_{G}(x)\right)\right)$, which implies

$$
\begin{aligned}
\mu_{3}(G) & =\mu_{3}(G / N)+\sum_{x \in X}\left(1-\mu_{3}\left(C_{G}\left(P_{3}\right) / C_{1}\right)\right) \\
& =\mu_{3}(G / N)+\sum_{x \in X} \frac{\left(1-\mu_{3}\left(C_{G}\left(P_{3}\right) / C_{1} /\left(N \cap C_{G}\left(P_{3}\right)\right) / C_{1}\right)\right)}{\left|P_{3}\right|} \\
& =\mu_{3}(G / N)+\sum_{x \in X} \frac{1}{\left|P_{3}\right|}\left(1-\mu_{3}(S)\right)
\end{aligned}
$$

Moreover, since $\mu_{3}(S) \leq \mu_{3}(G)$ and $\left|P_{3}\right|=3$ or 9 , it is evident that $\mu_{3}(S)=\frac{1}{3}, \frac{1}{9}, \frac{2}{9}$ or $\frac{4}{9}$. However, we can obtain the above equation does not hold for all the values of $\mu_{3}(S)$ by calculation, a contradiction. Hence $N$ is a $\{2\}$-group.

Claim 3. $G \cong M$, where $M$ is Mathieu simple Groups.
Note that $N$ is $\{2\}$-group of $G$ if $|G|<2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$. Since $|G|=|M|$ and $\mu(G)=\mu(M)$, referring to [6, Page 239-242], it follows that $S$ can be uniquely determined as $M_{11}, M_{12}, M_{22}$ and $M_{23}$, respectively. It is evident that $G \cong M$ for $|G|<2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$. Now if $|G|=\left|M_{24}\right|$, we have $N$ is $\{2,3\}$-group in $G$. Referring to [6, Page 239-242], $S$ is only isomorphic to $M_{23}$ or $M_{24}$. Furthermore, we conclude from Table 1 that $\mu_{11}\left(M_{23}\right)=\frac{2}{11}>\mu_{11}\left(M_{24}\right)=\frac{1}{11}$, which contradicts Lemma 2.1. The fact that $|G|=\left|M_{24}\right|$ and $\mu(G)=\mu\left(M_{24}\right)$, it follows that $G \cong M_{24}$.

In summary, $G$ is isomorphic to Mathieu simple Groups. This concludes the proof.

## References

[1] W.M. Kantor, N. Spaltenstein, On the probability that a group element is $p$-singular, J. Algebra, 176 (1995), 139-181.
[2] D. Yan, R. Shen, Characterization of $\operatorname{PSL}(2, p)$ by the number of singular elements, J. Southwest China Normal Univ. (Nat. Sci. Ed.), 47 (2022), 57-69. (In Chinese).
[3] R.M. MGuralnick, F. Lübeck, On $p$-singular elements in Chevalley groups in characteristic $p$, In: Groups and Computation, III. (Columbus, OH, 1999), pp. 169-182.
[4] L. Babai, S. Guest, C.E. Praeger, et al. Proportions of $r$-regular elements in finite classical groups, J. London Math. Soc. 88 (2013), 202-226. https://doi.org/10.1112/j1ms/jdt011.
[5] L. He, G. Chen, A new characterization of Mathieu groups, Adv. Math. (China), 46 (2017), 729-734.
[6] J.H. Conway, R.T. Curtis, S.P. Norton, et al. Atlas of finite groups, Clarendon Press, Oxford, 1985.


[^0]:    Department of Mathematics, Hubei Minzu University, Enshi, Hubei Province, 445000, P. R. China
    *Corresponding author
    E-mail address: shenrulin@hotmail.com.
    Key words and phrases. finite group; Mathieu simple groups; singular elements.
    Received 13/07/2023.
    Project supported by the NSF of China (Grant No. 12161035).

