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BEHAVIOR OF A THIRD ORDER NONLINEAR GENERALIZED
RATIONAL RECURSIVE SEQUENCE

TAREK F. IBRAHIM1,2,∗, ABDUL KHALIQ3 AND BURAK OGUL4

Abstract. In this paper, we investigate the global stability, boundedness of solutions of the
recursive sequence

(1) Jn+1 = a0Jn + a1Jn−1 + a2Jn−2 +
Jn Jn−2

b0Jn + b1Jn−1 + b2Jn−2
, n = 0, 1, ...

where ai and bi ∈ (0,∞) , i = 0, 1, 2 with the initial conditions J−2, J−1, and J0 ∈ (0,∞).

1. Introduction

Difference equations or discrete dynamical systems is a diverse field which impact almost ev-
ery branch of pure and applied mathematics.Every dynamical system an+1 = f(an) determines
a difference equation and vise versa. Recently, there has been great interest in studying the
difference equations. One of the reasons for this is a necessity for some techniques whose can
be used in investigating equations arising in mathematical models describing real-life situations
in population biology, economic, probability theory, genetics, psychology, etc.

Recently, there has been a lot of interest in studying the boundedness character and the
periodic nature of nonlinear difference equations. For some results in this area, see for example
[18–22]. Difference equations have been studied in various branches of mathematics for a long
time. First results in the qualitative theory of such systems were obtained by Poincaré and
Perron at the end of the nineteenth and the beginning of the twentieth centuries.
Many researchers have investigated the behavior of the solution of difference equations, for
example:

Camouzis et al. [4] investigated the behavior of solutions of the rational recursive sequence

Jn+1 =
βJ2

n

1 + J2
n−1

.
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Elabbasy et al. [8] investigated the global stability, boundedness, periodicity character and
gave the solution of some special cases of the difference equation

Jn+1 =
αJn−k

β + γ
∏k

i=0 Jn−i
.

Grove, Kulenovic and Ladas [11] presented a summary of a recent work and a large of open
problems and conjectures on the third order rational recursive sequence of the form

Jn+1 =
α + βJn + γJn−1 + δJn−2
A+BJn + CJn−1 +DJn−2

.

In [23] Kulenovic, G. Ladas and W. Sizer studied the global stability character and the
periodic nature of the recursive sequence

Jn+1 =
αJn + βJn−1
γJn + δJn−1

.

Kulenovic and Ladas [22] studied the second-order rational difference equation

Jn+1 =
α + βJn + γJn−1
A+BJn + CJn−1

.

Ibrahim et al. [12] studied the third order rational difference Equation

Jn+1 =
JnJn−2

Jn−1(α + βJnJn−2)

Agarwal et al. [2] studied the solution of fourth-order rational recursive sequence

Jn+1 = a Jn +
b Jn Jn−3

c Jn−2 + d Jn−3
For other important references , we refer the reader to

[1], [3], [5], [6], [7], [9], [10], [13], [14], [15], [16],

[17], [23], [24], [25], [26], [27− 48]

Our goal in this paper is to investigate the global stability and boundedness of solutions of
the recursive sequence

Jn+1 = a0Jn + a1Jn−1 + a2Jn−2 +
Jn Jn−2

b0Jn + b1Jn−1 + b2Jn−2
, n = 0, 1, ...,

where ai and bi ∈ (0,∞) , with the initial conditions J−k, J−k+1, ..., J−1 and J0 ∈ (0,∞).
Here, we recall some notations and results which will be helpful in our investigation.

Let I be some interval of real numbers and let

F : Ik+1 → I

be a continuously differentiable function. Then for every set of initial conditions
J−k, J−k+1, ..., J0 ∈ I, the difference equation

(2) Jn+1 = F (Jn, Jn−1, ..., Jn−k), n = 0, 1, ...,

has a unique solution {Jn}∞n=−k [19].
A point x ∈ I is called an equilibrium point of equation(2) if

x = F (x, x, ..., x).



That is, Jn = x for n ≥ 0, is a solution of equation(2), or equivalently, x is a fixed point of F .

Definition 1. The difference equation (2) is said to be persistence if there exist numbers m and
M with 0 < m ≤ M < ∞ such that for any initial conditions J−k, J−k+1, ..., J−1, J0 ∈ (0,∞)

there exists a positive integer N which depends on the initial conditions such that

m ≤ Jn ≤M for all n ≥ N.

Definition 2. (Stability) Let I be some interval of real numbers.
(i) The equilibrium point x of equation(2) is locally stable if for every ε > 0, there exists
δ > 0 such that for all J−k, J−k+1, ..., J−1, J0 ∈ I with

|J−k − x|+ |J−k+1 − x|+ ...+ |J0 − x| < δ,

we have
|Jn − x| < ε for all n ≥ −k.

(ii) The equilibrium point x of equation(2) is locally asymptotically stable if x is locally stable
solution of equation(2) and there exists γ > 0, such that for all J−k, J−k+1, ..., J−1, J0 ∈ I with

|J−k − x|+ |J−k+1 − x|+ ...+ |J0 − x| < γ,

we have
lim
n→∞

Jn = x.

(iii) The equilibrium point x of equation(2) is global attractor if for all J−k, J−k+1, ..., J−1, J0 ∈
I, we have

lim
n→∞

Jn = x.

(iv) The equilibrium point x of equation(2) is globally asymptotically stable if x is locally stable,
and x is also a global attractor of equation(2).
(v) The equilibrium point x of equation(2) is unstable if x is not locally stable.

The linearized equation of equation(2) about the equilibrium x is the linear difference equa-
tion

yn+1 =
k∑

i=0

∂F (x, x, ..., x)

∂Jn−i
yn−i.

Theorem A [18] Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then

|p|+ |q| < 1

is a sufficient condition for the asymptotic stability of the difference equation

Jn+1 + pJn + qJn−k = 0, n = 0, 1, ... .

Theorem A can be easily extended to a general linear equations of the form

Jn+k + p1Jn+k−1 + ...+ pkJn = 0, n = 0, 1, ...

where p1, p2, ..., pk ∈ R and k ∈ {1, 2, ...}. Then equation(3) is asymptotically stable provided
that

k∑
i=1

|pi| < 1.



2. Local Stability of the Equilibrium Point

In this section, we investigate the local stability character of the solutions of Eq.(1). Eq.(1)
has a unique equilibrium point and is given by

x = 0

such that (1− a0 − a1 − a2) (b0 + b1 + b2) 6= 1.

x = a0x+ a1x+ a2x+
x2

b0x+ b1x+ b2x
,

or,

(x− a0x− a1x− a2x) (b0x+ b1x+ b2x) = x2,

Thus

x2{(1− a0 − a1 − a2) (b0 + b1 + b2)− 1)} = 0

if (1− a0 − a1 − a2) (b0 + b1 + b2)) 6= 1, then the unique equilibrium point is x = 0.

Let f : (0,∞)3 −→ (0,∞) be a function defined by

f(u, v, w) = a0u+ a1v + a2w +
u w

b0u+ b1v + b2w
.

Therefore it follows that

fu(u, v, w) = a0 +
(b0u+ b1v + b2w) w − uw(b0)

(b0u+ b1v + b2w)
2 = a0 +

(b1v + b2w) w

(b0u+ b1v + b2w)
2 ,

fv(u, v, w) = a1 +
(b0u+ b1v + b2w) 0− u w(b1)

(b0u+ b1v + b2w)
2 = a1 −

u w(b1)

(b0u+ b1v + b2w)
2 ,

fw(u, v, w) = a2 +
(b0u+ b1v + b2w)u − uw (b2)

(b0u+ b1v + b2w)
2 = a2 +

(b0u+ b1v)u

(b0u+ b1v + b2w)
2

we see that

fu(x, x, x) = a0 +
(b1x+ b2x) x

(b0x+ b1x+ b2x)
2 = a0 +

(b1 + b2)

(b0 + b1 + b2)
2 ,

fv(x, x, x) = a1 −
(b1)

(b0 + b1 + b2)
2 ,

fw(x, x, x) = a2 +
(b0 + b1)

(b0 + b1 + b2)
2

The linearized equation of Eq.(1) about x is
(3)

yn+1−
(
a0 +

(b1 + b2)

(b0 + b1 + b2)
2

)
yn−

(
a1 −

(b1)

(b0 + b1 + b2)
2

)
yn−1+

(
a2 +

(b0 + b1)

(b0 + b1 + b2)
2

)
yn−2 = 0.

Theorem 1. If the following condition satisfies

(a0 + a1 + a2 − 1) (b0 + b1 + b2) + 1 < 0

Then the equilibrium point of Eq.(1) is locally asymptotically stable.
Proof: It is follows by Theorem A that, Eq.(3) is asymptotically stable if∣∣∣∣a0 + (b1 + b2)

(b0 + b1 + b2)
2

∣∣∣∣+ ∣∣∣∣a1 − (b1)

(b0 + b1 + b2)
2

∣∣∣∣+ ∣∣∣∣a2 + (b0 + b1)

(b0 + b1 + b2)
2

∣∣∣∣ < 1,



a0 +
(b1 + b2)

(b0 + b1 + b2)
2 + a1 −

(b1)

(b0 + b1 + b2)
2 + a2 +

(b0 + b1)

(b0 + b1 + b2)
2 < 1,

a0 + a1 + a2 +
(b1 + b2)− (b1) + (b0 + b1)

(b0 + b1 + b2)
2 < 1,

a0 + a1 + a2 +
(b0 + b1 + b2)

(b0 + b1 + b2)
2 < 1,

(a0 + a1 + a2) +
1

(b0 + b1 + b2)
< 1,

(a0 + a1 + a2 − 1) (b0 + b1 + b2) + 1 < 0,

The proof is complete.

3. Boundedness of Solutions of Eq.(1)

In this section, we study the boundedness of solutions of Eq.(1).
Theorem2. Every solution of Eq.(1) is bounded from above if a0+ 1

b2
< 1 & a1 < 1 and a2 < 1.

Proof: Let {Jn}∞n=−3 be a solution of Eq.(1). It follows from Eq.(1) that

Jn+1 = a0Jn + a1Jn−1 + a2Jn−2 +
Jn Jn−2

b0Jn + b1Jn−1 + b2Jn−2

< a0Jn + a1Jn−1 + a2Jn−2 +
Jn
b2

=

(
a0 +

1

b2

)
Jn + a1Jn−1 + a2Jn−2

< Jn + Jn−1 + Jn−2

Then

Jn+1 ≤ Jn + Jn−1 + Jn−2 for all n ≥ 0.

So every solution of Eq.(1) is bounded from above by M = J0 + J−1 + J−2.

4. Application

In this section we will study the solution of Eq(1) when a0 = a1 = a2 = b1 = 0 and
b0 = b2 = 1.

In this case, we have the following difference equation.

(4) Jn+1 =
Jn Jn−2
Jn + Jn−2

The following theorem gives the solution of Eq(4).
Theorem3 Let {Jn}∞n=−1 be a solution of Eq.(4). Then equation (4) has the solutions

(5) Jn =
J0 J−1J−2

(Fn−1)J0J−2 + (Fn)J0J−1 + (Fn+1)J−1J−2

where Fn = Fn−1 + Fn−3 , n ≥ 3 , F0 = 0, F1 = 1, F2 = 1 and the initial conditions
J−2, J−1and J0 are arbitrary positive real numbers.



Proof.
For n = 1,

J1 =
J0 J−2
J0 + J−2

=
J0 J−1J−2

J0J−1 + J−1J−2
=

J0 J−1J−2
(F0)J0J−2 + (F1)J0J−1 + (F2)J−1J−2

hence the result holds.
Now suppose that the relation (5) holds for n = k. That is;

Jk =
J0 J−1J−2

(Fk−1)J0J−2 + (Fk)J0J−1 + (Fk+1)J−1J−2
We are going to show that the relation (5) holds for n = k + 1

Jk+1 =
Jk Jk−2
Jk + Jk−2

=
( J0 J−1J−2

(Fk−1)J0J−2+(Fk)J0J−1+(Fk+1)J−1J−2
)( J0 J−1J−2

(Fk−3)J0J−2+(Fk−2)J0J−1+(Fk−1)J−1J−2
)

( J0 J−1J−2

(Fk−1)J0J−2+(Fk)J0J−1+(Fk+1)J−1J−2
) + ( J0 J−1J−2

(Fk−3)J0J−2+(Fk−2)J0J−1+(Fk−1)J−1J−2
)

=
(J0 J−1J−2)

((Fk−3)J0J−2 + (Fk−2)J0J−1 + (Fk−1)J−1J−2) + ((Fk−1)J0J−2 + (Fk)J0J−1 + (Fk+1)J−1J−2)

=
(J0 J−1J−2)

Fk−3J0J−2 + Fk−2J0J−1 + Fk−1J−1J−2 + Fk−1J0J−2 + FkJ0J−1 + Fk+1J−1J−2

=
(J0 J−1J−2)

(Fk−3 + Fk−1)J0J−2 + (Fk−2 + Fk)J0J−1 + (Fk−1 + Fk+1)J−1J−2

=
J0 J−1J−2

(Fk)J0J−2 + (Fk+1)J0J−1 + (Fk+2)J−1J−2
.
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