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ON A CLASS OF FRACTIONAL p(., .)-KIRCHHOFF-SCHRÖDINGER
SYSTEM TYPE

H. EL-HOUARI∗, L.S. CHADLI AND H. MOUSSA

Abstract. In the present article, we study the existence of a weak solution to an elliptic
system of Kirchhoff-Shrödinger type, driven by the fractional p(., .)-Laplacian operator. We
use the direct variational method and Ekeland variational principle to claim our results.

1. Introduction

In this paper, we discuss the existence of a weak solutions to the following nonhomogeneous
fractional p(., .)-Laplacian system of Kirchhoff-Schrödinger type

(1)


A1

(
F1(u)

)(
(−∆)

s(.)
p(.)u+ a1(x)|u|q(x)−2u

)
= Fu(u, v) + b1(x) inΩ,

A2

(
F2(v)

)(
(−∆)

s(.)
p(.)v + a2(x)|v|q(x)−2v

)
= Fv(u, v) + b2(x) inΩ,

u = v = 0 on RN\Ω,

where

(2) Fi(w) :=

∫
Ω×Ω

|w(x)− w(y)|p(x,y)

p(x, y)|x− y|N+s(x,y)p(x,y)
dxdy +

∫
Ω

ai(x)

q(x)
|w|q(x)dx,

Ω ⊂ RN is a bounded smooth domain with N ≥ s(x, y)p(x, y) for any (x, y) ∈ Ω × Ω, Fu
(respectively, Fv) denotes the partial derivative of F with respect to u (respectively, v) and the
nonlocal operator (−∆)

s(.)
p(.) is the fractional p(., .)-Laplacian operator given by

(3) (−∆)
s(.)
p(.)u(x) := P.V

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+s(x,y)p(x,y)
dy, x ∈ Ω,

where u ∈ C∞0 , P.V stands for Cauchy’s principal value. To state our result, we assume that

(B): bi=1,2 ∈ Lq(x),
1

q(x)
+

1

p(x)
= 1, 1 < q(x) < p∗s(x) = Np/(N − s(x)p(x)), p(x) = p(x, x),

s(x) = s(x, x), p(.) and s(.) are symmetric, that is, p(x, y) = p(y, x) and s(x, y) = s(y, x) for
any (x, y) ∈ D := Ω× Ω.

• p(.) : D → (1,∞) is Lipschitz continuous functions and q(.) : Ω→ R is continuous functions
such that
(Ps) : 0 < s− = inf

(x,y)∈D
s(x, y) < s+ = sup

(x,y)∈D
s(x, y) < 1 < p− = inf

(x,y)∈D
p(x, y) < p+ =
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sup
(x,y)∈D

p(x, y).

(Q): 1 < q− = inf
x∈Ω

q(x) < p+ = sup
x∈Ω

q(x) < +∞.

• The potential function ai=1,2 satisfy:
(P ): ai ∈ C(RN), infx∈Ω ai(x) = a−i > 0 and lim

|x|→+∞
ai(x) = +∞.

•: The Kirchhoff functions Ai=1,2 satisfy:

(L) there exist k1 > 0 and θ >
1

p−
such that

Ai(t) > k1t
θ−1 for all t > 0.

•: The non-linear term F : R2 → R is a C1-function such that:
(F1)

F (0, 0) = 0,
∂F

∂u
= Fu(u, v) and

∂F

∂v
= Fv(u, v) for all (u; v) ∈ R2.

(F2) There exists K > 0 such that F (u, v) = F (u+K, v +K) for all (u; v) ∈ R2.

The stationary version of the Kirchhoff equation

ρ
∂2u

∂t2
−
(
P0

h
+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2)∂2u

∂x2
= 0,(4)

presented by Kirchhoff [13] in 1883. Later (4) was developed to form

(5) utt − A
(∫

Ω

|∇u|2dx
)

∆u = H(x, u) x ∈ Ω.

After that, many authors studied the following nonlocal elliptic boundary value problem

−A
(∫

Ω

|∇u|2dx
)

∆u = H(x, u) x ∈ Ω,(6)

and other authors like, Yong Wu et al in [15] were interested in studying the following elliptic
Kirchhoff system, driven by fractional variable-order exponente:

A1

(∫
Ω×Ω

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+s(x,y)p(x,y)
dxdy

)(
(−∆)

s(.)
p(.)u

)
= Fu(u, v) + b1(x) inΩ,

A2

(∫
Ω×Ω

|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+s(x,y)p(x,y)
dxdy

)(
(−∆)

s(.)
p(.)v

)
= Fu(u, v) + b2(x) inΩ,

u = v = 0 onRN\Ω,

Rabil Ayazoglu et al in [14] were interested in studying the following fractional p(., .)-Laplacian
equation of Kirchhoff-Schrödinger type

(7) A
(
F(u)

)(
(−∆)

s(.)
p(.)u+ V (x)|u|p(x)−2

)
= f(x, y) x ∈ RN .

Azroul et al in [3] studied the following nonlocal fractional (p, q)-Schrodinger-Kirchhoff system
type: 

A1

(
IK,p(u)

)(
LKp u+ V (x)|u|p−2u

)
= λFu(x, u, v) + νGu(x, u, v) inRN ,

A2

(
IK,q(v)

)(
LKq v + V (x)|v|q−2v

)
= λFv(x, u, v) + νGv(x, u, v) inRN

(u, v) ∈ W p ×W q

https://doi.org/10.28919/ejma.2023.3.9
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where
IK,p(w) =

∫
RN×RN

|w(x)− w(y)|pKp(x− y)dxdy +

∫
RN
V (x)|w|pdx.

and LKr is a nonlocal integro-differential operator of elliptic type defined as:

LKr u(x) =

∫
RN\Bε(x)

|u(x)− u(y)|r−2(u(x)− u(y))Kr(x− y)dy.

and Kr is a measurable function satisfies some properties. Problems which involve the p(.)-
Kirchhoff type have been intensively studied in the recent years, because of their numerous
and relevant applications in many fields of mathematics, for example, electrorheological fluids
(see [2]), elastic mechanics ( [1]), image restoration ( [7]). For this type of operator combined
with a system of Kirchhoff functions we recall [1, 5, 11]. Inspired by the above articles, we aim
in this paper to prove, under minoration conditions on Ai=1,2 and periodic conditions on F

, the existence of solutions for the system (1) by applying variational method and Ekeland’s
principle.
This work is organized as follows. In the second Section, we recall some well-known properties
and results on fractional Sobolev spaces with variable exponent and we present the existence
of a result and its proof.

2. Some preliminary results

In this section, we set some definitions and properties of the Sobolev spaces with variable
exponent (see [9, 10]).

Let Ω be a Lipschitz bounded open set in RN . the function space C+(Ω) is defined as follows:

C+(Ω) :=
{
τ ∈ C(Ω,R) : 1 < τ− ≤ τ+ <∞ for all x ∈ Ω

}
.

For τ ∈ C+(Ω), we define the variable exponent Lebesgue space

Lτ(x)(Ω) = {w : Ω→ R is a mesurable function
∫

Ω

|w|τ(x)dx < +∞},

This space is equipped with the Luxemburg norm

(8) ||w||Lτ(x)(Ω) = ||w||τ(x) = inf
{
ν > 0 :

∫
Ω

∣∣∣w
ν

∣∣∣τ(x)

≤ 1
}
.

Also, the Hölder inequality holds∣∣∣ ∫
Ω

uvdx
∣∣∣ ≤ ( 1

τ−
+

1

τ ′+

)
||u||τ(x)||v||τ ′(x) ≤ 2||u||τ(x)||v||τ ′(x)

for all u ∈ Lτ(x)(Ω) and v ∈ Lτ ′(x)(Ω) where
1

τ−
+

1

τ ′+
= 1. The modular function ρ : Lτ(x)(Ω)→

R is defined as
ρτ(x)(w) =

∫
Ω

|w|τ(x)dx.

An important relationship between the norm ||w||τ(x) and the corresponding modular function
ρτ(x)(.) given in this lemma.

Lemma 2.1. Let w ∈ Lτ(x)(Ω), {wk} ⊂ Lτ(x)(Ω), k ∈ N, then
(i) ||w||τ(x) < 1 (= 1;> 1) if and only if ρτ(x)(w) < 1 (= 1;> 1)

(ii) If ||w||τ(x) > 1, then ||w||τ−τ(x) ≤ ρτ(x)(w) ≤ ||w||τ+τ(x),
(iii) If ||w||τ(x) < 1, then ||w||τ+τ(x) ≤ ρτ(x)(w) ≤ ||w||τ−τ(x).

https://doi.org/10.28919/ejma.2023.3.9
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and these assertion are equivalent
(iv) lim

k→+∞
||wk − w||τ(x) ⇔ lim

k→+∞
ρτ(x)(wk − w) = 0.

(v) wk converges to w in Ω in measure and limk→+∞ ρτ(x)(wk) = ρτ(x)(w).

3. Fractional Sobolev spaces with variable exponents.

First, we introduce and recall some properties of the fractional Sobolev spaces with variable
exponents. see [4, 12].

Let p(.) : Ω × Ω → (1,∞), q(.) : Ω → (1,∞) be two continuous functions. The fractional
Sobolev space with variable exponents defined as follows

W s(.),p(.)(Ω) :=
{
u ∈ Lp(.)(Ω) :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+s(x,y)p(x,y)
dxdy < +∞

}
which is equipped with the following norm

||u||W s(.),p(.)(Ω) = ||u||p(.) + [u]s(.),p(.)

where [.]s(.),p(.) is defined by

[.]s(.),p(.) = inf
λ>0

{
u ∈ Lp(.)(Ω) :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+s(x,y)p(x,y)
dxdy ≤ 1

}
.

Remind that (W s(.),p(.)(Ω), ||u||W s(.),p(.)(Ω)) is a separable reflexive Banach space (see [3]). Now
when the weighted (potential) function ai=1,2 satisfy (Ps), then we defined the weighted variable
exponent Lebesgue space Lτ(.)

ai (Ω) by

Lτ(.)
ai

(Ω) =
{
w : Ω→ R , w is a mesurable function

∫
Ω

ai(x)|w|τi(x)dx < +∞
}

with the norm

||.||τ(.),ai = inf
λ>0

{∫
Ω

ai(x)
∣∣∣w
λ

∣∣∣τi(x)

dw ≤ 1
}
.

L
τ(.)
ai (Ω) is a Banach space. Moreover, the weighted modular function ρτ(),ai(.) is defined as

follows
ρτ(.),ai(.)(w) =

∫
Ω

ai(x)|w|τi(x)dx.

To deal with our problem we define the linear subspace Wai=1,2
(Ω) as follows

Wai=1,2
(Ω) =

{
u ∈ Lq(.)ai

(Ω) :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+s(x,y)p(x,y)
dxdy < +∞

}
.

It is easy to see that Wai=1,2
(Ω) is a separable reflexive Banach space with the norm

||u||Wai
= ||u||q(.),ai + [u]s(.),p(.).

Defined the modular function κs(.)p(.),q(.) by

κ
s(.)
p(.),q(.)(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+s(x,y)p(x,y)
dxdy +

∫
Ω

ai(x)|w|q(x)dx

which associated with the linear subspace X(Ω) defined as follows:

X(Ω) = X :=
{
u ∈ q(.)(Ω) : κ

s(.)
p(.),q(.)(u) < +∞

}
,

https://doi.org/10.28919/ejma.2023.3.9
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eqquiped with the norm

||u||X = ||u|| := inf
{
λ > 0 : κ

s(.)
p(.),q(.)

(u
λ

)
≤ 1
}
.

Remark 3.1. i) ||.|| is an equivalent norm to the norm ||.||Wai
of Wai .

ii) (X, ||.||) is a separable reflexive Banach space.

The relationship between the norm ||.|| and the corresponding modular function κs(.)p(.),q(.)(u)

is given in the following Lemma

Lemma 3.2. [14] Let u ∈ X, {uk} ⊂ X and p+ < q−, then we have
(i) ||u|| < 1 (= 1;> 1) if and only if κs(.)p(.),q(.)(u) < 1 (= 1;> 1).

(ii) For u ∈ X\{0}, ||u|| = η ⇔ κ
s(.)
p(.),q(.)

(u
η

)
= 1.

(iii) If ||u|| ≥ 1, then ||u||p− ≤ κ
s(.)
p(.),q(.)(u) ≤ ||u||q+,

(iv) If ||u|| ≤ 1, then ||u||q− ≤ κ
s(.)
p(.),q(.)(u) ≤ ||u||p+.

(v) lim
k→+∞

||uk − u|| = 0⇔ lim
k→+∞

κ
s(.)
p(.),q(.)(uk − u) = 0.

Proposition 3.3. [14] Let u ∈ Ls(.)(Ω), v ∈ Ll(.)(Ω), w ∈ Lz(.)(Ω).
If 1

s(x)
+ 1

l(x)
+ 1

z(x)
= 1, x ∈ Ω, then we have∣∣∣ ∫

Ω

u(x)v(x)w(x)dx
∣∣∣ ≤ ( 1

s−
+

1

l−
+

1

z−

)
||u||s(.)||v||l(.)||w||z(.).(9)

Now, we present some embedding results in fractional Sobolev spaces with variable exponents.

Theorem 3.4. [8] Let s ∈ (0, 1), Ω a Lipschitz bounded domain in RN . Let p(x, y), q(x) be a
continuous variable exponents with s(x, y)p(x, y) < N , for (x, y) ∈ Ω × Ω and p(x, y) < q(x),
x ∈ Ω. If r : Ω→ (1,+∞) is a continuous function such that

1 < r− ≤ r(x) < p∗s(x) =
Np̄(x)

N − s(x, y)p̄(x)
for all x, y ∈ Ω× Ω.

Then the embedding W s(.),p(.)(Ω) ↪→ Lr(.)(Ω) is compact. i.e, there exist a positive constant k2

such that

(10) ||u||r(x) ≤ k2||u||W s(.),p(.)(Ω).

Lemma 3.5. [14] Let s ∈ (0, 1). Let p(x, y), q(x) be a continuous variable exponents with
s(x, y)p(x, y) < N , for (x, y) ∈ Ω × Ω and p(x, y) ≤ q(x) � p∗s(x) for x ∈ Ω. If (PS), (Q)

and (P ) hold true. Then the embedding X ↪→ Lq(.)(Ω) is compact. i.e, there exist a positive
constant k3 such that

(11) ||u||q(x) ≤ k3||u||X .

Now, we recall the following well-known Ekeland variational principle

Theorem 3.6. [8] Let E : Z → R be a bounded and C1 function in the Banach space Z. Then
for any ε > 0, there exists σ ∈ Z such that

E(σ) ≤ inf
Z
E + ε and ||E ′(σ)||Z∗ ≤ ε.

https://doi.org/10.28919/ejma.2023.3.9


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2023.3.9 6

At this point we have all tools to start our study for that we define the working space
W := X×X equipped with the norm ||(u, v)|| = ||u||+ ||v||. Clearly (W, ||(., .)||) is a separable,
reflexive Banach space. Now we set our main results

Theorem 3.7. Let s ∈ (0, 1), Ω ⊂ RN be a bounded smooth domain. N > p(x, y)s(x, y) for
any (x, y) ∈ Ω×Ω, where p(.), s(.) verify (Ps). Assume that (B), (P ), (L), (F1) and (F2) are
satisfied. Then, problem (1) admits a weak solution (u0, v0) ∈ W . If the energy function E is
differentiable at (u0, v0)

We say that a pair of functions (u, v) ∈ W is the weak solution of (1), if for any (ϕ, ψ) ∈ W
one has

A1

(
F1(u)

)(∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y)(ϕ(x)− ϕ(y)))

|x− y|N+s(x,y)p(x,y)
dxdy

+

∫
Ω

a1(x)|u|q(x)−2uϕdx
)

=

∫
Ω

(
Fu(u, v) + b1(x)

)
ϕdx

A2

(
F2(v)

)(∫
Ω×Ω

|v(x)− v(y)|p(x,y)−2(v(x)− v(y)(ψ(x)− ψ(y)))

|x− y|N+s(x,y)p(x,y)
dxdy

+

∫
Ω

a2(x)|v|q(x)−2uψdx
)

=

∫
Ω

(
Fv(u, v) + b2(x)

)
ψdx.

We are now able to claim the result of our existence. First by assumption (F1) we can see that
for all u, v ∈ R2:

F (u, v) =

∫ u

0

Fr(r, v)dr + F (0, v)

=

∫ u

0

Fr(r, v)dr +

∫ v

0

Ft(0, t)dt+ F (0, 0).

Moreover, by assumption (F2) we have F (u, v) = F (u+K, v +K) for all (u, v) ∈ R2, then we
infer that |F (u, v)| ≤ k4 for all (u, v) ∈ R2. Thus

(12)
∫

Ω

|F (u, v)|dx ≤ k4|Ω|

where |Ω| is the Lebesgue measure of Ω, and k4 positive constant. Next we defining the energy
functional E : W → R associated to the problem (1) as follows:

E(u, v) = A1

[
F1(u)

]
+ A2

[
F2(v)

]
−
∫

Ω

b1(x)udx−
∫

Ω

b2(x)vdx

−
∫

Ω

F (u, v)dx
(13)

for all u, v ∈ W , where Ai(t) =

∫ t

0

Ai(r)dr. Obviously, the continuity of Ai yields that E is well

defined and of class C1 on W\{0, 0}. Moreover, for all ϕ, ψ ∈ W and u, v ∈ W , its Gâteaux

https://doi.org/10.28919/ejma.2023.3.9
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derivative is given by

〈E ′(u, v), (ϕ, ψ)〉 = A1

(
F1(u)

)
×

(∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y)(ϕ(x)− ϕ(y)))

|x− y|N+s(x,y)p(x,y)
dxdy

+

∫
Ω

a1(x)|u|q(x)−2uϕdx

)

+ A2

(
F2(v)

)(∫
Ω×Ω

|v(x)− v(y)|p(x,y)−2(v(x)− v(y)(ψ(x)− ψ(y)))

|x− y|N+s(x,y)p(x,y)
dxdy

+

∫
Ω

a2(x)|v|q(x)−2uψdx

)

−
∫

Ω

(
Fu(u, v) + b1(x)

)
ϕdx−

∫
Ω

(
Fv(u, v) + b2(x)

)
ψdx

where 〈., .〉 denotes the usual duality between W and its dual space W ∗. Note that, the critical
points of E are weak solutions of (1).

Lemma 3.8. The energy function E is coercive and bounded in W .

Proof. Let (u, v) ∈ W , according to (12) and (13) we have

E(u, v) ≥ A1

[
F1(u)

]
+ A2

[
F2(v)

]
−
∫

Ω

b1(x)udx−
∫

Ω

b2(x)vdx−
∫

Ω

F (u, v)dx

≥ A1

[
F1(u)

]
+ A2

[
F2(v)

]
−
∫

Ω

b1(x)udx−
∫

Ω

b2(x)vdx− k4|Ω|.

Condition (B) and the Hölder inequality infer that

E(u, v) ≥ A1

[
F1(u)

]
+ A2

[
F2(v)

]
− k4|Ω| − 2||b1(x)||q(x)||u||p(x) − 2||b2(x)||q(x)||v||p(x)

Using (L), Lemma 3.2, Theorem 3.4 and Lemma 3.5 we obtain

E(u, v) ≥ k1

∫ F1(u)

0

τ θ−1dτ +

∫ F2(v)

0

τ θ−1dτ

=
k1

θ(p+)θ

((
κ
s(.)
p(.)(u)

)θ
+
(
κ
s(.)
p(.)(v)

)θ)− k5||u|| − k6||v|| − k4|Ω|

≥ k1

θ(p+)θ

(
min{||u||θp− , ||u||θp+}+ min{||v||θp− , ||v||θp+}

)

−max{k5, k6}(||u||+ ||v||)− k4|Ω|

(14)

Since θp+ > θp− > 1, when ||(u, v)|| → +∞, i.e ||u|| → +∞ or ||v|| → +∞. So E is coercive
and bounded in W . �

https://doi.org/10.28919/ejma.2023.3.9
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Proof of Theorem 3.7

We already know that E ∈ C1(W,R) is weakly lower semicontinuous and bounded according
to Lemma 3.8, by way of the Ekeland variational principle we have (uj, vj) ⊂ W such that,

(15) E(uj, vj)→ inf E and E ′(uj, vj)→ 0.

According to (15), we have |E(uj, vj)| ≤ k7. Thus, it follows from (14) that

k8 ≤ |E(uj, vj)| ≤ k7

then the sequences {uj} and {vj} are bounded in X. So, without loss of generality, there exist
subsequences still denoting by {uj} and {vj} such that uj ⇀ u0 and vj ⇀ v0 inX. Furthermore,
applying Lemma 2.1 and Lebesgue dominated convergence theorem, one can check that∫

Ω

b1(x)ujdx→
∫

Ω

b1(x)u0dx and
∫

Ω

b2(x)vjdx→
∫

Ω

b2(x)v0dx.

According to Lemma 3.5, we obtain

uj → u0 and vj → v0 a.e x ∈ Ω.

Moreover, by continuity of F , we get

F (uj(x), vj(x))→ F (u0(x), v0(x)) a.e x ∈ Ω.

Due to (12) and Lebesgue dominated convergence theorem, we get∫
Ω

F (uj(x), vj(x))dx→
∫

Ω

F (u0(x), v0(x))dx.

By (15), we have

inf
W

E = lim
j→+∞

E(uj, vj)

= lim
j→+∞

(
A1

[
F1(uj)

]
+ A2

[
F2(vj)

]
−
∫

Ω

b1(x)ujdx−
∫

Ω

b2(x)vjdx

−
∫

Ω

F (uj, vj)dx

)
.

In view of Brezis-Lieb lemma (see [6]), we have

κ
s(.)
p(.),q(.)(u0) ≤ lim

j→+∞
inf κ

s(.)
p(.),q(.)(uj) and κ

s(.)
p(.),q(.)(v0) ≤ lim

j→+∞
inf κ

s(.)
p(.),q(.)(vj)

Due to the continuous monotone increasing property of A1 and A2, we get

A1

(
κ
s(.)
p(.),q(.)(u0)

)
≤ lim

j→+∞
A1

(
κ
s(.)
p(.),q(.)(uj)

)
and

A2

(
κ
s(.)
p(.),q(.)(v0)

)
≤ lim

j→+∞
A2

(
κ
s(.)
p(.),q(.)(vj)

)
In conclusion,

inf
W
E ≥ A1

(
κ
s(.)
p(.),q(.)(u0)

)
+ A2

(
κ
s(.)
p(.),q(.)(v0)

)
−
∫

Ω

b1(x)u0dx−
∫

Ω

b2(x)v0dx

−
∫

Ω

F (u0, v0)dx

= E(u0, v0),
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which implies E(u0, v0) = inf
W
E. Thus, (u0, v0) ∈ W is a weak solution of problem (1) if E is

differentiable at (u0, v0). The proof is complete.
Data Availability Statement: No availability.
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