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ON THE SOLUTIONS AND THE PERIODICITY OF SOME RATIONAL
DIFFERENCE EQUATIONS SYSTEMS

E. M. ELASYED1,2 AND M. T. ALHARTHI1,3,∗

Abstract. In this paper, we get the form of the solutions of the following difference equation
systems of order three

zn+1 =
wnwn−2

zn−1(1 + wnwn−2)
, wn+1 =

znzn−2

wn−1(±1± znzn−2)
,

where the initial conditions z−2, z−1, z0, w−2, w−1, w0 are arbitrary non-zero real numbers.

1. Introduction

Many academics’ attention has recently been attracted to rational difference equations for
a variety of reasons. On the one hand, they give examples of nonlinear equations that can
sometimes be solved, but their dynamics have certain new characteristics in comparison to the
linear case. On the other hand, some biological models typically use rational equations. As
a result, their study is interesting because of the applicability. Ricatti difference equations
are a good illustration of both of these facts because of how rich their dynamics are (see [6]).
Obviously, higher-order rational difference equations and systems of rational equations have
also received a lot of attention, but there are still a lot of aspects to be investigated. There are
many papers related to the difference equations systems for example in [5] Clark and Kulenovic
investigated the global asymptotic stability

zn+1 =
zn

a+ cwn

, wn+1 =
wn

b+ dzn
.

Elsayed [14] has found the solutions of the following systems of the difference equations

zn+1 =
zn−1

±1± zn−1wn

, wn+1 =
wn−1

±1± wn−1zn
.

In [44] Yalcinkaya looked into the necessary condition for the global asymptotic stability of the
following system of difference equations

zn+1 =
zn + wn−1

znwn−1 − 1
, wn+1 =

wn + zn−1
wnzn−1 − 1

.
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Kurbanli et al. [35] investigated the solutions the following dynamical system of recursive equa-
tions

zn+1 =
zn−1

wnzn−1 − 1
, wn+1 =

wn−1

znwn−1 − 1
, un+1 =

zn
wnun−1

.

Touafek and Elsayed [40] examined the periodic nature and found the form of the solutions
of the following systems of rational difference equations

zn+1 =
zn−3

±1± zn−3wn−1
, wn+1 =

wn−3

±1± wn−3zn−1
.

Ozban [39] has researched the system of rational difference equations’ positive solution

zn+1 =
a

wn−3
, wn+1 =

wn−3

zn−qwn−q
.

El-Dessoky et al. [12] examined the periodicity and got the form of the solutions of the
following systems

zn+1 =
znwn−3

wn−2(±1± znwn−3)
, wn+1 =

wnzn−3
zn−2(±1± wnzn−3)

.

For more studies for nonlinear difference equations and systems of rational difference equa-
tions see [1]- [48].

In this paper, we examine the periodicity and the form of some order three nonlinear difference
equation systems’ solutions

zn+1 =
wnwn−2

zn−1(1 + wnwn−2)
, wn+1 =

znzn−2
wn−1(±1± znzn−2)

,

where the initial conditions z−2, z−1, z0, w−2, w−1, w0 are arbitrary non-zero real numbers.

2. On the system zn+1 =
wnwn−2

zn−1(1+wnwn−2)
, wn+1 =

znzn−2

wn−1(1+znzn−2)

In this section, we study the solution of two difference equations system

(1) zn+1 =
wnwn−2

zn−1(1 + wnwn−2)
, wn+1 =

znzn−2
wn−1(1 + znzn−2)

,

where the initial conditions z−2, z−1, z0, w−2, w−1, w0 are arbitrary non-zero real numbers.

Theorem 1. Assume that the solutions to system (1) are {zn, wn}∞n=−2. Then, for n = 0, 1, 2, ...,

we observe that the following formulas provide all of the solutions to the system (1):

z4n−2 =

c
n−1∏
i=0

(1 + (4i)ac)

n−1∏
i=0

(1 + (4i+ 2)ac)

, z4n−1 =

b
n−1∏
i=0

(1 + (4i+ 1)fd)

n−1∏
i=0

(1 + (4i+ 3)fd)

,

z4n =

a
n−1∏
i=0

(1 + (4i+ 2)ac)

n−1∏
i=0

(1 + (4i+ 4)ac)

, z4n+1 =

fd
n−1∏
i=0

(1 + (4i+ 3)fd)

b (1 + fd)
n−1∏
i=0

(1 + (4i+ 5)fd)

,

w4n−2 =

d
n−1∏
i=0

(1 + (4i)fd)

n−1∏
i=0

(1 + (4i+ 2)fd)

, z4n−1 =

e
n−1∏
i=0

(1 + (4i+ 1)ac)

n−1∏
i=0

(1 + (4i+ 3)ac)

,
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w4n =

f
n−1∏
i=0

(1 + (4i+ 2)fd)

n−1∏
i=0

(1 + (4i+ 4)fd)

, w4n+1 =

ac
n−1∏
i=0

(1 + (4i+ 3)ac)

e (1 + ac)
n−1∏
i=0

(1 + (4i+ 5)ac)

,

where z−2 = c, z−1 = b, z0 = a, w−2 = d, w−1 = e, w0 = f.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for
n – 1, that is

z4n−6 =

c
n−2∏
i=0

(1 + (4i)ac)

n−2∏
i=0

(1 + (4i+ 2)ac)

, z4n−5 =

b
n−2∏
i=0

(1 + (4i+ 1)fd)

n−2∏
i=0

(1 + (4i+ 3)fd)

,

z4n−4 =

a
n−2∏
i=0

(1 + (4i+ 2)ac)

n−2∏
i=0

(1 + (4i+ 4)ac)

, z4n−3 =

fd
n−2∏
i=0

(1 + (4i+ 3)fd)

b (1 + fd)
n−2∏
i=0

(1 + (4i+ 5)fd)

,

w4n−6 =

d
n−2∏
i=0

(1 + (4i)fd)

n−2∏
i=0

(1 + (4i+ 2)fd)

, z4n−5 =

e
n−2∏
i=0

(1 + (4i+ 1)ac)

n−2∏
i=0

(1 + (4i+ 3)ac)

,

w4n−4 =

f
n−2∏
i=0

(1 + (4i+ 2)fd)

n−2∏
i=0

(1 + (4i+ 4)fd)

, w4n−3 =

ac
n−2∏
i=0

(1 + (4i+ 3)ac)

e (1 + ac)
n−2∏
i=0

(1 + (4i+ 5)ac)

,

From system (1) we have

z4n−2 =
w4n−3w4n−5

z4n−4(1 + w4n−3w4n−5)

=
1

z4n−4(
1

w4n−3w4n−5
+ 1)

.

w4n−3w4n−5 =
ac

e(1 + ac)
×

n−2∏
i=0

(1 + (4i+ 3)ac)

(1 + (4i+ 5)ac)
× e

n−2∏
i=0

(1 + (4i+ 1)ac)

(1 + (4i+ 3)ac)

=
ac

(1 + ac)

n−2∏
i=0

(1 + (4i+ 1)ac)

(1 + (4i+ 5)ac)

=
ac

(1 + ac)
× (1 + ac)(1 + 5ac)...(1 + (4n− 7)ac)

(1 + 5ac)...(1 + (4n− 7)ac)(1 + (4n− 3)ac)

=
ac

(1 + (4n− 3)ac)
.

z4n−2 =
1

a
n−2∏
i=0

(1+(4i+2)ac)
(1+(4i+4)ac)

( (1+(4n−3)ac)
ac

+ 1)

https://doi.org/10.28919/ejma.2023.3.4
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=

c
n−2∏
i=0

(1 + (4i+ 4)ac)

n−2∏
i=0

(1 + (4i+ 2)ac)(1 + (4n− 2)ac)

=

c
n−1∏
i=0

(1 + (4i)ac)

n−1∏
i=0

(1 + (4i+ 2)ac)

.

w4n−2 =
z4n−3z4n−5

w4n−4(1 + z4n−3z4n−5)

=
1

w4n−4(
1

z4n−3z4n−5
+ 1)

.

z4n−3z4n−5 =
fd

b(1 + fd)
×

n−2∏
i=0

(1 + (4i+ 3)fd)

(1 + (4i+ 5)fd)
× b

n−2∏
i=0

(1 + (4i+ 1)fd)

(1 + (4i+ 3)fd)

=
fd

(1 + fd)

n−2∏
i=0

(1 + (4i+ 1)fd)

(1 + (4i+ 5)fd)

=
fd

(1 + fd)
× (1 + fd)(1 + 5fd)...(1 + (4n− 7)fd)

(1 + 5fd)...(1 + (4n− 7)fd)(1 + (4n− 3)fd)

=
fd

(1 + (4n− 3)fd)
.

w4n−2 =
1

f
n−2∏
i=0

(1+(4i+2)fd)
(1+(4i+4)fd)

( (1+(4n−3)fd)
fd

+ 1)

=

d
n−2∏
i=0

(1 + (4i+ 4)fd)

n−2∏
i=0

(1 + (4i+ 2)fd)(1 + (4n− 2)fd)

=

d
n−1∏
i=0

(1 + (4i)fd)

n−1∏
i=0

(1 + (4i+ 2)fd)

.

So, we can prove the other relations and the proof is completed. �

3. On the system zn+1 =
wnwn−2

zn−1(1+wnwn−2)
, wn+1 =

znzn−2

wn−1(1−znzn−2)

Here, we get the solutions of the following system of the difference equations

(2) zn+1 =
wnwn−2

zn−1(1 + wnwn−2)
, wn+1 =

znzn−2
wn−1(1− znzn−2)

,

where the initial conditions z−2, z−1, z0, w−2, w−1, w0 are arbitrary non-zero real numbers.

https://doi.org/10.28919/ejma.2023.3.4
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Theorem 2. System (2) has a periodic solution of period four. Moreover {zn, wn}∞n=−2 takes
the form

zn = {c, b, a, fd

b(1 + fd)
, c, b, ...},

wn = {d, e, f, ac

e(1− ac)
, d, e, ...},

or z4n−2 = c, z4n−1 = b, z4n = a, z4n+1 =
fd

b(1+fd)
and w4n−2 = d, w4n−1 = e, w4n = f, w4n+1 =

ac
e(1−ac) , where z−2 = c, z−1 = b, z0 = a, w−2 = d, w−1 = e, w0 = f.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for
n – 1, that is

z4n−6 = c, z4n−5 = b, z4n−4 = a, z4n−3 =
fd

b(1 + fd)
,

w4n−6 = d, w4n−5 = e, w4n−4 = f, w4n−3 =
ac

e(1− ac)
.

Now, it follows from system (2) that

z4n−2 =
w4n−3w4n−5

z4n−4(1 + w4n−3w4n−5)

=

ac
e(1−ac) .e

a(1 + ac
(1−ac))

=
c

1−ac
1

1−ac
= c,

z4n−1 =
w4n−2w4n−4

z4n−3(1 + w4n−2w4n−4)

=
df

fd
b(1+fd)

(1 + fd)
= b,

also

w4n−2 =
z4n−3z4n−5

w4n−4(1 + z4n−3z4n−5)

=

fd
b(1+fd)

.b

f(1− fd
1+fd

)

=

d
1+fd

1
1+fd

= d,

w4n−1 =
z4n−2z4n−4

w4n−3(1 + z4n−2z4n−4)

=
ac

ac
e(1−ac)(1− ac)

= e.

The other relations can be proved by similar way. The proof is completed. �
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4. On the system zn+1 =
wnwn−2

zn−1(1+wnwn−2)
, wn+1 =

znzn−2

wn−1(−1+znzn−2)

In this section, we deal with the solutions of the system of the difference equations

(3) zn+1 =
wnwn−2

zn−1(1 + wnwn−2)
, wn+1 =

znzn−2
wn−1(−1 + znzn−2)

,

where the initial conditions z−2, z−1, z0, w−2, w−1, w0 are arbitrary non-zero real numbers.

Theorem 3. Suppose that {zn, wn}∞n=−2 are solutions of system (3). Then for n = 0, 1, 2, ...,

z4n−2 =
c

(−1 + 2ac)n
, z4n−1 =

b(1 + fd)n

(−1 + fd)n
,

z4n = a(−1 + 2ac)n, z4n+1 =
fd(−1 + fd)n

b(1 + fd)n+1
,

w4n−2 = (−1)nd , w4n−1 = (−1)ne, w4n = (−1)nf, w4n+1 =
(−1)nac

e(−1 + ac)
,

where z−2 = c, z−1 = b, z0 = a, w−2 = d, w−1 = e, w0 = f with w0w−2 6= ±1 and z0z−2 6= 1,

0.5.

Proof. By using mathematical induction. The result holds for n = 0. Suppose that the result
holds for n− 1

z4n−6 =
c

(−1 + 2ac)n−1
, z4n−5 =

b(1 + fd)n−1

(−1 + fd)n−1
,

z4n−4 = a(−1 + 2ac)n−1, z4n−3 =
fd(−1 + fd)n−1

b(1 + fd)n
,

w4n−6 = (−1)n−1d , w4n−5 = (−1)n−1e, w4n−4 = (−1)n−1f, w4n−3 =
(−1)n−1ac
e(−1 + ac)

.

From system (3) we have

z4n−2 =
w4n−3w4n−5

z4n−4(1 + w4n−3w4n−5)

=

(−1)n−1ac
e(−1+ac)

× (−1)n−1e

a(−1 + 2ac)n−1(1 + (−1)2n−2ac
−1+ac

)

=

(−1)2n−2c
−1+ac

(−1 + 2ac)n−1 (−1+2ac)
−1+ac

=
c

(−1 + 2ac)n.

z4n−1 =
w4n−2w4n−4

z4n−3(1 + w4n−2w4n−4)

=
(−1)nd (−1)n−1f

fd(−1+fd)n−1

b(1+fd)n
(1 + (−1)2n−1fd)

=
(−1)2n−1fd b (1 + fd)n

fd(−1 + fd)n−1(1− fd)

=
b(1 + fd)n

(−1 + fd)n
.

https://doi.org/10.28919/ejma.2023.3.4
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Also

w4n−2 =
z4n−3z4n−5

w4n−4(1 + z4n−3z4n−5)

=

fd(−1+fd)n−1

b(1+fd)n
× b(1+fd)n−1

(−1+fd)n−1

(−1)n−1f (−1 + fd
1+fd

)

=

d
1+fd

(−1)n−1( −1
1+fd

)

= (−1)nd.

w4n−1 =
z4n−2z4n−4

w4n−3(1 + z4n−2z4n−4)

=

e
(−1+2ac)n

× a(−1 + 2ac)n−1

(−1)n−1ac
e(−1+ac)

(−1 + ac
−1+2ac

)

=
ac

−1+2ac

(−1)n−1ac
e(−1+ac)

(1− ac)

=
e (−1 + ac)

(−1)n(−1 + ac)

= (−1)ne.

Similarly we can prove other relations and the proof is completed. �

5. On the system zn+1 =
wnwn−2

zn−1(1+wnwn−2)
, wn+1 =

znzn−2

wn−1(−1−znzn−2)

We study in this section the solutions of the system of two difference equations

(4) zn+1 =
wnwn−2

zn−1(1 + wnwn−2)
, wn+1 =

znzn−2
wn−1(−1− znzn−2)

,

where the initial conditions z−2, z−1, z0, w−2, w−1, w0 are arbitrary non-zero real numbers.

Theorem 4. Assume that {zn, wn}∞n=−2 is a solution to system (4) and let z−2 = c, z−1 = b,

z0 = a, w−2 = d, w−1 = e, w0 = f with w0w−2 6= −1,−0.5 and z0z−2 6= ±1. Then, for n = 0,
1, ..., we have

z4n−2 = (−1)nc, z4n−1 = (−1)nb, z4n = (−1)na, z4n+1 =
(−1)nfd
b(1 + fd)

,

w4n−2 =
(−1)nd

(1 + 2fd)n
, w4n−1 =

e (1 + ac)n

(−1 + ac)n
,

w4n = (−1)n f (1 + 2fd)n, w4n+1 =
−ac (−1 + ac)n

e(1 + ac)n+1
.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for
n− 1. That is,

z4n−6 = (−1)n−1c, z4n−5 = (−1)n−1b, z4n−4 = (−1)n−1a, z4n−3 =
(−1)n−1fd
b(1 + fd)

,

https://doi.org/10.28919/ejma.2023.3.4
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w4n−6 =
(−1)n−1d

(1 + 2fd)n−1
, w4n−5 =

e (1 + ac)n−1

(−1 + ac)n−1
,

w4n−4 = (−1)n−1 f (1 + 2fd)n−1, w4n−3 =
−ac (−1 + ac)n−1

e (1 + ac)n
.

From system (4) we can prove as follow

z4n−2 =
w4n−3w4n−5

z4n−4(1 + w4n−3w4n−5)

=

−ac (−1+ac)n−1

e(1+ac)n
× e (1+ac)n−1

(−1+ac)n−1

(−1)n−1a (1− ac
1+ac

)

=
−c

(−1)n−1
= (−1)nc.

z4n−1 =
w4n−2w4n−4

z4n−3(1 + w4n−2w4n−4)

=

(−1)nd
(1+2fd)n

× (−1)n−1 f (1 + 2fd)n−1

(−1)n−1fd
b(1+fd)

(1 + (−1)2n−1fd
1+2fd

)

=

(−1)nb(1+fd)
1+2fd

1− fd
1+2fd

= (−1)nb.

w4n−2 =
z4n−3z4n−5

w4n−4(1 + z4n−3z4n−5)

=

(−1)n−1fd
b(1+fd)

× (−1)n−1b

(−1)n−1 f (1 + 2fd)n−1(−1− (1)2n−2fd
1+fd

)

=

(−1)n−1d
1+fd

(1 + 2fd)n−1(−1− fd
1+fd

)

=

(−1)n−1d
1+fd

(1 + 2fd)n−1(−1−2fd
1+fd

)

=
(−1)nd

(1 + 2fd)n
.

w4n−1 =
z4n−2z4n−4

w4n−3(1 + z4n−2z4n−4)

=
(−1)nc (−1)n−1a

−ac (-1+ac)n−1

e(1+ac)n
(−1− (−1)2n−1ac)

=
−e(1 + ac)n

−(−1 + ac)n−1(−1 + ac)

=
e(1 + ac)n

(−1 + ac)n
.

Similarly we can prove other relations and the proof is completed. �

Remark 1. System (4) has a periodic solution of period eight.

https://doi.org/10.28919/ejma.2023.3.4
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6. Numerical Examples

In order to illustrate the results of the previous sections and to support our theoretical
discussions, we consider several interesting numerical examples in this section.

Example 1. We take the initial conditions, for the system (1), as follows z−2 = −1 ,z−1 = 10,

z0 = 5, w−2 = 20, w−1 = 11 and w0 = −2.See Fig. 1.

0 5 10 15 20 25 30 35 40

n

-5

0

5

10

15

20

z
(n

),
w

(n
)

Z(n+1)=W(n)W(n-2)/Z(n-1)(1+W(n)W(n-2)),W(n+1)=Z(n)Z(n-2)/W(n-1)(1+Z(n)Z(n-2))

Fig. 1.

Example 2. We Put the following initial conditions z−2 = −1.5 ,z−1 = 13, z0 = 3, w−2 = −26,
w−1 = 9 and w0 = 2.3 on system (1). See Fig. 2.

0 5 10 15 20 25 30 35 40

n

-30

-25

-20

-15

-10

-5

0

5

10

15

z
(n

),
w

(n
)

Z(n+1)=W(n)W(n-2)/Z(n-1)(1+W(n)W(n-2)),W(n+1)=Z(n)Z(n-2)/W(n-1)(1+Z(n)Z(n-2))

Fig. 2.

https://doi.org/10.28919/ejma.2023.3.4


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2023.3.4 10

Example 3. See Fig. 3, we put the initial condition z−2 = −8 ,z−1 = 3.5, z0 = 4, w−2 = −25,
w−1 = 10 and w0 = 1.75 on the difference system(2).

0 5 10 15 20 25 30 35 40

n

-25

-20

-15

-10

-5

0

5

10

z
(n

),
w

(n
)

Z(n+1)=W(n)W(n-2)/Z(n-1)(1+W(n)W(n-2),W(n+1)=Z(n)Z(n-2)/W(n-1)(1-Z(n)Z(n-2))

Fig. 3.

Example 4. Fig. 4 shows the behavior of the solution of the difference system (2) with the
initial conditions z−2 = 7 ,z−1 = 22, z0 = 13, w−2 = 26, w−1 = 12 and w0 = 5.
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Fig. 4.

Example 5. We consider numerical example for the difference system (3) with the initial
conditions z−2 = 1.22 ,z−1 = 0.22, z0 = 0.1, w−2 = 0.03, w−1 = 0.1 and w0 = 1.3. See Fig. 5.

Example 6. We take the initial conditions, for the system (4), as follows z−2 = 1.22 ,z−1 =

2.22, z0 = 0.01, w−2 = 1.03, w−1 = 4.01 and w0 = 0.03.See Fig. 6.
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