
DOI: 10.28919/ejma.2023.3.13
Eur. J. Math. Appl. (2023)3:13
URL: http://ejma.euap.org
© 2023 European Journal of Mathematics and Applications

ROUGH CONVERGENCE IN A-METRIC SPACES

MUKADDES ARSLAN, RAMAZAN SUNAR∗

Abstract. The purpose of this study is to define rough convergence of sequences in an A-
metric space, discuss its fundamental properties, and examine the relationships between rough
convergence and rough Cauchy sequence in A-metric spaces.

1. Introduction

Fréchet [7] first introduced the idea of metric space in 1906. Many researchers have been
interested in the concept of metric spaces and worked on generalizations of metric spaces in
the years that followed. For those interested in studying the generalization of metric spaces,
see the research papers in [5, 8, 10, 11, 15]. The idea of A-metric spaces, which resulted from
these investigations, was initially presented by Abbas et al. [1] in 2015 as a generalization of
the S-metric spaces.

Phu [12] presented the notions of rough limit points and roughness degree in addition to
the concept of rough convergence. In finite dimensional normed linear spaces, Phu [12, 13]
examined the basic properties of this novel notion, and [14] later extended the findings to
infinite dimensional spaces. Many researchers who studied it in the years that followed were
interested in the concept of rough convergence, and this idea was expanded to new areas.
(See [, 3, ]).

Recently, Banerjee and Mondal [4] examined some fundamental properties of sequences re-
garding rough convergence in a cone metric space. Later, Mondal and Khatun [9] investigated
the notion of rough convergence of sequences in an S-metric space.

In this paper, a similar approach, we present the idea of rough convergence of sequences in
A-metric spaces using the ideas of rough convergence and A-metric spaces. We explore the basic
properties of rough convergence of sequence and rough Cauchy sequence in A-metric spaces.
Also, we examine the relationships between rough Cauchy sequences and rough convergence in
A-metric spaces. Furthermore, we prove some results using a method similar to [4, 9, 12].

2. Preliminaries

In this section, we recall the concept of A-metric space, rough convergence and some
fundamental definitions and notations (See [1, 12,13]).
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Definition 2.1. [1] Let X be a nonempty set. A function A : Xn → [0,∞) is called an
A-metric on X if for any xi, a ∈ X, i = 1, 2, ..., n the following conditions hold;

(A1) A(x1, x2, . . . , xn−1, xn) ≥ 0,

(A2) A(x1, x2, . . . , xn−1, xn) = 0⇔ x1 = x2 = ... = xn,

(A3) A(x1, x2, ..., xn−1, xn) ≤ A (x1, x1, ..., x1︸ ︷︷ ︸
n−1

, a) + A (x2, x2, ..., x2︸ ︷︷ ︸
n−1

, a)

+ · · ·+ A (xn, xn, ..., xn︸ ︷︷ ︸
n−1

, a).

Also, the pair (X,A) is called an A-metric space.

Example 2.1. [1] Let X = R. Define a function A : Xn → [0,∞) by

A(x1, x2, ..., xn−1, xn) =
n∑

i=1

∑
i<j

|xi − xj|.

Then (X,A) is an A-metric space.

Proposition 2.1. [1] Let (X,A) be an A-metric space and for all x, y, z ∈ X. Then the
following is satisfied:

(i) A(x, x, ..., x, y) = A(y, y, ..., y, x).

(ii) A(x, x, ..., x, y) ≤ (n− 1)A(x, x, ..., x, z) + A(y, y, ..., y, z).

(iii) A(x, x, ..., x, z) ≤ (n− 1)A(x, x, ..., x, y) + A(z, z, ..., z, y).

Definition 2.2. [1] Let (X,A) be an A- metric space. For given r > 0 and x ∈ X the open
ball BA(x, r) and the closed ball BA(x, r) are defined as follows:

BA(x, r) = {y ∈ X : A(y, y, ..., y, x) < r}

BA(x, r) = {y ∈ X : A(y, y, ..., y, x) ≤ r}.

Definition 2.3. [1] Let (X,A) be an A- metric space. A subset B of X is said to be an open
set if for an r > 0 such that BA(x, r) ⊂ B. A subset F ⊂ X is called closed, if X \ F is open.

Definition 2.4. [1] Let (X,A) be an A- metric space. (X,A) is said to be bounded if there
exists an r > 0 such that A(y, y, ..., y, x) ≤ r for every x, y ∈ X. Otherwise, X is unbounded.

Definition 2.5. [1] Let (X,A) be an A- metric space and let (xt) be a sequence in X:

(i) The sequence (xt) is said to be convergent to x, if for each ε > 0 there exists a natural
number t0 such that A(xt, xt, ..., xt, x) < ε for every t ≥ t0.

(ii) The sequence (xt) is said to be a Cauchy sequence if for each ε > 0 there exists a t0 ∈ N
such that for all t,m ≥ t0 we have A(xt, xt, ..., xt, xm) < ε.

Lemma 2.1. Let (X,A) be an A- metric space. Every closed set in (X,A) contains all its limit
points.

Proof. The proof is simple and similar to an ordinary metric space case. �

Definition 2.6. [12] Let (X, ‖.‖) be a normed space and (xt) be a sequence in X:
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(i) The sequence (xt) is said to be r-convergent to x if for any ε > 0, there exists a natural
number t0 such that for all t ≥ t0 we have ‖xt − x‖ < r + ε, for r > 0.

(ii) The sequence (xt) is said to be a rough Cauchy sequence if for each ε > 0, there exists
a natural number t0 such that for all t,m ≥ t0 we have ‖xm − xt‖ < ρ+ ε, for ρ > 0. ρ
is roughness degree of (xt).

Lemma 2.2. [14] Let a sequence (xt) be r-convergent and LIMrxt 6= ∅. In this case the
sequence (xt) is a ρ-Cauchy sequence for every ρ ≥ 2r. This bound for the Cauchy degree
cannot be generally decreased.

3. Main Results

In this section, we introduce the notions of rough convergence and rough Cauchy sequences
in an A-metric space. Also we discuss fundumental properties of this concepts. Later, we study
the relations between rough convergence and rough Cauchy sequences in an A-metric space.

Definition 3.1. Let (xt) be a sequence in an A-metric space (X,A) and r be a non-negative
real number. (xt) is said to be rough convergent to x if for any ε > 0, there exists a natural
number t0 such that for all t ≥ t0 we have

A(xt, xt, ..., xt, x) < r + ε(3.1)

or equivalently, if

lim supA(xt, xt, ..., xt, x) < r.

We denote it

xt
(X,A)−→r x.

The set

LIMr
Axt := {x ∈ X : xt

r−→ x}

is called the r-limit set of the sequence (xt). If LIMr
Axt 6= ∅, then we say that (xt) is r-

convergent. Also, r is called the degree of convergence of the sequence (xt). If r = 0, then we
get the ordinary convergence in A-metric space again.

Remark 3.1. Every convergent sequence in A-metric space is rough convergent.

But the reverse of this statement may not be true. The following example shows that a rough
convergent sequence in an A-metric space may not be convergent in that space.

Example 3.1. Let X = R. Define a function A : Xn → [0,∞) by

A(x1, x2, ..., xn−1, xn) =
n∑

i=1

∑
i<j

|xi − xj|.

It is easy to see that (R, A) be an A-metric space. Let (xt) be a sequence in X defined by
(xt) = (−1)t for all t ∈ N. It is obvious that (xt) is not a convergent sequence in X. Because
if x ∈ R, then A(xt, xt, ..., xt, x) = (n − 1) | (−1)t − x | . So A(xt, xt, ..., xt, x) equals to either
(n−1) | 1+x | or (n−1) | 1−x |. If K = min{(t−1) | 1+x |, (t−1) | 1−x |}, then for ε < K,

there exists infinitely many t for which A(xt, xt, ..., xt, x) < ε does not hold. In this case, (xt)
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is not a convergent sequence in X. However r = max{(t− 1) | 1+x |, (t− 1) | 1−x |}, then for
any ε > 0 we have A(xt, xt, ..., xt, x) < r + ε for all t ∈ N. So (xt) is an r-convergent sequence
in an A-metric space.

Let’s begin by converting some of the properties of classical convergence into rough conver-
gence in an A-metric space. A sequence’s limit is unique if it converges. This characteristic
is not upheld for rough convergence with roughness degree r > 0 and only has the following
analogy:

Theorem 3.2. Let (X,A) be an A-metric space and let (xt) be a sequence in X. We get
diam(LIMr

Axt) ≤ nr.

Proof. We have to demonstrate that

diam(LIMr
Axt) = sup {A(y, y, ..., y, z) : y, z ∈ LIMr

Axt ≤ nr} ,

where (X,A) is an A-metric space. Assume the contrary to be true:

diam(LIMr
Axt) > nr

then, there exist y, z ∈ LIMr
Axt satisfying

d := A(y, y, ..., y, z) > nr.

For any ε ∈ (0, d
n
− r), there is a tε = max{t1, t2} ∈ N such that for t ≥ tε,

A(xt, xt, ..., xt, y) < r + ε for all t ≥ t1 and A(xt, xt, ..., xt, z) < r + ε for all t ≥ t2. This implies
from (A3) and Propositon 2.1

A(y, y, ..., y, z) ≤ (n− 1)A(y, y, ..., y, xt) + A(z, z, ..., z, xt)

= (n− 1)A(xt, xt, ..., xt, y) + A(xt, xt, ..., xt, z)

< n(r + ε)

we condiser ε = d
n
− r, then we get

A(y, y, ..., y, z) < d,

which conflicts with d = A(y, y, ..., y, z). Hence diam(LIMr
Axt) ≤ nr. �

Theorem 3.3. Let (X,A) be an A-metric space and let (xt) be a sequence in X. If xt
(X,A)−→r x,

then it implies that BA(x, r) = LIMr
Axt as (xt) converges to x.

Proof. Assume that (xt) is convergent to x. Let y ∈ BA(x, r) and let any given ε > 0. So there
exists a natural number t such that A(xt, xt, ..., xt, x) < ε

n−1 for all t ≥ tε and we also have
A(y, y, ..., y, x) ≤ r. Hence for t ≥ tε we have

A(xt, xt, ..., xt, y) ≤ (n− 1)A(xt, xt, ..., xt, x) + A(y, y, ..., y, x)

< (n− 1)
ε

n− 1
+ r

= ε+ r.

Therefore y ∈ LIMr
Axt. So,

BA(x, r) ⊂ LIMr
Axt.(3.2)

4



Let z ∈ LIMr
Axt and any given ε > 0. Now we can choose t1, t2 ∈ N such that

A(xt, xt, ..., xt, z) < r +
ε

n
for all t ≥ t1 and A(xt, xt, ..., xt, x) <

ε

n

holds for every t ≥ t2. If t = max{t1, t2}, then

A(xt, xt, ..., xt, z) < r +
ε

n
and A(xt, xt, ..., xt, x) <

ε

n
,

for all t ≥ tε. From (A3) and Proposition 2.1, we can write

A(x, x, ..., x, z) ≤ (n− 1)A(x, x, ..., x, xt) + A(z, z, ..., z, xt)

= (n− 1)A(xt, xt, ..., xt, x) + A(xt, xt, ..., xt, z)

< n
ε

n
+ r

= ε+ r,

for all t ≥ tε. Then, we have A(x, x, ..., x, z) < r + ε for any ε > 0. Hence A(x, x, ..., x, z) ≤ r

holds. Therefore z ∈ BA(x, r). So,

LIMr
Axt ⊂ BA(x, r).(3.3)

Consequently, by (3.2) and (3.3), we write

LIMr
Axt = BA(x, r).

�

The uniqueness of limit (of classical convergence) is obviously a special case of the latter
property, because if r = 0, then diam(LIMr

Axt) = nr = 0, i.e. LIMr
Axt is either empty or a

singleton. Now, recall the bounded sequence in an A-metric space. In (X,A) a sequence (xt)

is said to be bounded if and only if there exists a K ∈ R+ such that A(xt, xt, ..., xt, xm) ≤ K

for all t,m ∈ N.

Theorem 3.4. Let (X,A) be an A-metric space and let (xt) be a sequence in X. If the sequence
(xt) is an r-convergent sequence, then it is bounded.

Proof. Let (xt) be an r-convergent sequence in an A-metric space (X,A). Let (xt) r-converges
to x. We show that (xt) is bounded in X. Then for any ε > 0, there exists natural number a
t0 such that A(xt, xt, ..., xt, x) < r + ε for all t ≥ t0. Let

L := max
1≤i,j≤t0

A(xi, xi, ..., xi, xj).

Let i ≤ t0 and j ≥ t0. From (A3) and Proposition 2.1, we can write

A(xj, xj, ..., xj, xk) ≤ (n− 1)A(xj, xj, ..., xj, x) + A(xt0 , xt0 , ..., xt0 , x)

< n(r + ε).

Also

A(xi, xi, ..., xi, xj) ≤ (n− 1)A(xi, xi, ..., xi, xk) + A(xj, xj, ..., xj, xt0)

< (n− 1)L+ n(r + ε).

If i ≥ t0 and j ≤ t0 similarly we can write

A(xi, xi, ..., xi, xj) < n(n− 1)(r + ε) + L.
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The case for i ≥ t0 and j ≥ t0 we get

A(xi, xi, ..., xi, xj) ≤ (n− 1)A(xi, xi, ..., xi, x) + A(xj, xj, ..., xj, x)

< n(r + ε).

If
T > max{L, n(r + ε), (n− 1)L+ n(r + ε), n(n− 1)(r + ε) + L},

then A(xi, xi, ..., xi, xj) < T for all i, j ∈ N. Therefore (xt) is bounded in X. �

Theorem 3.5. Let (X,A) be an A-metric space and let (xt) be a sequence in X. If the sequence
(xt) is bounded, then it is r-convergent for some degree of roughness r.

Proof. Let (xt) be a bounded sequence in an A-metric space (X,A). So there exists aK > 0 such
that A(xi, xi, ..., xi, xj) ≤ K for all i, j ∈ N. Hence for any ε > 0 we have A(xi, xi, ..., xi, xj) ≤
K < K + ε for all i, j ∈ N. Hence (xt) rough converges to xp for every p ∈ N for degree of
roughness K and hence the result follows. �

Remark 3.6. Let (xt) be a sequence in X and (X,A) be an A-metric space. The sequence (xt)

is bounded if and only if there exists an r ≥ 0 such that LIMr
Axt 6= ∅. For all r > 0, a bounded

sequence (xt) is always contains a subsequence (xtk) with

LIM
(xtk

),r

A xtk 6= ∅.

A subsequence of a convergent sequence also converges to the same limit point as the original
sequence. We present the following property of rough convergence in A-metric spaces:

Proposition 3.1. Let (X,A) be an A-metric space and let (xt) be a sequence in X. If (xts) is
a subsequence of (xt) then,

LIMr
Axt ⊆ LIMr

Axts .

Proof. Let x ∈ LIMr
Axt and ε > 0. Then there exists a k ∈ N such that A(xt, xt, ..., xt, x) <

r + ε for all t ≥ k. Let tm > k for some m ∈ N. Then ts > k for all s ≥ m. Therefore
A(xts , xts , ..., xts , x) < r + ε for all s > m. Hence x ∈ LIMr

Axts and LIMr
Axt ⊆ LIMr

Axts . �

This sequel’s important result is the one that was examined in Phu [12] in a normed linear
space.

Theorem 3.7. Let (xt) be a sequence in an A-metric space (X,A). For all r ≥ 0, the r-limit
set LIMr

Axt of a sequence (xt) is closed.

Proof. Let (ym) be a sequence in LIMr
Axt converges to some y. For each ε > 0, by definition

there are mε/n and tε/n such that

A(ymε/n
, ymε/n

, ..., ymε/n
, y) <

ε

n
and A(xt, xt, ..., xt, ymε/n

) < r +
ε

n

for all t ≥ tε/n. By (A3) and Proposition 2.1

A(y, y, ..., y, xt) ≤ (n− 1)A(y, y, ..., y, ymε/n
) + A(xt, xt, ..., xt, ymε/n

)

= (n− 1)A(ymε/n
, ymε/n

, ..., ymε/n
, y) + A(xt, xt, ..., xt, ymε/n

)

< n
ε

n
+ r

= ε+ r.
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Therefore y ∈ LIMr
Axt. Consequently, LIM

r
Axt is a closed set in X. �

Theorem 3.8. Let (xt) and (yt) be two sequences in an A-metric space (X,A) with the property
that A(xi, xi, ..., xi, yi) ≤ r

n−1 for all i ≥ t1 ∈ N and r > 0. If (xt) converges to x ∈ X, then (yt)

is r-convergent to x.

Proof. Let any given ε > 0. Since (xt) converges to x, for ε > 0, there exists a natural number
t2 such that A(xt, xt, ..., xt, x) < ε for all t ≥ t2. If we take t0 = max{t1, t2}, then for all t ≥ t0

from (A3) and Proposition 2.1 we get

A(yt, yt, ..., yt, x) ≤ (n− 1)A(yt, yt, ..., yt, xt) + A(x, x, ..., x, xt)

= (n− 1)A(yt, yt, ..., yt, xt) + A(xt, xt, ..., xt, x)

≤ (n− 1)
r

n− 1
+ ε

= r + ε,

for all t ≥ t0. In this case (yt) is r-convergent to x.
�

Theorem 3.9. Let (xt) be a seqeuence that is r-convergent to x in an A-metric space (X,A).

If a sequence (ξt) ∈ LIMr
Axt that converges to ξ, then (xt) is (n− 1)r-convergent to ξ.

Proof. Since (ξt) converges to ξ for any given ε > 0, there exists a natural number t1 such that
A(ξt, ξt, ..., ξt, ξ) <

ε
n
for all t ≥ t1. Also since (xt) is r-convergent to x there exists a natural

number t2 such that A(xt, xt, ..., xt, x) < r + ε
n
for all t ≥ t2. Let t0 = max{t1, t2} and take a

ξm of (ξt) where m > t0.
Then for all t ≥ t0 by (A3) and Proposition 2.1 we get that

A(xt, xt, ..., xt, ξ) ≤ (n− 1)A(xt, xt, ..., xt, ξm) + A(ξ, ξ, ..., ξ, ξm)

= (n− 1)A(xt, xt, ..., xt, ξm) + A(ξm, ξm, ..., ξm, ξ)

< (n− 1)(r +
ε

n
) +

ε

n
= (n− 1)r + ε.

Hence, A(xt, xt, ..., xt, ξ) < (n− 1)r + ε for all t ≥ t0. Consequently, the result follows. �

Definition 3.2. Let (xt) be a sequence in an A-metric space (X,A). ξ ∈ X is said to be a
cluster point of (xt) if for any ε > 0, there exists a natural number m such that m > p, p ∈ N
we have A(xm, xm, ..., xm, ξ) < ε.

The concept of a closed ball has been discussed using both S-metric and cone metric space
( [4, 9]). Here, we used an A-metric to examine the similarity.

Theorem 3.10. Let (xt) be an r-convergent sequence in an A-metric space (X,A). Then for
any cluster point of (xt), LIMr

Axt ⊂ BA(c, r) holds.

Proof. Let x ∈ LIMr
Axt. Then for any given ε > 0, there exists a natural number t0 such

that A(xt, xt, ..., xt, x) < r + ε
n
for all t ≥ t0. Also since c is a cluster point c of (xt), there

exists a natural number m such that m > t0 we have A(xm, xm, ..., xm, c) < ε
n
. From (A3) and
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Proposition 2.1 we can write the following:

A(c, c, ..., c, x) ≤ (n− 1)A(c, c, ..., c, xm) + A(x, x, ..., x, xm)

= (n− 1)A(xm, xm, ..., xm, c) + A(xm, xm, ..., xm, x)

< (n− 1)
ε

n
+ r +

ε

n
= r + ε.

So, A(c, c, ..., c, x) < r + ε. Since ε is selected arbitrarily, we have A(c, c, ..., c, x) ≤ r and hence
A(x, x, ..., x, c) ≤ r. Therefore x ∈ BA(c, r). Consequently, the result follows. �

Theorem 3.11. Let (X,A) be an A-metric space. If there exists sequences (xt) and (yt) in X

such that xt
(X,A)−→r0 x and yt

(X,A)−→r1 y, then for degree of roughness r = (n− 1)(r0 + r1)

A(xt, xt, ..., xt, yt)
(X,A)−→r A(x, x, ..., x, y).

Proof. Let (xt) and (yt) be two sequences rough convergent to x and y respectively in (X,A)

such that xt
(X,A)−→r0 x and yt

(X,A)−→r1 y. Then for given ε > 0, there exist t1, t2 ∈ N such
that t ≥ t1 we can write A(xt, xt, ..., xt, x) < r0 + ε

2(n−1) and for all t ≥ t2 we can write
A(yt, yt, ..., yt, y) < r1 +

ε
2(n−1) . Let t0 = max{t1, t2} and r = (n − 1)(r0 + r1). Therefore for

every t ≥ t0 from (A3) and Proposition 2.1 we get that

A(xt, xt, ..., xt, yt) ≤ (n− 1)A(xt, xt, ..., xt, x) + A(yt, yt, ..., yt, x)

≤ (n− 1)A(xt, xt, ..., xt, x) + (n− 1)A(yt, yt, ..., yt, y)

+ A(y, y, ..., y, x)

< (n− 1)(
ε

2(n− 1)
+ r0) + (n− 1)(

ε

2(n− 1)
+ r1)

+ A(x, x, ..., x, y)

= (n− 1)(r0 + r1) + ε+ A(x, x, ..., x, y)

= r + ε+ A(x, x, ..., x, y)

which implies

A(xt, xt, ..., xt, yt)− A(x, x, ..., x, y) < r + ε.(3.4)

On the other hand, we can write

A(x, x, ..., x, y) ≤ (n− 1)A(x, x, ..., x, xt) + A(y, y, ..., y, xt)

≤ (n− 1)A(x, x, ..., x, xt) + (n− 1)A(y, y, ..., y, yt) + A(xt, xt, ..., xt, yt)

= (n− 1)A(xt, xt, ..., xt, x) + (n− 1)A(yt, yt, ..., yt, y) + A(xt, xt, ..., xt, yt)

< (n− 1)(
ε

2(n− 1)
+ r0) + (n− 1)(

ε

2(n− 1)
+ r1) + A(xt, xt, ..., xt, yt)

= (n− 1)(r0 + r1) + ε+ A(xt, xt, ..., xt, yt)

= r + ε+ A(xt, xt, ..., xt, yt)

so we have

A(x, x, ..., x, y)− A(xt, xt, ..., xt, yt) < r + ε.(3.5)
8



Therefore by (3.4) and (3.5)

|A(xt, xt, ..., xt, yt)− A(x, x, ..., x, y)| < r + ε,

i.e.
A(xt, xt, ..., xt, yt)

(X,A)−→r A(x, x, ..., x, y).

�

Definition 3.3. Let (X,A) be an A-metric space and let (xt) be a sequence in X. The sequence
(xt) is said to be a rough Cauchy sequence if for each ε > 0, there exists a t0 ∈ N such that for
all t,m ≥ t0 we have

A(xt, xt, ..., xt, xm) < ρ+ ε, for ρ > 0.

Proposition 3.2. Let (X,A) be an A-metric spaces and let (xt) be a sequence in X:

(i) Let (xt) be a sequence in an A-metric space (X,A) with a Cauchy degree ρ. If ρ′ > ρ,
then ρ′ is also a Cauchy degree of (xt).

(ii) A sequence (xt) in an A-metric space (X,A) is bounded if and only if there exists a
ρ ≥ 0 such that (xt) is a ρ-Cauchy sequence.

Theorem 3.12. Let (X,A) be an A-metric space and let (xt) be a sequence in X. The sequence
(xt) is rough convergent if and only if (xt) is a ρ-Cauchy sequence for every ρ ≥ nr. This bound
for the Cauchy degree cannot be generally decreased.

Proof. Let (xt) is rough convergent in A-metric space (X,A), i.e. LIMr
Axt 6= ∅. Let x ∈ LIMr

Axt.

Then, for every ε > 0, there exists a tε ∈ N such that m, t ≥ tε implies

A(xm, xm, ..., xm, x) ≤ r +
ε

n
and A(xt, xt, ..., xt, x) ≤ r +

ε

n
.

Now, for m, t ≥ tε from (A3) and Proposition 2.1 we get

A(xm, xm, · · · , xm, xt) ≤ (n− 1)A(xm, xm, ..., xm, x) + A(xt, xt, ..., xt, x)

= nr + ε.

Hence, (xt) is a ρ-Cauchy sequence for ρ ≥ nr. By Proposition 3.2, every ρ ≥ nr is also a
Cauchy degree of (xt).

Let (xt) be a rough Cauchy sequence in A-metric space (X,A). Since (xt) be a rough Cauchy
sequence, then it is bounded. Hence, (xt) is rough convergent for ρ > 0. It is clear that this
bound nr can not be generally decreased, similar to Lemma 2.2 in [14].
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