KEY RENEWAL THEOREM AND ASYMPTOTICS OF THE RENEWAL MEASURE ON BOREL SETS

M.S. SGIBNEV

Abstract

We prove a uniform key renewal theorem with submultiplicative estimate of the remainder. The asymptotic behavior of the renewal measure on Borel sets of arbitrary form is also considered.

1. Notation and assumptions

Let F be a probability distribution on \mathbb{R} with finite positive mean μ and let $U=\sum_{n=0}^{\infty} F^{n *}$ be the corresponding renewal measure; here $F^{1 *}:=F, F^{(n+1) *}:=F * F^{n *}, n \geq 1$, and $F^{0 *}:=\delta$, the atomic measure of unit mass at the origin, the symbol $*$ means convolution of measures.

A function $\varphi(x), x \in \mathbb{R}$, is called submultiplicative if $\varphi(x)$ is a finite, positive, Borelmeasurable function with the following properties: $\varphi(0)=1, \varphi(x+y) \leq \varphi(x) \varphi(y), x$, $y \in \mathbb{R}$. Here are some examples of such functions on $\mathbb{R}_{+}:=[0, \infty): \varphi(x)=(1+x)^{r}, r>0$; $\varphi(x)=\exp \left(c x^{\gamma}\right)$ with $c>0$ and $\gamma \in(0,1) ; \varphi(x)=\exp (r x)$ with $r \in \mathbb{R}$. Moreover, if $R(x)$, $x \in \mathbb{R}_{+}$, is a positive, ultimately nondecreasing regularly varying function at infinity with a nonnegative exponent γ (i.e., $R(t x) / R(x) \rightarrow t^{\gamma}$ for $t>0$ as $x \rightarrow \infty$ [4, Section VIII.8]), then there exist a nondecreasing submultiplicative function $\varphi(x)$ and a point $x_{0} \in(0, \infty)$ such that $c_{1} R(x) \leq \varphi(x) \leq c_{2} R(x)$ for all $x \geq x_{0}$, where c_{1} and c_{2} are some positive constants [6 , Proposition]. The product of a finite number of submultiplicative functions is again a submultiplicative function.

It is well known [5, Section 7.6] that

$$
-\infty<r_{1}:=\sup _{x<0} \frac{\log \varphi(x)}{x} \leq \inf _{x>0} \frac{\log \varphi(x)}{x}=: r_{2}<\infty .
$$

Consider the collection $S(\varphi)$ of all complex-valued measures \varkappa such that

$$
\|\varkappa\|_{\varphi}:=\int_{\mathbb{R}} \varphi(x)|\varkappa|(d x)<\infty
$$

here $|\varkappa|$ stands for the total variation of \varkappa. The collection $S(\varphi)$ is a Banach algebra with norm $\|\cdot\|_{\varphi}$ by the usual operations of addition and scalar multiplication of measures, the product of two elements ν and \varkappa of $S(\varphi)$ is defined as their convolution $\nu * \varkappa$ [5, Section 4.16]. The unit element of $S(\varphi)$ is the measure δ. Define the Laplace transform of a measure \varkappa as

[^0]Received 01/06/2023.
$\hat{\varkappa}(s):=\int_{\mathbb{R}} \exp (s x) \varkappa(d x)$. The Laplace transform of any $\varkappa \in S(\varphi)$ converges absolutely with respect to $|\varkappa|$ for all s in the strip $\Pi\left(r_{1}, r_{2}\right):=\left\{s \in \mathbb{C}: r_{1} \leq \Re s \leq r_{2}\right\}$.

Let ν be a finite complex-valued measure. Denote by $T \nu$ the σ-finite measure with the density $v(x ; \nu):=\nu((x, \infty))$ for $x \geq 0$ and $v(x ; \nu):=-\nu((-\infty, x])$ for $x<0$. In case $\int_{\mathbb{R}}|x||\nu|(d x)<\infty$, $T \nu$ is a finite measure whose Laplace transform is given by $\widehat{T \nu}(s)=[\widehat{\nu}(s)-\widehat{\nu}(0)] / s, \Re s=0$, the value $\widehat{T \nu}(0)$ being defined by continuity as $\int_{\mathbb{R}} x \nu(d x)<\infty$. Let ν be a measure and $f(x)$ be a function. Denote by $\nu * f(x)$ their convolution $\int_{\mathbb{R}} f(x-y) \nu(d y)$.

The absolutely continuous part of any distribution F will be denoted by F_{c}, and its singular component by F_{σ}, i.e., $F_{\sigma}=F-F_{c}$. It is known (see [7, Section 4]) that $T|\nu| \in S(\varphi) \Rightarrow \nu \in$ $S(\varphi)$. Suppose that $r_{1} \leq 0 \leq r_{2}, \varphi(x) / \exp \left(r_{1} x\right)$ is nonincreasing on $(-\infty, 0)$ and $\varphi(x) / \exp \left(r_{2} x\right)$ is nondecreasing on $[0, \infty)$. Let F be a distribution with finite positive mean μ such that $T F \in S(\varphi)$. Assume that $\widehat{\left(F^{m *}\right)_{\sigma}}\left(r_{i}\right)<1, i=1,2$, for some $m \geq 1$. In particular, this means that the distribution $F^{m *}$ has an absolutely continuous component. Let $\widehat{F}(s) \neq 1$ for $s \in \Pi\left(r_{1}, r_{2}\right) \backslash\{0\}$. Let $\alpha \in S(\varphi)$. Denote by mes (A) the Lebesgue measure of a Borel set A. Let us call a subset $A \subset \mathbb{R}$ bounded from the left if there exists $a \in \mathbb{R}$ such that $A \subseteq[a, \infty)$. Denote by $\mathbf{1}_{A}(x)$ the indicator of a set A. The relation $a(x) \sim c b(x)$ as $x \rightarrow \infty$ means that $a(x) / b(x) \rightarrow c$ as $x \rightarrow \infty$.

2. Key renewal theorem

We shall need the following lemma.
Lemma 1. Let ν and \varkappa be finite measures. Then

$$
\begin{equation*}
T(\nu * \varkappa)=(T \nu) * \varkappa+\nu(\mathbb{R}) T \varkappa . \tag{1}
\end{equation*}
$$

Proof. It suffices to show that the densities of both sides of (1) coincide. Let $x \in \mathbb{R}_{+}$. The density of the left-hand side is equal to

$$
\nu * \varkappa((x, \infty))=\int_{\mathbb{R}} \nu((x-y, \infty)) \varkappa(d y) .
$$

Note that if α is a measure with density $a(x)$ and β is a finite measure, then the function $\beta * a(x)=\int_{\mathbb{R}} a(x-y) \beta(d y)$ is the density of $\alpha * \beta$. Indeed, let A be a Borel set. Then

$$
\begin{aligned}
\int_{A} \int_{\mathbb{R}} a(x-y) \beta(d y) d x & =\int_{\mathbb{R}} \int_{A} a(x-y) d x \beta(d y) \\
& =\int_{\mathbb{R}} \int_{A-y} a(z) d z \beta(d y)=\int_{\mathbb{R}} \alpha(A-y) \beta(d y)
\end{aligned}
$$

which proves the assertion. Put $\mathbb{R}_{-}:=\mathbb{R} \backslash \mathbb{R}_{+}$. The density of the right-hand side of (1) is equal to

$$
\begin{aligned}
\int_{\mathbb{R}}\left[\nu((x-y, \infty)) \mathbf{1}_{\mathbb{R}_{+}}(x-y)-\right. & \left.\nu((-\infty, x-y]) \mathbf{1}_{\mathbb{R}_{-}}(x-y)\right] \varkappa(d y) \\
& +\nu(\mathbb{R})\left[\varkappa((x, \infty)) \mathbf{1}_{\mathbb{R}_{+}}(x)-\varkappa((-\infty, x)) \mathbf{1}_{\mathbb{R}_{-}}(x)\right], \quad x \in \mathbb{R} .
\end{aligned}
$$

For $x \in \mathbb{R}_{+}$, it is equal to

$$
\begin{aligned}
& \int_{-\infty}^{x} \nu((x-y, \infty)) \varkappa(d y)-\int_{x}^{\infty} \nu((-\infty, x-y]) \varkappa(d y)+\nu(\mathbb{R}) \varkappa((x, \infty)) \\
& =\int_{-\infty}^{x} \nu((x-y, \infty)) \varkappa(d y)-\int_{x}^{\infty}[\nu(\mathbb{R})-\nu((x-y, \infty))] \varkappa(d y) \\
& \quad+\nu(\mathbb{R}) \varkappa((x, \infty))=\int_{\mathbb{R}} \nu((x-y, \infty)) \varkappa(d y),
\end{aligned}
$$

which establishes the equality of both densities on \mathbb{R}_{+}. A similar argument applies when $x \in \mathbb{R}_{-}$. Let $x \in \mathbb{R}_{-}$. The density of the left-hand side of (1) is equal to $-\nu * \varkappa((-\infty, x])$, whereas the right-hand side has the density

$$
\begin{aligned}
& \int_{\mathbb{R}}\left[\nu((x-y, \infty)) \mathbf{1}_{\mathbb{R}_{+}}(x-y)-\nu((-\infty, x-y]) \mathbf{1}_{\mathbb{R}_{-}}(x-y)\right] \varkappa(d y) \\
& +\nu(\mathbb{R})\left[\varkappa((x, \infty)) \mathbf{1}_{\mathbb{R}_{+}}(x)-\varkappa((-\infty, x]) \mathbf{1}_{\mathbb{R}_{-}}(x)\right] \\
& =\int_{-\infty}^{x} \nu((x-y, \infty)) \varkappa(d y)-\int_{x}^{\infty} \nu((-\infty, x-y]) \varkappa(d y)-\nu(\mathbb{R}) \varkappa((-\infty, x]) \\
& \left.=\int_{-\infty}^{x}[\nu(\mathbb{R})-\nu((x-y, \infty))] \varkappa(d y)-\int_{x}^{\infty} \nu((x-y, \infty))\right] \varkappa(d y) \\
& -\nu(\mathbb{R}) \varkappa((-\infty, x])=-\int_{\mathbb{R}} \nu((\infty, x-y]) \varkappa(d y)=-\nu * \varkappa((-\infty, x]) .
\end{aligned}
$$

Both densities also coincide on $\mathbb{R}_{\text {- }}$ and hence they coincide on the whole of \mathbb{R}.
We now state the main theorem. In comparison with Theorem 3.1 in [7], it involves a less restrictive condition on the underlying distribution F.

Theorem 1. Let the assumptions of Section 1 be satisfied. Suppose that $\alpha \in S(\varphi)$ and that $g(x) \geq 0, x \in \mathbb{R}$, is a Borel-measurable function with the properties $g \cdot \varphi \in L_{1}(\mathbb{R})$ and $g(x) \varphi(x) \leq$ $C<\infty, x \in \mathbb{R}$.
I. If $g(x) \varphi(x) \rightarrow 0$ as $x \rightarrow \infty$, then

$$
\begin{equation*}
\sup _{f:|f| \leq g}\left|U * \alpha * f(x)-\frac{\alpha(\mathbb{R})}{\mu} \int_{\mathbb{R}} f(y) d y\right|=o\left(\frac{1}{\varphi(x)}\right) \quad \text { as } \quad x \rightarrow \infty \tag{2}
\end{equation*}
$$

the f's being Borel measurable.
II. If $g(x) \varphi(x) \rightarrow 0$ as $x \rightarrow-\infty$, then

$$
\begin{equation*}
U * \alpha * g(x)=o\left(\frac{1}{\varphi(x)}\right) \quad \text { as } \quad x \rightarrow-\infty . \tag{3}
\end{equation*}
$$

Proof. Let L be the restriction of Lebesgue measure to \mathbb{R}_{+}. Put $\mathcal{A}=S(\varphi)$ in Theorem 3.1 [7]. We have $U=U_{1}+U_{2}$, where $U_{2} \in S(\varphi)$ and $U_{1}=L / \mu+r T U_{2}$ for some $r>r_{2}$. By Lemma 1,

$$
r T U_{2} * \alpha=T\left(r U_{2} * \alpha\right)-r \widehat{U}_{2}(0) T \alpha=r T\left[U_{2} * \alpha-\widehat{U}_{2}(0) \alpha\right]
$$

whence

$$
\begin{equation*}
U * \alpha=\frac{L * \alpha}{\mu}+r T\left[U_{2} * \alpha-\widehat{U}_{2}(0) \alpha\right]+U_{2} * \alpha=: \frac{L * \alpha}{\mu}+T U_{3}+U_{4} \tag{4}
\end{equation*}
$$

where both U_{3} and U_{4} belong to $S(\varphi)$. It follows from (4) that

$$
U * \alpha * f(x)=\frac{L * \alpha * f(x)}{\mu}+T U_{3} * f(x)+U_{4} * f(x)
$$

Now

$$
\begin{equation*}
L * \alpha * f(x)=\int_{0}^{\infty} \alpha * f(x-y) d y=\alpha(\mathbb{R}) \int_{\mathbb{R}} f(y) d y-\int_{-\infty}^{0} \alpha * f(x-y) d y \tag{5}
\end{equation*}
$$

Equalities (4) and (5) imply

$$
\begin{aligned}
U * \alpha * f(x) & -\frac{\alpha(\mathbb{R})}{\mu} \int_{\mathbb{R}} f(y) d y=T U_{3} * f(x)+U_{4} * f(x) \\
& -\frac{1}{\mu} \int_{-\infty}^{0} \alpha * f(x-y) d y=: I_{1}(x)+I_{2}(x)-\frac{1}{\mu} I_{3}(x) .
\end{aligned}
$$

Further,

$$
I_{1}(x)=\int_{0}^{\infty} f(x-y) U_{3}((y, \infty)) d y-\int_{-\infty}^{0} f(x-y) U_{3}((-\infty, y]) d y=: I_{4}(x)-I_{5}(x)
$$

We have

$$
\begin{aligned}
& \left|I_{4}(x)\right| \leq \frac{1}{\varphi(x)} \int_{0}^{\infty} \varphi(x-y) g(x-y) \varphi(y)\left|U_{3}\right|((y, \infty)) d y \\
& \leq \frac{1}{\varphi(x)} \int_{0}^{\infty} \varphi(x-y) g(x-y) \int_{y}^{\infty} \varphi(u)\left|U_{3}\right|(d u) d y \\
& \quad=\frac{1}{\varphi(x)} \int_{-\infty}^{x} \varphi(v) g(v) \int_{x-v}^{\infty} \varphi(u)\left|U_{3}\right|(d u) d v \\
& \quad=\frac{1}{\varphi(x)} \int_{\mathbb{R}} \mathbf{1}_{(-\infty, x]}(v) \varphi(v) g(v) \int_{x-v}^{\infty} \varphi(u)\left|U_{3}\right|(d u) d v
\end{aligned}
$$

The integrand tends to zero as $x \rightarrow \infty$ and is majorized by $\varphi(v) g(v)\left\|U_{3}\right\|_{\varphi} \in L_{1}(\mathbb{R})$. By Lebesgue's bounded convergence theorem, the integral tends to zero as $x \rightarrow \infty$ and we have

$$
\begin{equation*}
\sup _{f:|f| \leq g}\left|I_{4}(x)\right|=o\left(\frac{1}{\varphi(x)}\right) \quad \text { as } \quad x \rightarrow \infty \tag{6}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& \left|I_{5}(x)\right| \leq \frac{1}{\varphi(x)} \int_{-\infty}^{0} \varphi(x-y) g(x-y) \int_{-\infty}^{y} \varphi(u)\left|U_{3}\right|(d u) d y \tag{7}\\
& \leq \frac{\left\|U_{3}\right\|_{\varphi}}{\varphi(x)} \int_{-\infty}^{0} \varphi(x-y) g(x-y) d y \\
& \quad=\frac{\left\|U_{3}\right\|_{\varphi}}{\varphi(x)} \int_{x}^{\infty} \varphi(v) g(v) d v=o\left(\frac{1}{\varphi(x)}\right) \quad \text { as } \quad x \rightarrow \infty
\end{align*}
$$

It follows from (6) and (7) that

$$
\begin{equation*}
\sup _{f:|f| \leq g}\left|I_{1}(x)\right|=o\left(\frac{1}{\varphi(x)}\right) \quad \text { as } \quad x \rightarrow \infty \tag{8}
\end{equation*}
$$

Consider $I_{2}(x):\left|I_{2}(x)\right| \leq \frac{1}{\varphi(x)} \int_{\mathbb{R}} \varphi(x-y) g(x-y) \varphi(y)\left|U_{4}\right|(d y)$. By hypotheses, the integrand tends to zero as $x \rightarrow \infty$ and is majorized by the $\left|U_{4}\right|$-integrable function $C \varphi(x)$. By Lebesgue's bounded convergence theorem, the integral tends to zero as $x \rightarrow \infty$ and hence

$$
\begin{equation*}
\sup _{f:|f| \leq g}\left|I_{2}(x)\right|=o\left(\frac{1}{\varphi(x)}\right) \quad \text { as } \quad x \rightarrow \infty \tag{9}
\end{equation*}
$$

The integral $I_{3}(x)$ is equal to $\int_{x}^{\infty} \alpha * f(y) d y$. The condition $g \cdot \varphi \in L_{1}(\mathbb{R})$ implies that the measure, G, with density g belongs to $S(\varphi)$. Therefore, the measure $|\alpha| * G$ with density $|\alpha| * g$ also belongs to $S(\varphi)$ and we have

$$
\begin{align*}
\sup _{f:|f| \leq g} \mid I_{3}(x) & \leq \int_{x}^{\infty}|\alpha| * g(y) d y \tag{10}\\
& \leq \frac{1}{\varphi(x)} \int_{x}^{\infty} \varphi(y)|\alpha| * g(y) d y=o\left(\frac{1}{\varphi(x)}\right) \quad \text { as } \quad x \rightarrow \infty
\end{align*}
$$

Summing up relations (8)-(10), we arrive at the desired conclusion (2). The remaining relation (3) is proved similarly.

3. Asymptotics of the renewal measure on Borel sets

Blackwell's renewal theorem states that if G is a nonarithmetic distribution with positive mean μ_{G} and U_{G} is the renewal measure generated by G, then $U_{G}((x, x+h]) \rightarrow h / \mu_{G}$ as $x \rightarrow \infty$, for fixed $h>0$ (see [3, Theorem 1] and [4, Chapter XI, Section 1, Theorem 1]).

Theorem 2. Suppose that the hypotheses of Theorem 1 with $\varphi(x) \equiv 1$ for $x \leq 0$ are satisfied and let A be a Borel set bounded from the left which has finite Lebesgue measure. Then

$$
\begin{equation*}
\sup _{B \subseteq A}\left|U * \alpha(B+x)-\frac{\alpha(\mathbb{R}) \operatorname{mes}(B)}{\mu}\right|=o\left(\frac{1}{\varphi(x)}\right) \quad \text { as } \quad x \rightarrow \infty, \tag{11}
\end{equation*}
$$

where $B+x:=\{y \in \mathbb{R}: y-x \in B\}$.
Proof. We have $T F \in S(\varphi) \Rightarrow F \in S(\varphi)$. Put $g(x)=\mathbf{1}_{-A}(x)$, where $-A:=\{x \in \mathbb{R}:-x \in A\}$, and put $f(x)=\mathbf{1}_{-B}(x)$. Obviously,

$$
U * \alpha(B+x)=U * \alpha * f(x), \quad \int_{\mathbb{R}} f(x) d x=\operatorname{mes}(-B)=\operatorname{mes}(B) .
$$

Theorem 1 implies (11).
Putting $\alpha=\delta$ in Theorem 2 we get the following analog of Blackwell's theorem with submultiplicative estimate of the remainder, even for possibly unbounded Borel sets.

Corollary 1. Suppose that the hypotheses of Theorem 2 are satisfied. Then

$$
U(A+x)-\frac{\operatorname{mes}(A)}{\mu}=o\left(\frac{1}{\varphi(x)}\right) \quad \text { as } \quad x \rightarrow \infty
$$

Remark 1. The requirement that the distribution $F^{m *}$ have an absolutely continuous component for some $m \geq 1$ is also necessary for the validity of relation (11). Indeed, if the requirement is not fulfilled, then the measure U is concentrated on a set B of Lebesgue measure zero. Take as A the set $B \cap[0,1]$ and put $\alpha=\delta$. By Blackwell's renewal theorem for nonarithmetic distributions, the left-hand side in (11) tends to $1 / \mu \neq 0$ as $x \rightarrow \infty$ while the right-hand side tends to zero, i.e., relation (11) does not hold.

Remark 2. Let F be a probability distribution on \mathbb{R}_{+}with finite mean μ such that for some $m \geq 1$ the distribution $F^{m *}$ has an absolutely continuous component and let I be a bounded interval. Then

$$
\lim _{t \rightarrow \infty} \sup _{B \subset I}\left|G * U(t+B)-\mu^{-1} \operatorname{mes}(B)\right|=0
$$

where G is an arbitrary initial distribution and B is a Borel set [2, Corollary 2]. If F is a probability distribution on \mathbb{R} with positive mean μ such that for some $m \geq 1$ the distribution $F^{m *}$ has an absolutely continuous component, then $\lim _{t \rightarrow \infty} U(t+B)=\mu^{-1} \operatorname{mes}(B)$ for all bounded Borel sets B (see the remark after the proof of Theorem 2.6.4 in [1]). These results also follow from Theorem 2 with $\varphi(x) \equiv 1$.

Acknowledgments

The work was carried out within the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF-2022-0004).

References

[1] G. Alsmeyer, Erneuerungstheorie, B. G. Teubner, Stuttgart, 1991.
[2] E. Arjas, E. Nummelin, R.L. Tweedie, Uniform limit theorems for non-singular renewal and Markov renewal processes, J. Appl. Prob. 15 (1978), 112-125. https://doi.org/10.2307/3213241.
[3] D. Blackwell, Extension of a renewal theorem, Pac. J. Math. 3 (1953), 315-320.
[4] W. Feller, An introduction to probability theory and its applications, vol. II, John Wiley, New York, 1966.
[5] E. Hille, R.S. Phillips, Functional analysis and semi-groups, American Mathematical Society, Colloquium Publications 31, Providence, R. I., 1957.
[6] M.S. Sgibnev, Submultiplicative moments of the supremum of a random walk with negative drift, Stat. Prob. Lett. 32 (1997), 377-383. https://doi.org/10.1016/s0167-7152(96) 00097-1.
[7] M.S. Sgibnev, Stone's decomposition of the renewal measure via Banach-algebraic techniques, Proc. Amer. Math. Soc. 130 (2002), 2425-2430.

[^0]: Sobolev Institute of Mathematics, Novosibirsk, 630090, Russian Federation
 E-mail address: sgibnev@math.nsc.ru.
 Key words and phrases. renewal measure; key renewal theorem; asymptotic behavior; submultiplicative function; absolutely continuous component.

