ON A CLASS OF FRACTIONAL $p(.,$.$) -KIRCHHOFF-SCHRÖDINGER$ SYSTEM TYPE

H. EL-HOUARI*, L.S. CHADLI AND H. MOUSSA

Abstract

In the present article, we study the existence of a weak solution to an elliptic system of Kirchhoff-Shrödinger type, driven by the fractional $p(.,$.$) -Laplacian operator. We$ use the direct variational method and Ekeland variational principle to claim our results.

1. Introduction

In this paper, we discuss the existence of a weak solutions to the following nonhomogeneous fractional $p(.,$.$) -Laplacian system of Kirchhoff-Schrödinger type$

$$
\begin{cases}A_{1}\left(\mathcal{F}_{1}(u)\right)\left((-\Delta)_{p(.)}^{s(.)} u+a_{1}(x)|u|^{q(x)-2} u\right)=F_{u}(u, v)+b_{1}(x) & \text { in } \Omega \tag{1}\\ A_{2}\left(\mathcal{F}_{2}(v)\right)\left((-\Delta)_{p(.)}^{s(.)} v+a_{2}(x)|v|^{q(x)-2} v\right)=F_{v}(u, v)+b_{2}(x) & \text { in } \Omega \\ u=v=0 & \text { on } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

where

$$
\begin{equation*}
\mathcal{F}_{i}(w):=\int_{\Omega \times \Omega} \frac{|w(x)-w(y)|^{p(x, y)}}{p(x, y)|x-y|^{N+s(x, y) p(x, y)}} d x d y+\int_{\Omega} \frac{a_{i}(x)}{q(x)}|w|^{q(x)} d x, \tag{2}
\end{equation*}
$$

$\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain with $N \geq s(x, y) p(x, y)$ for any $(x, y) \in \bar{\Omega} \times \bar{\Omega}, F_{u}$ (respectively, F_{v}) denotes the partial derivative of F with respect to u (respectively, v) and the nonlocal operator $(-\Delta)_{p(.)}^{s(.)}$ is the fractional $p(.,$.$) -Laplacian operator given by$

$$
\begin{equation*}
(-\Delta)_{p(.)}^{s(.)} u(x):=P . V \int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p(x, y)-2}(\bar{u}(x)-\bar{u}(y))}{|x-y|^{N+s(x, y) p(x, y)}} d y, \quad x \in \Omega \tag{3}
\end{equation*}
$$

where $\bar{u} \in C_{0}^{\infty}$, P.V stands for Cauchy's principal value. To state our result, we assume that $(B): b_{i=1,2} \in L^{q(x)}, \frac{1}{q(x)}+\frac{1}{\bar{p}(x)}=1,1<q(x)<p_{s}^{*}(x)=N \bar{p} /(N-\bar{s}(x) \bar{p}(x)), \bar{p}(x)=p(x, x)$, $\bar{s}(x)=s(x, x), p($.$) and s($.$) are symmetric, that is, p(x, y)=p(y, x)$ and $s(x, y)=s(y, x)$ for any $(x, y) \in D:=\bar{\Omega} \times \bar{\Omega}$.

- $p():. D \rightarrow(1, \infty)$ is Lipschitz continuous functions and $q():. \bar{\Omega} \rightarrow R$ is continuous functions such that

$$
(P s): 0<s^{-}=\inf _{(x, y) \in D} s(x, y)<s^{+}=\sup _{(x, y) \in D} s(x, y)<1<p^{-}=\inf _{(x, y) \in D} p(x, y)<p^{+}=
$$

Faculté des Sciences et Techniques Béni Mellal, Maroc Laboratoire de Recherche "Mathématiques Appliquées et Calcul Scientifique", Morocco
*Corresponding author
E-mail addresses: h.elhouari94@gmail.com, sa.chadli@yahoo.fr, hichammoussa23@gmail.com. Key words and phrases. fractional p(.,.)-Laplacian operator; variational method; Ekeland's principle.
Received 22/03/2023.

$\sup _{(x, y) \in D} p(x, y)$.

$(Q): 1<q^{-}=\inf _{x \in \bar{\Omega}} q(x)<p^{+}=\sup _{x \in \bar{\Omega}} q(x)<+\infty$.

- The potential function $a_{i=1,2}$ satisfy:
$(P): a_{i} \in C\left(\mathbb{R}^{N}\right), \inf _{x \in \Omega} a_{i}(x)=a_{i}^{-}>0$ and $\lim _{|x| \rightarrow+\infty} a_{i}(x)=+\infty$.
- The Kirchhoff functions $A_{i=1,2}$ satisfy:
(L) there exist $k_{1}>0$ and $\theta>\frac{1}{p^{-}}$such that

$$
A_{i}(t)>k_{1} t^{\theta-1} \text { for all } t>0
$$

-: The non-linear term $F: \mathbb{R}^{2} \rightarrow R$ is a C^{1}-function such that:
$\left(F_{1}\right)$

$$
F(0,0)=0, \quad \frac{\partial F}{\partial u}=F_{u}(u, v) \quad \text { and } \quad \frac{\partial F}{\partial v}=F_{v}(u, v) \quad \text { for all }(u ; v) \in \mathbb{R}^{2}
$$

$\left(F_{2}\right)$ There exists $K>0$ such that $F(u, v)=F(u+K, v+K)$ for all $(u ; v) \in \mathbb{R}^{2}$.

The stationary version of the Kirchhoff equation

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2}\right) \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{4}
\end{equation*}
$$

presented by Kirchhoff [13] in 1883. Later (4) was developed to form

$$
\begin{equation*}
u_{t t}-A\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=H(x, u) \quad x \in \Omega \tag{5}
\end{equation*}
$$

After that, many authors studied the following nonlocal elliptic boundary value problem

$$
\begin{equation*}
-A\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=H(x, u) \quad x \in \Omega \tag{6}
\end{equation*}
$$

and other authors like, Yong Wu et al in [15] were interested in studying the following elliptic Kirchhoff system, driven by fractional variable-order exponente:

$$
\begin{cases}A_{1}\left(\int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p(x, y)}}{p(x, y)|x-y|^{N+s(x, y) p(x, y)}} d x d y\right)\left((-\Delta)_{p(.)}^{s(.)} u\right)=F_{u}(u, v)+b_{1}(x) & \text { in } \Omega \\ A_{2}\left(\int_{\Omega \times \Omega} \frac{|v(x)-v(y)|^{p(x, y)}}{p(x, y)|x-y|^{N+s(x, y) p(x, y)}} d x d y\right)\left((-\Delta)_{p(.)}^{s(.)} v\right)=F_{u}(u, v)+b_{2}(x) & \text { in } \Omega \\ u=v=0 & \text { on } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

Rabil Ayazoglu et al in [14] were interested in studying the following fractional $p(.,$.$) -Laplacian$ equation of Kirchhoff-Schrödinger type

$$
\begin{equation*}
A(\mathcal{F}(u))\left((-\Delta)_{p(.)}^{s(.)} u+V(x)|u|^{p(x)-2}\right)=f(x, y) \quad x \in \mathbb{R}^{N} \tag{7}
\end{equation*}
$$

Azroul et al in [3] studied the following nonlocal fractional (p, q)-Schrodinger-Kirchhoff system type:

$$
\left\{\begin{array}{l}
A_{1}\left(I_{K, p}(u)\right)\left(\mathcal{L}_{p}^{K} u+V(x)|u|^{p-2} u\right)=\lambda F_{u}(x, u, v)+\nu G_{u}(x, u, v) \quad \text { in } \mathbb{R}^{N} \\
A_{2}\left(I_{K, q}(v)\right)\left(\mathcal{L}_{q}^{K} v+V(x)|v|^{q-2} v\right)=\lambda F_{v}(x, u, v)+\nu G_{v}(x, u, v) \quad \text { in } \mathbb{R}^{N} \\
(u, v) \in W^{p} \times W^{q}
\end{array}\right.
$$

where

$$
I_{K, p}(w)=\int_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|w(x)-w(y)|^{p} K_{p}(x-y) d x d y+\int_{\mathbb{R}^{N}} V(x)|w|^{p} d x .
$$

and \mathcal{L}_{r}^{K} is a nonlocal integro-differential operator of elliptic type defined as:

$$
\mathcal{L}_{r}^{K} u(x)=\int_{\mathbb{R}^{N} \backslash B_{\epsilon}(x)}|u(x)-u(y)|^{r-2}(u(x)-u(y)) K_{r}(x-y) d y .
$$

and K_{r} is a measurable function satisfies some properties. Problems which involve the $p($.$) -$ Kirchhoff type have been intensively studied in the recent years, because of their numerous and relevant applications in many fields of mathematics, for example, electrorheological fluids (see [2]), elastic mechanics ([1]), image restoration ([7]). For this type of operator combined with a system of Kirchhoff functions we recall [1,5,11]. Inspired by the above articles, we aim in this paper to prove, under minoration conditions on $A_{i=1,2}$ and periodic conditions on F , the existence of solutions for the system (1) by applying variational method and Ekeland's principle.
This work is organized as follows. In the second Section, we recall some well-known properties and results on fractional Sobolev spaces with variable exponent and we present the existence of a result and its proof.

2. Some preliminary results

In this section, we set some definitions and properties of the Sobolev spaces with variable exponent (see [9, 10]).

Let Ω be a Lipschitz bounded open set in \mathbb{R}^{N}. the function space $C_{+}(\bar{\Omega})$ is defined as follows:

$$
C_{+}(\bar{\Omega}):=\left\{\tau \in C(\bar{\Omega}, \mathbb{R}): 1<\tau^{-} \leq \tau^{+}<\infty \quad \text { for all } x \in \bar{\Omega}\right\}
$$

For $\tau \in C^{+}(\Omega)$, we define the variable exponent Lebesgue space

$$
L^{\tau(x)}(\Omega)=\left\{w: \Omega \rightarrow \mathbb{R} \text { is a mesurable function } \int_{\Omega}|w|^{\tau(x)} d x<+\infty\right\}
$$

This space is equipped with the Luxemburg norm

$$
\begin{equation*}
\|w\|_{L^{\tau(x)}(\Omega)}=\|w\|_{\tau(x)}=\inf \left\{\nu>0: \int_{\Omega}\left|\frac{w}{\nu}\right|^{\tau(x)} \leq 1\right\} . \tag{8}
\end{equation*}
$$

Also, the Hölder inequality holds

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{\tau^{-}}+\frac{1}{\tau^{\prime+}}\right)\|u\|_{\tau(x)}\|v\|_{\tau^{\prime}(x)} \leq 2\|u\|_{\tau(x)}\|v\|_{\tau^{\prime}(x)}
$$

for all $u \in L^{\tau(x)}(\Omega)$ and $v \in L^{\tau^{\prime}(x)}(\Omega)$ where $\frac{1}{\tau^{-}}+\frac{1}{\tau^{\prime+}}=1$. The modular function $\rho: L^{\tau(x)}(\Omega) \rightarrow$ \mathbb{R} is defined as

$$
\rho_{\tau(x)}(w)=\int_{\Omega}|w|^{\tau(x)} d x
$$

An important relationship between the norm $\|w\|_{\tau(x)}$ and the corresponding modular function $\rho_{\tau(x)}($.$) given in this lemma.$
Lemma 2.1. Let $w \in L^{\tau(x)}(\Omega),\left\{w_{k}\right\} \subset L^{\tau(x)}(\Omega), k \in \mathbb{N}$, then
(i) $\|w\|_{\tau(x)}<1(=1 ;>1)$ if and only if $\rho_{\tau(x)}(w)<1(=1 ;>1)$
(ii) If $\|w\|_{\tau(x)}>1$, then $\|w\|_{\tau(x)}^{\tau^{-}} \leq \rho_{\tau(x)}(w) \leq\|w\|_{\tau(x)}^{\tau^{+}}$,
(iii) If $\|w\|_{\tau(x)}<1$, then $\|w\|_{\tau(x)}^{\tau^{+}} \leq \rho_{\tau(x)}(w) \leq\|w\|_{\tau(x)}^{\tau^{-}}$.
and these assertion are equivalent
(iv) $\lim _{k \rightarrow+\infty}\left\|w_{k}-w\right\|_{\tau(x)} \Leftrightarrow \lim _{k \rightarrow+\infty} \rho_{\tau(x)}\left(w_{k}-w\right)=0$.
(v) w_{k} converges to w in Ω in measure and $\lim _{k \rightarrow+\infty} \rho_{\tau(x)}\left(w_{k}\right)=\rho_{\tau(x)}(w)$.

3. Fractional Sobolev spaces with variable exponents.

First, we introduce and recall some properties of the fractional Sobolev spaces with variable exponents. see $[4,12]$.

Let $p():. \bar{\Omega} \times \bar{\Omega} \rightarrow(1, \infty), q():. \bar{\Omega} \rightarrow(1, \infty)$ be two continuous functions. The fractional Sobolev space with variable exponents defined as follows

$$
W^{s(.), p(.)}(\Omega):=\left\{u \in L^{p(.)}(\Omega): \int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p(x, y)}}{|x-y|^{N+s(x, y) p(x, y)}} d x d y<+\infty\right\}
$$

which is equipped with the following norm

$$
\|u\|_{W^{s(\cdot), p(.)}(\Omega)}=\|u\|_{p(.)}+[u]_{s(.), p(.)}
$$

where $[.]_{s(.), p(.)}$ is defined by

$$
[\cdot]_{s(.), p(.)}=\inf _{\lambda>0}\left\{u \in L^{p(.)}(\Omega): \int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p(x, y)}}{\lambda^{p(x, y)}|x-y|^{N+s(x, y) p(x, y)}} d x d y \leq 1\right\} .
$$

Remind that $\left(W^{s(.), p(.)}(\Omega),\|u\|_{W^{s(.), p(.)}(\Omega)}\right)$ is a separable reflexive Banach space (see [3]). Now when the weighted (potential) function $a_{i=1,2}$ satisfy ($P s$), then we defined the weighted variable exponent Lebesgue space $L_{a_{i}}^{\tau(.)}(\Omega)$ by

$$
L_{a_{i}}^{\tau(.)}(\Omega)=\left\{w: \Omega \rightarrow R, w \text { is a mesurable function } \int_{\Omega} a_{i}(x)|w|^{\tau_{i}(x)} d x<+\infty\right\}
$$

with the norm

$$
\|\cdot\|_{\tau(\cdot), a_{i}}=\inf _{\lambda>0}\left\{\int_{\Omega} a_{i}(x)\left|\frac{w}{\lambda}\right|^{\tau_{i}(x)} d w \leq 1\right\} .
$$

$L_{a_{i}}^{\tau(.)}(\Omega)$ is a Banach space. Moreover, the weighted modular function $\rho_{\tau(), a_{i}(.)}$ is defined as follows

$$
\rho_{\tau(.), a_{i}(.)}(w)=\int_{\Omega} a_{i}(x)|w|^{\tau_{i}(x)} d x .
$$

To deal with our problem we define the linear subspace $W_{a_{i=1,2}}(\Omega)$ as follows

$$
W_{a_{i=1,2}}(\Omega)=\left\{u \in L_{a_{i}}^{q(.)}(\Omega): \int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p(x, y)}}{|x-y|^{N+s(x, y) p(x, y)}} d x d y<+\infty\right\} .
$$

It is easy to see that $W_{a_{i=1,2}}(\Omega)$ is a separable reflexive Banach space with the norm

$$
\|u\|_{W_{a_{i}}}=\|u\|_{q(\cdot), a_{i}}+[u]_{s(\cdot), p(.)} .
$$

Defined the modular function $\kappa_{p(.), q(.)}^{s(.)}$ by

$$
\kappa_{p(\cdot), q(.)}^{s(.)}(u)=\int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p(x, y)}}{|x-y|^{N+s(x, y) p(x, y)}} d x d y+\int_{\Omega} a_{i}(x)|w|^{q(x)} d x
$$

which associated with the linear subspace $X(\Omega)$ defined as follows:

$$
X(\Omega)=X:=\left\{u \in{ }^{q(.)}(\Omega): \kappa_{p(.), q(.)}^{s(.)}(u)<+\infty\right\}
$$

eqquiped with the norm

$$
\|u\|_{X}=\|u\|:=\inf \left\{\lambda>0: \kappa_{p(\cdot), q(.)}^{s(.)}\left(\frac{u}{\lambda}\right) \leq 1\right\} .
$$

Remark 3.1. i) $\left|\left|.| |\right.\right.$ is an equivalent norm to the norm $\|\mid\|_{W_{a_{i}}}$ of $W_{a_{i}}$.
ii) $(X,\|\|$.$) is a separable reflexive Banach space.$

The relationship between the norm $\|$.$\| and the corresponding modular function \kappa_{p(.), q(.)}^{s(.)}(u)$ is given in the following Lemma

Lemma 3.2. [14] Let $u \in X,\left\{u_{k}\right\} \subset X$ and $p^{+}<q^{-}$, then we have
(i) $\|u\|<1(=1 ;>1)$ if and only if $\kappa_{p(.), q(.)}^{s(.)}(u)<1(=1 ;>1)$.
(ii) For $u \in X \backslash\{0\},\|u\|=\eta \Leftrightarrow \kappa_{p(\cdot), q(.)}^{s(.)}\left(\frac{u}{\eta}\right)=1$.
(iii) If $\|u\| \geq 1$, then $\|u\|^{p-} \leq \kappa_{p(.), q(.)}^{s(.)}(u) \leq\|u\|^{q^{+}}$,
(iv) If $\|u\| \leq 1$, then $\|u\|^{q^{-}} \leq \kappa_{p(.), q(.)}^{s(.)}(u) \leq\|u\|^{p^{+}}$.
(v) $\lim _{k \rightarrow+\infty}\left\|u_{k}-u\right\|=0 \Leftrightarrow \lim _{k \rightarrow+\infty} \kappa_{p(.), q(.)}^{s(.)}\left(u_{k}-u\right)=0$.

Proposition 3.3. [14] Let $u \in L^{s(.)}(\Omega), v \in L^{l(.)}(\Omega), w \in L^{z(.)}(\Omega)$. If $\frac{1}{s(x)}+\frac{1}{l(x)}+\frac{1}{z(x)}=1, x \in \bar{\Omega}$, then we have

$$
\begin{equation*}
\left.\left|\int_{\Omega} u(x) v(x) w(x) d x\right| \leq\left(\frac{1}{s^{-}}+\frac{1}{l^{-}}+\frac{1}{z^{-}}\right)\|u\|_{s(.)} \right\rvert\,\|v\|_{l(.)}\|w\|_{z(.)} . \tag{9}
\end{equation*}
$$

Now, we present some embedding results in fractional Sobolev spaces with variable exponents.
Theorem 3.4. [8] Let $s \in(0,1), \Omega$ a Lipschitz bounded domain in \mathbb{R}^{N}. Let $p(x, y), q(x)$ be a continuous variable exponents with $s(x, y) p(x, y)<N$, for $(x, y) \in \bar{\Omega} \times \bar{\Omega}$ and $p(x, y)<q(x)$, $x \in \bar{\Omega}$. If $r: \bar{\Omega} \rightarrow(1,+\infty)$ is a continuous function such that

$$
1<r^{-} \leq r(x)<p_{s}^{*}(x)=\frac{N \bar{p}(x)}{N-s(x, y) \bar{p}(x)} \quad \text { for all } x, y \in \bar{\Omega} \times \bar{\Omega}
$$

Then the embedding $W^{s(.), p(.)}(\Omega) \hookrightarrow L^{r(.)}(\Omega)$ is compact. i.e, there exist a positive constant k_{2} such that

$$
\begin{equation*}
\|u\|_{r(x)} \leq k_{2}\|u\|_{W^{s(\cdot), p(\cdot)}(\Omega)} \tag{10}
\end{equation*}
$$

Lemma 3.5. [14] Let $s \in(0,1)$. Let $p(x, y), q(x)$ be a continuous variable exponents with $s(x, y) p(x, y)<N$, for $(x, y) \in \bar{\Omega} \times \bar{\Omega}$ and $p(x, y) \leq q(x) \ll p_{s}^{*}(x)$ for $x \in \bar{\Omega}$. If $(P S)$, (Q) and (P) hold true. Then the embedding $X \hookrightarrow L^{q(.)}(\Omega)$ is compact. i.e, there exist a positive constant $k 3$ such that

$$
\begin{equation*}
\|u\|_{q(x)} \leq k_{3}\|u\|_{X} . \tag{11}
\end{equation*}
$$

Now, we recall the following well-known Ekeland variational principle
Theorem 3.6. [8] Let $E: Z \rightarrow R$ be a bounded and C^{1} function in the Banach space Z. Then for any $\epsilon>0$, there exists $\sigma \in Z$ such that

$$
E(\sigma) \leq \inf _{Z} E+\epsilon \quad \text { and } \quad\left\|E^{\prime}(\sigma)\right\|_{Z^{*}} \leq \epsilon
$$

At this point we have all tools to start our study for that we define the working space $W:=X \times X$ equipped with the norm $\|(u, v)\|=\|u\|+\|v\|$. Clearly $(W,\|(.,)\|$.$) is a separable,$ reflexive Banach space. Now we set our main results

Theorem 3.7. Let $s \in(0,1), \Omega \subset \mathbb{R}^{N}$ be a bounded smooth domain. $N>p(x, y) s(x, y)$ for any $(x, y) \in \bar{\Omega} \times \bar{\Omega}$, where $p($.$) , s($.$) verify (Ps). Assume that (B),(P),(L),\left(F_{1}\right)$ and $\left(F_{2}\right)$ are satisfied. Then, problem (1) admits a weak solution $\left(u_{0}, v_{0}\right) \in W$. If the energy function E is differentiable at $\left(u_{0}, v_{0}\right)$

We say that a pair of functions $(u, v) \in W$ is the weak solution of (1), if for any $(\varphi, \psi) \in W$ one has

$$
\begin{aligned}
& A_{1}\left(\mathcal{F}_{1}(u)\right)\left(\int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p(x, y)-2}(u(x)-u(y)(\varphi(x)-\varphi(y)))}{|x-y|^{N+s(x, y) p(x, y)}} d x d y\right. \\
& \left.+\int_{\Omega} a_{1}(x)|u|^{q(x)-2} u \varphi d x\right)=\int_{\Omega}\left(F_{u}(u, v)+b_{1}(x)\right) \varphi d x \\
& A_{2}\left(\mathcal{F}_{2}(v)\right)\left(\int_{\Omega \times \Omega} \frac{|v(x)-v(y)|^{p(x, y)-2}(v(x)-v(y)(\psi(x)-\psi(y)))}{|x-y|^{N+s(x, y) p(x, y)}} d x d y\right. \\
& \left.\quad+\int_{\Omega} a_{2}(x)|v|^{q(x)-2} u \psi d x\right)=\int_{\Omega}\left(F_{v}(u, v)+b_{2}(x)\right) \psi d x .
\end{aligned}
$$

We are now able to claim the result of our existence. First by assumption $\left(F_{1}\right)$ we can see that for all $u, v \in \mathbb{R}^{2}$:

$$
\begin{aligned}
F(u, v) & =\int_{0}^{u} F_{r}(r, v) d r+F(0, v) \\
& =\int_{0}^{u} F_{r}(r, v) d r+\int_{0}^{v} F_{t}(0, t) d t+F(0,0)
\end{aligned}
$$

Moreover, by assumption $\left(F_{2}\right)$ we have $F(u, v)=F(u+K, v+K)$ for all $(u, v) \in \mathbb{R}^{2}$, then we infer that $|F(u, v)| \leq k_{4}$ for all $(u, v) \in \mathbb{R}^{2}$. Thus

$$
\begin{equation*}
\int_{\Omega}|F(u, v)| d x \leq k_{4}|\Omega| \tag{12}
\end{equation*}
$$

where $|\Omega|$ is the Lebesgue measure of Ω, and k_{4} positive constant. Next we defining the energy functional $E: W \rightarrow R$ associated to the problem (1) as follows:

$$
\begin{align*}
E(u, v) & =\bar{A}_{1}\left[\mathcal{F}_{1}(u)\right]+\bar{A}_{2}\left[\mathcal{F}_{2}(v)\right]-\int_{\Omega} b_{1}(x) u d x-\int_{\Omega} b_{2}(x) v d x \tag{13}\\
& -\int_{\Omega} F(u, v) d x
\end{align*}
$$

for all $u, v \in W$, where $\bar{A}_{i}(t)=\int_{0}^{t} A_{i}(r) d r$. Obviously, the continuity of A_{i} yields that E is well defined and of class C^{1} on $W \backslash\{0,0\}$. Moreover, for all $\varphi, \psi \in W$ and $u, v \in W$, its Gâteaux
derivative is given by

$$
\begin{aligned}
\left\langle E^{\prime}(u, v),(\varphi, \psi)\right\rangle & =A_{1}\left(\mathcal{F}_{1}(u)\right) \\
& \times\left(\int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p(x, y)-2}(u(x)-u(y)(\varphi(x)-\varphi(y)))}{|x-y|^{N+s(x, y) p(x, y)}} d x d y\right. \\
& \left.+\int_{\Omega} a_{1}(x)|u|^{q(x)-2} u \varphi d x\right) \\
& +A_{2}\left(\mathcal{F}_{2}(v)\right)\left(\int_{\Omega \times \Omega} \frac{|v(x)-v(y)|^{p(x, y)-2}(v(x)-v(y)(\psi(x)-\psi(y)))}{|x-y|^{N+s(x, y) p(x, y)}} d x d y\right. \\
& \left.+\int_{\Omega} a_{2}(x)|v|^{q(x)-2} u \psi d x\right) \\
& -\int_{\Omega}\left(F_{u}(u, v)+b_{1}(x)\right) \varphi d x-\int_{\Omega}\left(F_{v}(u, v)+b_{2}(x)\right) \psi d x
\end{aligned}
$$

where $\langle.,$.$\rangle denotes the usual duality between W$ and its dual space W^{*}. Note that, the critical points of E are weak solutions of (1).

Lemma 3.8. The energy function E is coercive and bounded in W.
Proof. Let $(u, v) \in W$, according to (12) and (13) we have

$$
\begin{aligned}
E(u, v) & \geq \bar{A}_{1}\left[\mathcal{F}_{1}(u)\right]+\bar{A}_{2}\left[\mathcal{F}_{2}(v)\right]-\int_{\Omega} b_{1}(x) u d x-\int_{\Omega} b_{2}(x) v d x-\int_{\Omega} F(u, v) d x \\
& \geq \bar{A}_{1}\left[\mathcal{F}_{1}(u)\right]+\bar{A}_{2}\left[\mathcal{F}_{2}(v)\right]-\int_{\Omega} b_{1}(x) u d x-\int_{\Omega} b_{2}(x) v d x-k_{4}|\Omega|
\end{aligned}
$$

Condition (B) and the Hölder inequality infer that

$$
E(u, v) \geq \bar{A}_{1}\left[\mathcal{F}_{1}(u)\right]+\bar{A}_{2}\left[\mathcal{F}_{2}(v)\right]-k_{4}|\Omega|-2\left\|\mid b_{1}(x)\right\|_{q(x)}\|u\|_{\bar{p}(x)}-2\left\|b_{2}(x)\right\|_{q(x)}\|v\|_{\bar{p}(x)}
$$

Using (L), Lemma 3.2, Theorem 3.4 and Lemma 3.5 we obtain

$$
\begin{align*}
E(u, v) & \geq k_{1} \int_{0}^{\mathcal{F}_{1}(u)} \tau^{\theta-1} d \tau+\int_{0}^{\mathcal{F}_{2}(v)} \tau^{\theta-1} d \tau \\
& =\frac{k_{1}}{\theta\left(p^{+}\right)^{\theta}}\left(\left(\kappa_{p(.)}^{s(.)}(u)\right)^{\theta}+\left(\kappa_{p(.)}^{s(.)}(v)\right)^{\theta}\right)-k_{5}\|u\|-k_{6}\|v\|-k_{4}|\Omega| \tag{14}\\
& \geq \frac{k_{1}}{\theta\left(p^{+}\right)^{\theta}}\left(\min \left\{\|u\|^{\theta p^{-}},\|u\|^{\theta p^{+}}\right\}+\min \left\{\|v\|^{\theta p^{-}},\|v\|^{\theta p^{+}}\right\}\right) \\
& -\max \left\{k_{5}, k_{6}\right\}(\|u\|+\|v\|)-k_{4}|\Omega|
\end{align*}
$$

Since $\theta p^{+}>\theta p^{-}>1$, when $\|(u, v)\| \rightarrow+\infty$, i.e $\|u\| \rightarrow+\infty$ or $\|v\| \rightarrow+\infty$. So E is coercive and bounded in W.

Proof of Theorem 3.7

We already know that $E \in C^{1}(W, R)$ is weakly lower semicontinuous and bounded according to Lemma 3.8, by way of the Ekeland variational principle we have $\left(u_{j}, v_{j}\right) \subset W$ such that,

$$
\begin{equation*}
E\left(u_{j}, v_{j}\right) \rightarrow \inf E \quad \text { and } \quad E^{\prime}\left(u_{j}, v_{j}\right) \rightarrow 0 \tag{15}
\end{equation*}
$$

According to (15), we have $\left|E\left(u_{j}, v_{j}\right)\right| \leq k_{7}$. Thus, it follows from (14) that

$$
k_{8} \leq\left|E\left(u_{j}, v_{j}\right)\right| \leq k_{7}
$$

then the sequences $\left\{u_{j}\right\}$ and $\left\{v_{j}\right\}$ are bounded in X. So, without loss of generality, there exist subsequences still denoting by $\left\{u_{j}\right\}$ and $\left\{v_{j}\right\}$ such that $u_{j} \rightharpoonup u_{0}$ and $v_{j} \rightharpoonup v_{0}$ in X. Furthermore, applying Lemma 2.1 and Lebesgue dominated convergence theorem, one can check that

$$
\int_{\Omega} b_{1}(x) u_{j} d x \rightarrow \int_{\Omega} b_{1}(x) u_{0} d x \quad \text { and } \quad \int_{\Omega} b_{2}(x) v_{j} d x \rightarrow \int_{\Omega} b_{2}(x) v_{0} d x
$$

According to Lemma 3.5, we obtain

$$
u_{j} \rightarrow u_{0} \quad \text { and } \quad v_{j} \rightarrow v_{0} \quad \text { a.e } x \in \Omega .
$$

Moreover, by continuity of F, we get

$$
F\left(u_{j}(x), v_{j}(x)\right) \rightarrow F\left(u_{0}(x), v_{0}(x)\right) \quad \text { a.e } x \in \Omega .
$$

Due to (12) and Lebesgue dominated convergence theorem, we get

$$
\int_{\Omega} F\left(u_{j}(x), v_{j}(x)\right) d x \rightarrow \int_{\Omega} F\left(u_{0}(x), v_{0}(x)\right) d x .
$$

By (15), we have

$$
\begin{aligned}
\inf _{W} E & =\lim _{j \rightarrow+\infty} E\left(u_{j}, v_{j}\right) \\
& =\lim _{j \rightarrow+\infty}\left(\bar{A}_{1}\left[\mathcal{F}_{1}\left(u_{j}\right)\right]+\bar{A}_{2}\left[\mathcal{F}_{2}\left(v_{j}\right)\right]-\int_{\Omega} b_{1}(x) u_{j} d x-\int_{\Omega} b_{2}(x) v_{j} d x\right. \\
& \left.-\int_{\Omega} F\left(u_{j}, v_{j}\right) d x\right) .
\end{aligned}
$$

In view of Brezis-Lieb lemma (see [6]), we have

$$
\kappa_{p(.), q(.)}^{s(.)}\left(u_{0}\right) \leq \lim _{j \rightarrow+\infty} \inf \kappa_{p(.), q(.)}^{s(.)}\left(u_{j}\right) \quad \text { and } \quad \kappa_{p(.), q(.)}^{s(.)}\left(v_{0}\right) \leq \lim _{j \rightarrow+\infty} \inf \kappa_{p(.), q(.)}^{s(.)}\left(v_{j}\right)
$$

Due to the continuous monotone increasing property of \bar{A}_{1} and \bar{A}_{2}, we get

$$
\bar{A}_{1}\left(\kappa_{p(\cdot), q(.)}^{s(.)}\left(u_{0}\right)\right) \leq \lim _{j \rightarrow+\infty} \bar{A}_{1}\left(\kappa_{p(.), q(\cdot)}^{s(.)}\left(u_{j}\right)\right)
$$

and

$$
\bar{A}_{2}\left(\kappa_{p(\cdot), q(.)}^{s(.)}\left(v_{0}\right)\right) \leq \lim _{j \rightarrow+\infty} \bar{A}_{2}\left(\kappa_{p(.), q(.)}^{s(.)}\left(v_{j}\right)\right)
$$

In conclusion,

$$
\begin{aligned}
\inf _{W} E & \geq \bar{A}_{1}\left(\kappa_{p(\cdot), q(\cdot)}^{s(.)}\left(u_{0}\right)\right)+\bar{A}_{2}\left(\kappa_{p(.), q(\cdot)}^{s(.)}\left(v_{0}\right)\right)-\int_{\Omega} b_{1}(x) u_{0} d x-\int_{\Omega} b_{2}(x) v_{0} d x \\
& -\int_{\Omega} F\left(u_{0}, v_{0}\right) d x \\
& =E\left(u_{0}, v_{0}\right)
\end{aligned}
$$

which implies $E\left(u_{0}, v_{0}\right)=\inf _{W} E$. Thus, $\left(u_{0}, v_{0}\right) \in W$ is a weak solution of problem (1) if E is differentiable at $\left(u_{0}, v_{0}\right)$. The proof is complete.
Data Availability Statement: No availability.

References

[1] A. Brahim, A. Djellit, S. Tas, Existence of solutions for an elliptic p(x)-Kirchhoff-type systems in unbounded domain, Bol. Soc Paran Mat. 36 (2018) 193-205. https://doi.org/10.5269/bspm.v36i3. 33081.
[2] E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, archive for rational mechanics and analysis, 164 (2002) 213-259. https://doi.org/10.1007/s00205-002-0208-7.
[3] E. Azroul, A. Benkirane, A. Boumazourh, M Srati, Multiple solutions for a nonlocal fractional (p, q)-Schrodinger-Kirchhoff type system, Nonlinear Stud. 27 (2020), 915-933.
[4] A. Bahrouni, V. D. Radulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discr. Contin. Dyn. Syst. - S. 11 (2018) 379-389. https://doi.org/10. 3934/dcdss. 2018021.
[5] S. Boulaaras, A. Allahem, Existence of positive solutions of nonlocal p(x)-Kirchhoff evolutionary systems via sub-super solutions concept, Symmetry. 11 (2019) 253. https://doi.org/10.3390/sym11020253.
[6] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983) 486-490.
[7] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006) 1383-1406. https://doi.org/10.1137/050624522.
[8] G. Dai, X. Li, On nonlocal elliptic systems of $p(x)$-Kirchhoff-type under neumann boundary condition, J. Math. Res. Appl. 33 (2013) 443-450. https://doi.org/10.3770/j.issn:2095-2651.2013.04.007.
[9] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, 2017, Springer-Verlag, Heidelberg, 2011.
[10] X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617.
[11] M.K. Hamdani, D.D. Repovš, Existence of solutions for systems arising in electromagnetism, J. Math. Anal. Appl. 486 (2020), 123898. https://doi.org/10.1016/j.jmaa.2020. 123898.
[12] U. Kaufmann, J. D. Rossi, R. Vidal; Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians, Electron. J. Qual. Theory Differ. Equ. 2017 (2017) 76.
[13] G. Kirchhoff, Vorlesungen, Huber. Mechanik, Leipzig, Teubner, 1883.
[14] R. Ayazoglu, Y. Saraç, S.Ş. Şener, G. Alisoy, Existence and multiplicity of solutions for a Schrödinger-Kirchhoff type equation involving the fractional $p(.,$.$) -Laplacian operator in \mathbb{R}^{N}$, Collect. Math. 72 (2021) 129-156. https://doi.org/10.1007/s13348-020-00283-5.
[15] Y. Wu, Z. Qiao, M.K. Hamdani, B. Kou, L. Yang, A class of fractional p(.)-Kirchhoff type systems, (2021). http://arxiv.org/abs/2005.06680.

