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KEY RENEWAL THEOREM AND ASYMPTOTICS OF THE RENEWAL
MEASURE ON BOREL SETS

M.S. SGIBNEV

Abstract. We prove a uniform key renewal theorem with submultiplicative estimate of the
remainder. The asymptotic behavior of the renewal measure on Borel sets of arbitrary form is
also considered.

1. Notation and assumptions

Let F be a probability distribution on R with finite positive mean µ and let U =
∑∞

n=0 F
n∗

be the corresponding renewal measure; here F 1∗ := F , F (n+1)∗ := F ∗F n∗, n ≥ 1, and F 0∗ := δ,
the atomic measure of unit mass at the origin, the symbol ∗ means convolution of measures.

A function ϕ(x), x ∈ R, is called submultiplicative if ϕ(x) is a finite, positive, Borel-
measurable function with the following properties: ϕ(0) = 1, ϕ(x + y) ≤ ϕ(x)ϕ(y), x,
y ∈ R. Here are some examples of such functions on R+ := [0,∞): ϕ(x) = (1 + x)r, r > 0;
ϕ(x) = exp(cxγ) with c > 0 and γ ∈ (0, 1); ϕ(x) = exp(rx) with r ∈ R. Moreover, if R(x),
x ∈ R+, is a positive, ultimately nondecreasing regularly varying function at infinity with a
nonnegative exponent γ (i.e., R(tx)/R(x) → tγ for t > 0 as x → ∞ [4, Section VIII.8]), then
there exist a nondecreasing submultiplicative function ϕ(x) and a point x0 ∈ (0,∞) such that
c1R(x) ≤ ϕ(x) ≤ c2R(x) for all x ≥ x0, where c1 and c2 are some positive constants [6, Proposi-
tion]. The product of a finite number of submultiplicative functions is again a submultiplicative
function.

It is well known [5, Section 7.6] that

−∞ < r1 := sup
x<0

logϕ(x)

x
≤ inf

x>0

logϕ(x)

x
=: r2 <∞.

Consider the collection S(ϕ) of all complex-valued measures κ such that

‖κ‖ϕ :=

∫
R
ϕ(x) |κ|(dx) <∞;

here |κ| stands for the total variation of κ. The collection S(ϕ) is a Banach algebra with
norm ‖ · ‖ϕ by the usual operations of addition and scalar multiplication of measures, the
product of two elements ν and κ of S(ϕ) is defined as their convolution ν ∗κ [5, Section 4.16].
The unit element of S(ϕ) is the measure δ. Define the Laplace transform of a measure κ as
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κ̂(s) :=
∫
R exp(sx)κ(dx). The Laplace transform of any κ ∈ S(ϕ) converges absolutely with

respect to |κ| for all s in the strip Π(r1, r2) := {s ∈ C : r1 ≤ <s ≤ r2}.
Let ν be a finite complex-valued measure. Denote by Tν the σ-finite measure with the density

v(x; ν) := ν((x,∞)) for x ≥ 0 and v(x; ν) := −ν((−∞, x]) for x < 0. In case
∫
R |x| |ν|(dx) <∞,

Tν is a finite measure whose Laplace transform is given by T̂ ν(s) = [ν̂(s) − ν̂(0)]/s, <s = 0,
the value T̂ ν(0) being defined by continuity as

∫
R x ν(dx) < ∞. Let ν be a measure and f(x)

be a function. Denote by ν ∗ f(x) their convolution
∫
R f(x− y) ν(dy).

The absolutely continuous part of any distribution F will be denoted by Fc, and its singular
component by Fσ, i.e., Fσ = F − Fc. It is known (see [7, Section 4]) that T |ν| ∈ S(ϕ) ⇒ ν ∈
S(ϕ). Suppose that r1 ≤ 0 ≤ r2, ϕ(x)/ exp(r1x) is nonincreasing on (−∞, 0) and ϕ(x)/ exp(r2x)

is nondecreasing on [0,∞). Let F be a distribution with finite positive mean µ such that
TF ∈ S(ϕ). Assume that ̂(Fm∗)σ(ri) < 1, i = 1, 2, for some m ≥ 1. In particular, this
means that the distribution Fm∗ has an absolutely continuous component. Let F̂ (s) 6= 1 for
s ∈ Π(r1, r2) \ {0}. Let α ∈ S(ϕ). Denote by mes(A) the Lebesgue measure of a Borel set A.
Let us call a subset A ⊂ R bounded from the left if there exists a ∈ R such that A ⊆ [a,∞).
Denote by 1A(x) the indicator of a set A. The relation a(x) ∼ cb(x) as x → ∞ means that
a(x)/b(x)→ c as x→∞.

2. Key renewal theorem

We shall need the following lemma.

Lemma 1. Let ν and κ be finite measures. Then

(1) T (ν ∗ κ) = (Tν) ∗ κ + ν(R)Tκ.

Proof. It suffices to show that the densities of both sides of (1) coincide. Let x ∈ R+. The
density of the left-hand side is equal to

ν ∗ κ((x,∞)) =

∫
R
ν((x− y,∞))κ(dy).

Note that if α is a measure with density a(x) and β is a finite measure, then the function
β ∗ a(x) =

∫
R a(x− y) β(dy) is the density of α ∗ β. Indeed, let A be a Borel set. Then∫
A

∫
R
a(x− y) β(dy) dx =

∫
R

∫
A

a(x− y) dx β(dy)

=

∫
R

∫
A−y

a(z) dz β(dy) =

∫
R
α(A− y) β(dy),

which proves the assertion. Put R− := R \ R+. The density of the right-hand side of (1) is
equal to∫

R

[
ν((x− y,∞))1R+(x− y)− ν((−∞, x− y])1R−(x− y)

]
κ(dy)

+ ν(R)
[
κ((x,∞))1R+(x)− κ((−∞, x))1R−(x)

]
, x ∈ R.
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For x ∈ R+, it is equal to∫ x

−∞
ν((x− y,∞))κ(dy)−

∫ ∞
x

ν((−∞, x− y])κ(dy) + ν(R)κ((x,∞))

=

∫ x

−∞
ν((x− y,∞))κ(dy)−

∫ ∞
x

[ν(R)− ν((x− y,∞))]κ(dy)

+ ν(R)κ((x,∞)) =

∫
R
ν((x− y,∞))κ(dy),

which establishes the equality of both densities on R+. A similar argument applies when
x ∈ R−. Let x ∈ R−. The density of the left-hand side of (1) is equal to −ν ∗ κ((−∞, x]),
whereas the right-hand side has the density∫

R

[
ν((x− y,∞))1R+(x− y)− ν((−∞, x− y])1R−(x− y)

]
κ(dy)

+ ν(R)
[
κ((x,∞))1R+(x)− κ((−∞, x])1R−(x)

]
=

∫ x

−∞
ν((x− y,∞))κ(dy)−

∫ ∞
x

ν((−∞, x− y])κ(dy)− ν(R)κ((−∞, x])

=

∫ x

−∞
[ν(R)− ν((x− y,∞))]κ(dy)−

∫ ∞
x

ν((x− y,∞))]κ(dy)

− ν(R)κ((−∞, x]) = −
∫
R
ν((∞, x− y])κ(dy) = −ν ∗ κ((−∞, x]).

Both densities also coincide on R− and hence they coincide on the whole of R. �

We now state the main theorem. In comparison with Theorem 3.1 in [7], it involves a less
restrictive condition on the underlying distribution F .

Theorem 1. Let the assumptions of Section 1 be satisfied. Suppose that α ∈ S(ϕ) and that
g(x) ≥ 0, x ∈ R, is a Borel-measurable function with the properties g·ϕ ∈ L1(R) and g(x)ϕ(x) ≤
C <∞, x ∈ R.

I. If g(x)ϕ(x)→ 0 as x→∞, then

(2) sup
f :|f |≤g

∣∣∣∣U ∗ α ∗ f(x)− α(R)

µ

∫
R
f(y) dy

∣∣∣∣ = o

(
1

ϕ(x)

)
as x→∞,

the f ’s being Borel measurable.
II. If g(x)ϕ(x)→ 0 as x→ −∞, then

(3) U ∗ α ∗ g(x) = o

(
1

ϕ(x)

)
as x→ −∞.

Proof. Let L be the restriction of Lebesgue measure to R+. Put A = S(ϕ) in Theorem 3.1 [7].
We have U = U1 + U2, where U2 ∈ S(ϕ) and U1 = L/µ+ rTU2 for some r > r2. By Lemma 1,

rTU2 ∗ α = T (rU2 ∗ α)− rÛ2(0)Tα = rT [U2 ∗ α− Û2(0)α],

whence

(4) U ∗ α =
L ∗ α
µ

+ rT [U2 ∗ α− Û2(0)α] + U2 ∗ α =:
L ∗ α
µ

+ TU3 + U4,

where both U3 and U4 belong to S(ϕ). It follows from (4) that

U ∗ α ∗ f(x) =
L ∗ α ∗ f(x)

µ
+ TU3 ∗ f(x) + U4 ∗ f(x),
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Now

(5) L ∗ α ∗ f(x) =

∫ ∞
0

α ∗ f(x− y) dy = α(R)

∫
R
f(y) dy −

∫ 0

−∞
α ∗ f(x− y) dy.

Equalities (4) and (5) imply

U ∗ α ∗ f(x)− α(R)

µ

∫
R
f(y) dy = TU3 ∗ f(x) + U4 ∗ f(x)

− 1

µ

∫ 0

−∞
α ∗ f(x− y) dy =: I1(x) + I2(x)− 1

µ
I3(x).

Further,

I1(x) =

∫ ∞
0

f(x− y)U3((y,∞)) dy −
∫ 0

−∞
f(x− y)U3((−∞, y]) dy =: I4(x)− I5(x).

We have

|I4(x)| ≤ 1

ϕ(x)

∫ ∞
0

ϕ(x− y)g(x− y)ϕ(y)|U3|((y,∞)) dy

≤ 1

ϕ(x)

∫ ∞
0

ϕ(x− y)g(x− y)

∫ ∞
y

ϕ(u) |U3|(du) dy

=
1

ϕ(x)

∫ x

−∞
ϕ(v)g(v)

∫ ∞
x−v

ϕ(u) |U3|(du) dv

=
1

ϕ(x)

∫
R
1(−∞,x](v)ϕ(v)g(v)

∫ ∞
x−v

ϕ(u) |U3|(du) dv.

The integrand tends to zero as x → ∞ and is majorized by ϕ(v)g(v)‖U3‖ϕ ∈ L1(R). By
Lebesgue’s bounded convergence theorem, the integral tends to zero as x→∞ and we have

(6) sup
f :|f |≤g

|I4(x)| = o
( 1

ϕ(x)

)
as x→∞.

Similarly,

(7) |I5(x)| ≤ 1

ϕ(x)

∫ 0

−∞
ϕ(x− y)g(x− y)

∫ y

−∞
ϕ(u) |U3|(du) dy

≤ ‖U3‖ϕ
ϕ(x)

∫ 0

−∞
ϕ(x− y)g(x− y) dy

=
‖U3‖ϕ
ϕ(x)

∫ ∞
x

ϕ(v)g(v) dv = o
( 1

ϕ(x)

)
as x→∞.

It follows from (6) and (7) that

(8) sup
f :|f |≤g

|I1(x)| = o
( 1

ϕ(x)

)
as x→∞.

Consider I2(x): |I2(x)| ≤ 1

ϕ(x)

∫
R
ϕ(x− y)g(x− y)ϕ(y) |U4|(dy). By hypotheses, the integrand

tends to zero as x→∞ and is majorized by the |U4|-integrable function Cϕ(x). By Lebesgue’s
bounded convergence theorem, the integral tends to zero as x→∞ and hence

(9) sup
f :|f |≤g

|I2(x)| = o
( 1

ϕ(x)

)
as x→∞.
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The integral I3(x) is equal to
∫∞
x
α ∗ f(y) dy. The condition g · ϕ ∈ L1(R) implies that the

measure, G, with density g belongs to S(ϕ). Therefore, the measure |α| ∗G with density |α| ∗ g
also belongs to S(ϕ) and we have

sup
f :|f |≤g

|I3(x) ≤
∫ ∞
x

|α| ∗ g(y) dy(10)

≤ 1

ϕ(x)

∫ ∞
x

ϕ(y)|α| ∗ g(y) dy = o
( 1

ϕ(x)

)
as x→∞.

Summing up relations (8)–(10), we arrive at the desired conclusion (2). The remaining relation
(3) is proved similarly. �

3. Asymptotics of the renewal measure on Borel sets

Blackwell’s renewal theorem states that if G is a nonarithmetic distribution with positive
mean µG and UG is the renewal measure generated by G, then UG((x, x + h]) → h/µG as
x→∞, for fixed h > 0 (see [3, Theorem 1] and [4, Chapter XI, Section 1, Theorem 1]).

Theorem 2. Suppose that the hypotheses of Theorem 1 with ϕ(x) ≡ 1 for x ≤ 0 are satisfied
and let A be a Borel set bounded from the left which has finite Lebesgue measure. Then

(11) sup
B⊆A

∣∣∣∣U ∗ α(B + x)− α(R)mes(B)

µ

∣∣∣∣ = o
( 1

ϕ(x)

)
as x→∞,

where B + x :=
{
y ∈ R : y − x ∈ B

}
.

Proof. We have TF ∈ S(ϕ)⇒ F ∈ S(ϕ). Put g(x) = 1−A(x), where −A := {x ∈ R : −x ∈ A},
and put f(x) = 1−B(x). Obviously,

U ∗ α(B + x) = U ∗ α ∗ f(x),

∫
R
f(x) dx = mes(−B) = mes(B).

Theorem 1 implies (11). �

Putting α = δ in Theorem 2 we get the following analog of Blackwell’s theorem with sub-
multiplicative estimate of the remainder, even for possibly unbounded Borel sets.

Corollary 1. Suppose that the hypotheses of Theorem 2 are satisfied. Then

U(A+ x)− mes(A)

µ
= o
( 1

ϕ(x)

)
as x→∞.

Remark 1. The requirement that the distribution Fm∗ have an absolutely continuous compo-
nent for somem ≥ 1 is also necessary for the validity of relation (11). Indeed, if the requirement
is not fulfilled, then the measure U is concentrated on a set B of Lebesgue measure zero. Take
as A the set B ∩ [0, 1] and put α = δ. By Blackwell’s renewal theorem for nonarithmetic
distributions, the left-hand side in (11) tends to 1/µ 6= 0 as x → ∞ while the right-hand side
tends to zero, i.e., relation (11) does not hold.

Remark 2. Let F be a probability distribution on R+ with finite mean µ such that for some
m ≥ 1 the distribution Fm∗ has an absolutely continuous component and let I be a bounded
interval. Then

lim
t→∞

sup
B⊂I

∣∣G ∗ U(t+B)− µ−1mes(B)
∣∣ = 0,
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where G is an arbitrary initial distribution and B is a Borel set [2, Corollary 2]. If F is a
probability distribution on R with positive mean µ such that for some m ≥ 1 the distribution
Fm∗ has an absolutely continuous component, then limt→∞ U(t + B) = µ−1mes(B) for all
bounded Borel sets B (see the remark after the proof of Theorem 2.6.4 in [1]). These results
also follow from Theorem 2 with ϕ(x) ≡ 1.
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