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MATHEMATICAL ANALYSIS OF A DETERMINISTIC AND A
STOCHASTIC EPIDEMIC MODELS OF DENGUE

F. VICTORIEN KONANÉ∗ AND R. SAWADOGO

Abstract. In this paper, a comparative study of a deterministic model with its associated
stochastic model was carried out. The thresholds of the model considered, denoted R0, RH

0 and
Rm

0 , which can determine the extinction and persistence in mean of dengue, were calculated.
Specifically, if R0 < 1, the deterministic model analysis shows that dengue disappears, while if
R0 < 1 and RH

0 > 1 or Rm
0 > 1, the disease persists in the population.

1. Introduction

Dengue fever, formerly known as « tropical flu », « red fever » or « small malaria » is a vi-
ral infection, endemic in tropical countries. Dengue is an arbovirosis, transmitted to humans
through the bite of a diurnal mosquito of the genus Aedes, itself infected by a virus of the
flavivirus family. This viral infection typically causes fever, headache, muscle and joint pain,
fatigue, nausea, vomiting and a skin rash. According to the WHO, there are more than one
hundred and ninety million cases of dengue fever per year, of which ninety-six million have
clinical manifestations [2]. An estimated 3.9 billion people in 108 countries are at risk of infec-
tion [1, 3] with this in mind, we aim to study the dynamics of dengue transmission through a
stochastic model obtained by adding two white noises to the contact rates of the deterministic
model relatively related to that of Lourdes Esteva al, Cristobal Vargas [8]. Some authors have
taken an interest in this topic. We can mention Lourdes Esteva al, Cristobal Vargas in 1997
who studied a deterministic model. Recently in 2021 the authors Anwarud Din , Tahir Khan,
Yongjin Li , Hassan Tahir, Asaf Khan, Wajahat Ali Khan constructed a stochastic model by
adding white noise to the mortality rates of the deterministic model. They established the
existence and uniqueness of positive solution, studied the extinction and stationary ergodic
distribution of the model under certain conditions and performed numerical simulations on the
proposed model [6]. In this work, the main contributions we make are at three levels. First
we propose the deterministic version of the model, we show the stability of the disease-free
equilibrium point using a Lyapunov function [9] and other techniques of analysis [4]. Secondly
we propose a stochastic model by adding two white noises to the contact rates of the deter-
ministic model, we then show the existence and uniqueness of the positive solution, followed by
the study of extinction by establishing the almost sure exponential stability of the disease-free
equilibrium equilibrium point and then the persistence in the mean of the stochastic system
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under some assumptions. Finally, we perform numerical simulations to evaluate our results and
then compare the two models.

2. Deterministic model

2.1. Model formulation and preliminary results. In this section we propose a determin-
istic model of dengue transmission. According to the epidemiological status of dengue, we
distinguish two hosts: the definitive hosts, which are humans, and the intermediate hosts,
which are mosquitoes. The interaction between an infectious final host and an intermediate
host activates the disease transmission process. Consider NH et Nm and population size of hu-
mans and mosquitoes respectively. We divide the human population into three compartments:
SH , IH , and RH which are the total number of susceptible, infectious and recovered humans
respectively. Let a be the mosquito bite rate (the average number of bites) per mosquito per
day and let b be the probability that a mosquito will choose a person’s blood as a meal. So it is
estimated that humans take abNm

NH

bites per unit time and mosquitoes take ab meals of human
blood per unit time. Thus the actual contact rate leading to infection of a susceptible human
by mosquitoes is λH = abpm

Nm

NH

and the actual contact rate that causes mosquito infection is
λm = abpH where, pH et pm are respectively the probability of transmission of dengue from a
mosquito to a susceptible human and the probability of transmission of dengue from a human
to a mosquito. Thus the infection rates per susceptible human and susceptible mosquito are:

λH
Im
Nm

and λm
IH
NH

respectively. We thus obtain the following system of ordinary differential
equations which describes the above model:

dSH(t)
dt

= µHNH − λHSH(t)Im(t)
Nm

− µHSH(t),
dIH(t)
dt

= λHSH(t)Im(t)
Nm

− (µH + γH + αH)IH(t),
dRH(t)
dt

= γHIH(t)− µHRH(t),
dSm(t)
dt

= µmNm − λmSm(t)IH(t)
NH

− µmSm(t),
dIm(t)
dt

= λmSm(t)IH(t)
NH

− µmIm(t),

(1)

In this system:
λH : is the actual contact rate between susceptible humans and mosquitoes.
νH : is the recruitment rate of humans.
γH : the recovery rate of humans from dengue.
αH : represents the death rate of humans induced by dengue.
µH : is the natural mortality rate of humans.
λm: is the actual contact rate between susceptible mosquitoes and humans.
µm: is the natural mortality rate of mosquitoes.
where, the initial conditions

(
SH(0), SH(0), IH(0);RH(0);Sm(0), Im(0)

)
∈ R5

+ .

We make the following assumptions:
(H1): the human population and the mosquito population are constant.
(H2): the recovery rate in humans is higher than the specific dengue mortality rate and the
human birth rate (γH > αH , νH > αH et νH = µH ).
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Considering the system (1) on the sides of R5
+, we get:

dSH(t)
dt

|SH=0 = µHNH ≥ 0,
dIH(t)
dt
|IH=0 = λHSH(t)Im(t)

Nm

≥ 0,
dRH(t)
dt

|RH=0 = γHIH(t) ≥ 0,
dSm(t)
dt

|Sm=0 = µmNm ≥ 0,
dIm(t)
dt
|Im=0 = λmSm(t)IH(t)

NH

≥ 0.

(2)

Therefore, Proposition 2.1 of [10] implies that every solution of system (1) remains in R5
+. Let us

now introduce the proportions SH(t) = SH(t)
NH

, IH(t) = IH(t)
NH

, RH(t) = RH(t)
NH

, Sm(t) = Sm(t)
Nm

and Im(t) = Im(t)
Nm

and also, taking into account the equalities SH(t) + IH(t) +RH(t) = 1 and
Sm(t) + Im(t) = 1, we obtain RH(t) = 1 − SH(t) − IH(t) and Sm(t) = 1 − Im(t). Thus the
system (1) reduces to

dSH(t)
dt

= µH (1− SH(t))− λHSH(t)Im(t),
dIH(t)
dt

= λHSH(t)Im(t)−MHIH(t),
dIm(t)
dt

= λm (1− Im(t)) IH(t)− µmIm(t),

(3)

where, MH = µH + γH + αH . So, the system (3) describes the model.

Proposition 2.1. Any solution (SH(t), IH(t), Im(t)) for all t ≥ 0 of the system (3) with initial
condition (SH(0), IH(0), Im(0)) is positive.

Proof. For the proof of this proposition, we are inspired by the proof of Lemma 3.2 see [14].
Let x(t) = (SH(t), IH(t), Im(t)) be a solution of the system (3) with initial values
x(0) = (SH(0), IH(0), Im(0)) in R3

+. Thanks to the continuous dependence of the solution on
the initial conditions, we will simply show that if SH(0) > 0, IH(0) > 0 et Im(0) > 0, then
SH(t) > 0, IH(t) > 0 and Im(t) > 0 for all t > 0.
Let m(t) = min

t≥0
{SH(t), IH(t), Im(t)}. Let SH(0), IH(0), Im(0) > 0. Then m(0) > 0. Suppose

there exists a t1 > 0 such that m(t1) ≤ 0 and m(t) > 0 for all t ∈ [0, t1).
Using the first equation of the system 3 we arrive at:

dSH(t)
dt

= µH − (µH + λHIm)SH .

If m(t1) = SH(t1), since Im(t) > 0 for all t ∈ [0, t1), it follows that:

S ′H(t) ≥ −(µH + λHIm(t))SH(t),∀t ∈ [0, t1) .(4)

By multiplying each member of the inequality (4) by exp(
∫ t

0
(µH + λHIm(s))ds and after a few

arrangements, we get

S′H(t) exp(
∫ t

0
(µH + λHIm(s))ds) + (µH + λHIm(t))SH(t) exp(

∫ t

0
(µH + λHIm(s))ds) ≥ 0, ∀t ∈ [0, t1)
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and therefore [
SH(t) exp(

∫ t

0
(µH + λHIm(s))ds)

]′
≥ 0.

By integrating on [0, t1) we get∫ t1

0

[
SH(t) exp(

∫ t

0
(µH + λHIm(s))ds

]′
dt ≥ 0.

After calculation we find

SH(t1) exp(
∫ t1

0
(µH + λHIm(t))dt)− SH(0) ≥ 0.

Thus,

SH(t1) ≥ SH(0) exp(−
∫ t1

0
(µH + λHIm(t))dt) > 0.

That is to say

0 ≥ SH(t1) ≥ SH(0) exp(−
∫ t1

0
(µH + λHIm(t))dt) > 0.

This is absurd, therefore m(t1) 6= SH(t1). Finally SH(t) > 0 for all t > 0. Similar contradictions
can be inferred in the following cases m(t1) = IH(t1) et m(t1) = Im(t1). So we conclude that
∀t > 0, SH(t), IH(t), Im > 0. �

Proposition 2.2. The set Ω =
{

(SH , IH , Im) ∈ R3
+ : 0 ≤ SH + IH ≤ 1, 0 ≤ Im ≤ 1

}
is posi-

tively invariant for the system (3).

Proof. Since SH(t) + IH(t) +RH(t) = 1 et Sm(t) + Im(t) = 1 pour tout t ≥ 0, then it is easy
to deduce that:

lim sup
t→∞

(SH(t) + IH(t)) ≤ 1,(5)

lim sup
t→∞

(Im(t)) ≤ 1.(6)

From the relations (5) and (6) any solution of system (3) is bounded. Moreover according to the
proposition 2.1, any solution of system (3) is positive. Therefore Ω is positively invariant. �

2.2. Stability analysis of the disease-free equilibrium point. The free equilibrium point
of system (3) is given by E0 = (1, 0, 0). The new infection matrix F and the transmission matrix
V are given by:

F =
 0 λH

λm 0

 et V =
 MH 0

0 µm

 .

The number of basic reproductions R0 is defined as the spectral radius of the "next generation"

matrix FV −1 see [7] that is R0 = ρ(FV −1) =
√
λHλm
MHµm

.

Proposition 2.3. We consider the system (3). The disease-free equilibrium point E0 = (1, 0, 0)
is locally asymptotically stable if and only if R0 < 1.

https://doi.org/10.28919/ejma.2023.3.3
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Proof. The linearized system associated with system (3) at the equilibrium point E0 =
(1, 0, 0) is
x′(t) = Df (E0)x(t) where,

Df (E0) =


−µH 0 −λH

0 −MH λH

0 λm −µm


is the Jacobian matrix associated with the system 3 in E0. The second additive component of
the matrix Df (E0) (see [20] and [21]) is given by

D
[2]
f (E0) =


−µH −MH λH λH

λm −µH − µm 0
0 0 −MH − µm

 .

Since R0 < 1, then

trace(Df (E0)) = −(µH +MH + µm) < 0,

det(Df (E0)) = −µHµmMH

(
1−R0

2
)
,

det(D[2]
f (E0)) = −(MH + µm)

[
µH(µH +MH + µm) + µmMH(1−R0

2)
]
< 0.

Given that trace(Df (E0)) < 0, det(Df (E0) < 0 and det(D[2]
f (E0)) < 0, the proposition of [7]

guarantees that E0 is locally asymptotically stable. �

Proposition 2.4. The disease-free equilibrium E0 of the system (3) is globally asymptotically
stable on Ω when R0 ≤ 1.

Proof. Consider the Lyapunov candidate function V defined by

V (SH(t), IH(t), Im(t)) = λH
µm

Im(t) + IH(t).

It is easy to see that

i. V (SH(t), IH(t), Im(t)) ≥ 0 for all (SH(t), IH(t), Im(t)) ∈ Ω,

V (SH(t), IH(t), Im(t)) = 0 if and only if Im(t) = IH(t) = 0 and SH(t) = 1 thus we have

ii. V (SH(t), IH(t), Im(t)) = 0 if and only if (SH(t), IH(t), Im(t)) = (1, 0, 0) = E0.

The orbital derivative of V along the solution of the system (3) is given by

∇V (SH(t), IH(t), Im(t)) =


0
1
λH
µm

 .
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Let

X(SH(t), IH(t), Im(t)) =


µH(1− SH(t))− λHSH(t)Im(t)
λHSH(t)Im(t)−MHIH(t)
λm(1− Im(t))− µmIm(t)

 .

So,
·
V (SH(t), IH(t), Im(t)) = 〈∇V (SH(t), IH(t), Im(t)), X(SH(t), IH(t), Im(t))〉

= λHSH(t)Im(t)− λHIm(t)−MHIH(t) + λHλm
µm

(1− Im(t))IH(t)

= λHIm(t)(SH(t)− 1)−MH

[
1− λHλm

MHµm
(1− Im(t))

]
IH(t)

= λHIm(t)(SH(t)− 1)−MH

[
1−R0

2(1− Im(t))
]
IH(t).

Since, (SH(t), Im(t)) ∈ [0, 1]2, then λHIm(t)(SH(t)− 1) ≤ 0
and −MH

[
1−R0

2(1− Im(t))
]
IH(t) ≤ 0.

Thus, iii.
·
V (SH(t), IH(t), Im(t)) ≤ 0, for all (SH(t), IH(t), Im(t)) ∈ Ω.

In addition for all (SH(t), IH(t), Im(t)) ∈ Ω \ {E0} , we get
·
V (SH(t), IH(t), Im(t)) < 0.

Therefore V is a Lyapunov function in the strict sense of E0 on Ω when R0 ≤ 1.
By Lyapunov’s asymptotic stability theorem [17] E0 is globally asymptotically stable on Ω when
R0 ≤ 1. �

Proposition 2.5. The disease-free equilibrium E0 of the system (3) is unstable when R0 > 1.

Proof. Here the tool used for the proof is Chetaev’s theorem. Consider the function V
defined by

V (x(t)) = Im(t) + 1 +R0
2

2 × µm
λH
× IH(t),

where, x(t) = (SH(t), IH(t), Im(t)). Let UE0 a neighbourhood of E0 in Ω. Then it is clear that
V (x(t)) ≥ 0 for all (SH(t), IH(t), Im(t)) element of UE0 . We have

V (x(t)) = 0 if and only if (SH(t), IH(t), Im(t)) = E0,

Hence V is positive on UE0 .
Then the orbital derivative of V is given by

·
V (x(t)) = 〈∇V (x(t)), X(SH(t), IH(t), Im(t))〉 where,

∇V (x(t)) =


0

1 +R0
2

2 × µm
λH

1

 and

X(SH(t), IH(t), Im(t)) =


µH(1− SH(t))− λHSH(t)Im(t)
λHSH(t)Im(t)−MHIH(t)
λm(1− Im(t))− µmIm(t)

 .

https://doi.org/10.28919/ejma.2023.3.3
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Thus,
·
V (x(t)) = 1 +R0

2

2 × µm
λH

[λHIm(t)SH(t)−MHIH(t)]− µmIm(t) + λm(1− Im(t))IH(t)

= −1 +R0
2

2 × µmMH

λmλH
× λmIH(t) + (1− Im(t))λmIH(t) + 1 +R0

2

2 × µmIm(t)SH(t)

−µmIm(t)

=
[
(1− Im(t))− 1 +R0

2

2 × µmMH

λHλm

]
λmIH(t) +

[
1 +R0

2

2 × SH(t)− 1
]
µmIm(t)

=
[
(1− Im(t))− 1 +R0

2

2 × 1
R0

2

]
λmIH(t) +

[
SH(t)− 2

1 +R0
2

]
× 1 +R0

2

2 µmIm(t)

=
[
(1− Im(t))− 1

2

(
1 + 1
R0

2

)]
λmIH(t) +

[
SH(t)− 2

1 +R0
2

]
× 1 +R0

2

2 µmIm(t).

Since R0 > 1, then we get

1
R0

2 < 1 which leads to 1 + 1
R0

2 < 2 and therefore 1
2

(
1 + 1
R0

2

)
< 1.

In addition

R0 > 1 means that R0
2 + 1 > 2 by going the other way around we get:

1
R0

2 + 1
<

1
2 and therefore 2

R0
2 + 1

< 1.

Given that SH , Im ∈ [0, 1], then we get the following framing:

− 2
R0

2 + 1
≤ SH −

2
R0

2 + 1
≤ 1− 2

R0
2 + 1

(7)

−1
2

(
1 + 1
R0

2

)
≤ 1− Im −

1
2

(
1 + 1
R0

2

)
≤ 1− 1

2

(
1 + 1
R0

2

)
.(8)

From the relations (7) and (8) we deduce that there is a neighbourhood UE0 of E0 such that
for (SH(t), IH(t), Im(t)) element of UE0 \ {E0} the expressions in square brackets are strictly
positive. As a result

·
V (x(t)) > 0 for all x(t) = (SH(t), IH(t), Im(t)) belonging to UE0 \ {E0}.

So, Chetaev’s instability theorem applies. Hence E0 is unstable when R0 > 1. �

Outside of the disease-free equilibrium point, the system 3 has an endemic equilibrium point.
By direct calculation, we show that the system 3 has an endemic equilibrium point given by

E1 =
(

a+ b

aR0
2 + b

,
R0

2 − 1
aR0

2 + b
,
b(R0

2 − 1)
(a+ b)R0

2

)
in
◦
Ω, where, a = MH

µH
and b = λm

µm
.

3. Stochastic model

In this section we propose a stochastic model of dengue by adding two white noises to the
contacts λH and λm. In the rest of this paper, we consider (Ω,F ,P) a complete probability
space with (Ft)t≥0 filtration that satisfying the usual conditions. We note
R5

+ = {(x1, x2, x3, x4, x5) ∈ R5 : x1 > 0, x2 > 0, x3 > 0, x4 > 0, x5 > 0} and

https://doi.org/10.28919/ejma.2023.3.3
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Γ0 =
{

(x1, x2, x3, x4, x5) ∈ R5
+ : x1 + x2 + x3 < 1, x4 + x5 < 1

}
. The following stochastic sys-

tem is considered:

dX(t) = f(t,X(t))dt+ g(t,X(t))dB(t),(9)

for t ≥ t0 withX(t0) = X0 ∈ Rn, B(t) denotes n dimensional standard Brownian motion defined
on the above probability space. Define the differential operator L associated to (9) by:

LV (t,X) = ∂V (t,X)
dt

+ fT
∂V (t,X)
dX

+ 1
2Tr

[
gT
∂2V (t,X)
dX2 g

]
où V (t,X) ∈ C1,2 (R× Rm) .(10)

The stochastic version of the deterministic system (1) is given by

dSH(t) = [µH − λHSH(t)Im(t)− µHSH(t)] dt− σ1SH(t)Im(t)dB1(t),
dIH(t) = [−(µH + γH + αH)IH(t) + λHSH(t)Im(t)] dt+ σ1SH(t)Im(t)dB1(t),
dRH(t) = − [µHRH(t)− γHIH(t)] dt,
dSm(t) = [µm − λmSm(t)IH(t)− µmSm(t)] dt− σ2Sm(t)IH(t)dB2(t),
dIm(t) = [λmSm(t)IH(t)− µmIm(t)] dt+ σ2Sm(t)IH(t)dB2(t),

(11)

where B1 and B2 are mutually independent Brownians and σ1 and σ2 are their respective
intensities.

3.1. Existence of a positive global solution.

Theorem 3.1. For all initial values x(0) = (SH(0), IH(0), RH(0), Sm(0), Im(0)) ∈ Γ0, there
is a unique solution x(t) = (SH(t), IH(t), RH(t), Sm(t), Im(t)) for the system (11) such that
P(x(t) ∈ Γ0) = 1 for all t ≥ 0.

Proof. Let’s call it NH(t) = SH(t) + IH(t) +RH(t) the sum of the respective propor-
tions of susceptible, infected and recovered humans at time t and Nm(t) = Sm(t) + Im(t)
that of the proportions of susceptible and infected mosquitoes at time t. For all x(s) =
(SH(s), IH(s), RH(s), Sm(s), Im(s)) belongs to R5

+ a.s we have

dNH(s) = µH − αHIH − µHNH(s)ds

≤ µH − µHNH(s)ds a.s.,(12)

dNm(s) = µm − µmNm(s)ds a.s.(13)

Using Gronwall’s lemma , we get:

NH(s) ≤ 1 + (NH(0)− 1) exp(−µHs) a.s.,

Nm(s) = 1 + (Nm(0)− 1) exp(−µms) a.s.

Since (SH(0), IH(0), RH(0), Sm(0), Im(0)) ∈ Γ0, then NH(s) < 1 a.s. and Nm(s) < 1 a.s. So,
x(s) ∈ (0, 1)5 for all s ∈ [0, t]. Moreover, since the coefficients of the system 11 are locally
Lipschitzian, there is a unique solution (SH(t), IH(t), RH(t), Sm(t), Im(t)) on any fixed interval
[0, t].
Let x(t) = (SH(t), IH(t), RH(t), Sm(t), Im(t)) a solution of system 11 where, t ∈ [0, τe) and τe is
the explosion time. To show that x(t) is global, we need only show that τe = ∞. Let’s define
the stopping time τ ∗ see [18]:

(14) τ ∗ = inf {t ∈ [0, τe) : SH(t) ≤ 0 or IH(t) ≤ 0 or RH(t) ≤ 0 or Sm(t) ≤ 0 or Im(t) ≤ 0}

https://doi.org/10.28919/ejma.2023.3.3
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where in this paper we assume that inf (∅) =∞. Thus it is clear that τ ∗ ≤ τe. If we can verify
that τ ∗ = ∞ a.s, then τe = ∞ and x(t) = (SH(t), IH(t), RH(t), Sm(t), Im(t)) ∈ Γ0, ∀t ≥ 0. If
this assertion is not true, then there is a constant T > 0 such that P({τ ∗ ≤ T}) > 0.
We define the function V of class C2 of Γ0 in R+ by

V (x(t)) = VSH + VIH + VRH + VSm + VIm ,

where,

VSH = − ln(SH(t)),

VIH = − ln(IH(t)),

VRH = − ln(RH(t)),

VSm = − ln(Sm(t)),

VIm = − ln(Im(t)), ∀ t ≥ 0.

Using Itô’s formula and for all t ≥ 0 fixed and s ∈ [0, t], we get

dV (x(s)) = LV (x(s))ds+
[
σ1IH(s)Im(s)− σ1SH(s)Im(s)

IH(s)

]
dB1(s)

+
[
σ2IH(s)Im(s)− σ2Sm(s)IH(s)

Im(s)

]
dB2(s),

where,

LV (x(s))ds =
[
− µH
SH(s) + µH + λHIm(s) + 1

2σ
2
1I

2
m(s)

]
+(µH + γH + αH)− λHSH(s)

IH(s) + 1
2

(
σ1SH(s)
IH(s)

)2

I2
m(s)

+
[
µH −

γHIH(s)
RH(s)

]
+
[
− µm
Sm(s) + µm + λmIH(s) + 1

2σ
2
2I

2
m(s)

]
+µm − λmSm(s)

Im(s) + 1
2

(
σ2Sm(s)
Im(s)

)2

I2
H(s)



LV (x(s))ds ≤
[
µH + λHIm(s) + 1

2σ
2
1I

2
m(s) + (µH + γH + αH)

]
+1

2

(
σ1SH(s)
IH(s)

)2

I2
m(s) + µH

+

[
µm + λmIH(s) + 1

2σ
2
2I

2
m(s)

]
+
µm + 1

2

(
σ2Sm(s)
Im(s)

)2

I2
H(s)



Set c1 = inf
s∈[0,t]

{IH(s)} et c2 = inf
s∈[0,t]

{Im(s)}. We obtain

LV (X(s))ds ≤ (3µH + γH + αH) + λHIm(s) + 1
2σ

2
1I

2
m(s) + 1

2

(
σ1

c1

)2
S2
H(s)I2

m(s)

+2µm + λmIH(s) + 1
2σ

2
2I

2
m(s) + 1

2

(
σ2

c2

)2
S2
m(s)I2

H(s)
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Using the fact that (SH(s), IH(s), Sm(s), Im(s)) ∈ (0, 1)4, we get:

LV (x(s))ds ≤ 3µH + γH + αH + λH + 1
2σ

2
1 + 2µm + λm + 1

2σ
2
2

+1
2

(
σ1

c1

)2
+ 1

2

(
σ2

c2

)2
:= `.

Hence,

dV (x(s)) ≤ `ds+
[
σ1IH(s)Im(s)− σ1SH(s)Im(s)

IH(s)

]
dB1(s) +

[
σ2IH(s)Im(s)− σ2Sm(s)IH(s)

Im(s)

]
dB2(s).

By integrating both sides of this inequality from 0 to t we get:

V (x(t)) ≤ V (x(0)) + `t +
∫ t

0

[
σ1Im(s)(IH(s)− SH(s))

IH(s)

]
dB1(s) +

+
∫ t

0

[
σ2IH(s)(Im(s)− Sm(s))

Im(s)

]
dB2(s) a.s.

Let

A1(SH(s), IH(s), Im(s)) = σ1Im(s)(IH(s)− SH(s))
IH(s) , ∀s ∈ [0, t] and

A2(Sm(s), IH(s), Im(s)) = σ2IH(s)(Im(s)− Sm(s))
Im(s) , ∀s ∈ [0, t].

Then

sup
s ∈ [0, t]

{A1(SH(s), IH(s), Im(s))} <∞, and sup
s ∈ [0, t]

{A2(Sm(s), IH(s), Im(s))} <∞.

Let

sup
s ∈ [0, t]

{A1(SH(s), IH(s), Im(s))} = K1, and sup
s ∈ [0, t]

{A2(Sm(s), IH(s), Im(s))} = K2.

So,

V (x(t)) ≤ V (x(0)) + `t+K1B1(t) +K2B2(t), a.s.(15)

Noticing that some components of x(τ ∗) equal 0. Thus, limt→τ∗ V (x(t)) = ∞. Letting t → τ ∗

in (15) leads to

∞ ≤ V (x(0)) + `t+K1B1(τ ∗) +K2B2(τ ∗) <∞;(16)

which yields the contradiction. Hence we derive τ ∗ =∞, a.s. This completes the proof. �

3.2. Almost sure exponential stability of the disease-free equilibrium.

Theorem 3.2. Let (SH(0), IH(0), RH(0), Sm(0), Im(0)) ∈ Γ. Then (IH(t), RH(t), Im(t)) expo-
nentially converges almost surely to (0, 0, 0) when R0 < 1.
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Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2023.3.3 11

Proof. Let θ2 > 0. Set I(t) = IH(t) + θ1Im(t) + θ2RH(t), ∀t ≥ 0 where, θ1 = λH
µm

. Using
Itô’s formula and, ∀t ≥ 0 fixed and u ∈ [0, t], we get:

d ln (I(u)) = 1
I(u) [−(µH + γH + αH)IH(u) + λHSH(u)Im(u)] du

+ θ2

I(u) [−µHRH(u) + γHIH(u)] dt+ θ1

I(u) [λmSm(u)IH(u)− µmIm(u)] du

+ 1
I(u) (σ1SH(u)Im(u)) dB1(u) + θ1

I(u) (σ2Sm(u)IH(u)) dB2(u)

−1
2

1
I(u)2 (σ1SH(u)Im(u))2du− 1

2
θ1

I(u)2 (σ2Sm(u)IH(u))2du

≤ 1
I(u) [−(µH + γH + αH)IH(u) + λHSH(u)Im(u)] du

+ θ2

I(u) [−µHRH(u) + γHIH(u)] du+ θ1

I(u) [λmSm(u)IH(u)− µmIm(u)] du

+ 1
I(u) (σ1SH(u)Im(u)) dB1(u) + θ1

I(u) (σ2Sm(t)IH(u)) dB2(u).

Set MH = (µH + γH + αH) and use θ1 value, it follows that:

d ln (I(u)) ≤ 1
I(u) [−MHIH(u) + λHSH(u)Im(u)] du

+ 1
I(u) [−µHθ2RH(u) + γHθ2IH(u)] dt+ 1

I(u)

[
λHλm
µm

Sm(u)IH(u)− λHIm(u)
]
du

+ 1
I(u) (σ1SH(u)Im(t)) dB1(u) + θ1

I(u) (σ2Sm(u)IH(u)) dB2(u)

≤ 1
I(u)

[
−MHIH(u) + λHλm

µm
Sm(u)IH(u) + γHθ2IH(u)

]
du

+ 1
I(u) [λHSH(u)Im(u)− λHIm(u)− µHθ2RH(u)] du

+ 1
I(u) (σ1SH(u)Im(u)) dB1(u) + θ1

I(u) (σ2Sm(u)IH(u)) dB2(u)

≤ 1
I(u)

[
−MH

(
1− λHλm

MHµm
Sm(u)

)
+ γHθ2

]
IH(u)du

+ 1
I(u) [−λHIm(u) (1− SH(u))− µHθ2RH(u)] du

+ 1
I(u) (σ1SH(u)Im(u)) dB1(u) + θ1

I(u) (σ2Sm(u)IH(u)) dB2(u).

Since R2
0 = λHλm

MHµm
< 1 and SH(u), Sm(u) ∈ (0, 1), then (1− SH(u)) , (1−R2

0Sm(u)) > 0.
Thus it follows

d ln (I(u))

≤ 1
I(u)

[
− (MH (1− SH(u))− γHθ2) IH(u)− µm

(
1−R2

0Sm(u)
) λH
µm

Im(u)− µHθ2RH(u)
]
du

+ 1
I(u) (σ1SH(u)Im(u)) dB1(u) + θ1

I(u) (σ2Sm(u)IH(u)) dB2(u).
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Since MH (1− SH(u)) > 0, ∀u ∈ [0, t] then you can choose θ2,u < θ2 very small such as
(MH (1− SH(u))− γHθ2,u) > 0. Letting ψ1 = inf

u∈[0,t]
{(MH (1− SH(u))− γHθ2,u)} and

ψ2 = inf
u∈[0,t]

{µm
(
1−R2

0Sm(u)
)
} then

d ln (I(u)) ≤ 1
I(u)

[
−ψ1IH(u)− ψ2

λH
µm

Im(u)− µHθ2RH(u)
]
du

+ 1
I(u) (σ1SH(u)Im(u)) dB1(u) + θ1

I(u) (σ2Sm(u)IH(u)) dB2(u).

By taking into account that θ1 = λH
µm

, we get

d ln (I(u)) ≤ 1
I(u) [−ψ1IH(u)− ψ2θ1Im(u)− µHθ2RH(u)] du

+ 1
I(u) (σ1SH(u)Im(u)) dB1(u) + θ1

I(u) (σ2Sm(u)IH(u)) dB2(u).

By posing ψ∗ = min {ψ1, ψ2, µH}, we get

d ln (I(u)) ≤ 1
I(u) [−ψ∗IH(u)− ψ∗θ1Im(u)− ψ∗θ2RH(u)] du

+ 1
I(u) (σ1SH(u)Im(u)) dB1(u) + θ1

I(u) (σ2Sm(u)IH(u)) dB2(u).

By replacing I(u) by IH(u) + θ1Im(u) + θ2RH(u) and integrating the above inequality from 0
to t on both sides yields

ln (IH(t) + θ1Im(t) + θ2RH(t)) ≤ −ψ∗t+ ln (IH(0) + θ1Im(0) + θ2RH(0))(17)

+M1(t) +M2(t),

where,

M1(t) =
∫ t

0

σ1SH(s)Im(s)
IH(s) + θ1Im(s) + θ2RH(s)dB1(s) and M2(t) =

∫ t

0

σ2θ1Sm(s)IH(s)
IH(s) + θ1Im(s) + θ2RH(s)dB2(s).

The stochastic process (M1(t))t≥0 and (M2(t))t≥0 are local martingales (see [13]). The quadratic
variation of the stochastic integral M1(t) is

〈M1(t),M1(t)〉 =
∫ t

0

σ2
1S

2
H(s)I2

m(s)
(IH(s) + θ1Im(s) + θ2RH(s))2ds(18)

≤
∫ t

0

σ2
1

(IH(s) + θ1Im(s) + θ2RH(s))2ds,(19)

because SH(s), Im(s) ∈ (0, 1).
As the maps IH , Im and RH are continous then by using the Weierstrass theorem we obtain

inf
s∈[0,t]

{IH(s) + θ1Im(s) + θ2RH(s)} = C

< ∞.

Thus

〈M1(t),M1(t)〉 < σ2
1
C
t.
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By application of the strong law of large numbers for local martingales [15], we conclude that:

lim
t→+∞

M1(t)
t

= 0 a.s.(20)

In the same way

lim
t→+∞

M2(t)
t

= 0 a.s.(21)

From the relations (17), (20) and (21) we deduce that

lim sup
t→+∞

1
t

ln (IH(t) + θ1Im(t) + θ2RH(t)) ≤ −ψ∗ < 0.

So,

lim sup
t→+∞

ln (IH(t))
t

< 0, lim sup
t→+∞

ln (Im(t))
t

< 0 and lim sup
t→+∞

ln (RH(t))
t

< 0.

�

To study the convergence of (SH(t))t≥0, we use the non-negative semi-martingale convergence
theorem established by Liptser and Shiryaev [22].

Theorem 3.3. If R0 < 1, then any solution x(t) = (SH(t), IH(t), RH(t), Sm(t), Im(t)) with
initial condition x(0) = (SH(0), IH(0), RH(0), Sm(0), Im(0)) ∈ Γ0 almost surely converges to the
equilibrium point (1, 0, 0, 1, 0).

For the proof of this theorem, we need the following lemma (see [19]).

Lemma 3.1. Let {At}t≥0 and {Ut}t≥0 two increasing continuous processes and adapted with
A0 = U0 = 0 a.s. Let {Mt}t≥0 a local continuous real-valued martingale with M0 = 0 a.s. Let ξ
a non-negative variable and F0 −mesurable. Define

Xt = ξ + At − Ut +Mt, for t ≥ 0.

If Xt is non-negative, then{
lim
t→+∞

At <∞
}
⊂
{

lim
t→+∞

Xt exists and finished
}
∩
{

lim
t→+∞

Ut <∞
}
a.s.,

where, C ⊂ D a.s. means P(C ∩Dc) = 0. In particular, if limt→+∞At <∞ a.s., then, ∀ω ∈ Ω,
limt→+∞Xt(ω) exists and finished and limt→+∞ Ut <∞.

Let us now present the proof of the previous theorem.
Proof. Using the results of the theorem 3.2, we just need to show that

lim
t→∞

(1− SH(t)) = lim
t→∞

(1− Sm(t)) = 0.

By integrating the two sides of the first equation of the system (11), we get:

1− SH(t) = 1− SH(0) +
∫ t

0
λHSH(s)Im(s)ds−

∫ t

0
µH(1− SH(s))ds+

∫ t

0
σ1SH(s)Im(s)dB1(s).

Since SH(t) < 1, then we get

lim
t→+∞

∫ t

0
λHSH(s)Im(s)ds < lim

t→+∞

∫ t

0
λHIm(s)ds.

Moreover, since Im(t) almost surely converges exponentially to 0, then there exists c1, c2 > 0
such that

Im(s) < c1 exp(−c2s) ∀s ≥ 0.
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So,

lim
t→+∞

∫ t

0
Im(s)ds <

∫ +∞

0
c1 exp(−c2s)ds.

Thus,

lim
t→+∞

∫ t

0
λHSH(s)Im(s)ds < λH

∫ +∞

0
c1 exp(−c2s)ds <∞.

Using the results of the lemma 3.1, we arrive at the conclusion

lim
t→+∞

(1− SH(t)) < ∞ a.s. and lim
t→+∞

∫ t

0
µH(1− SH(s))ds <∞ a.s.

i.e
∫ ∞

0
(1− SH(s))ds < ∞ a.s.(22)

Assume that (SH(t))t≥0 does not converge to 1. Then there exists C ⊂ Ω with P(C) > 0 such
as, ∀ω ∈ C,

lim inf
t→∞

(1− SH(t, ω)) = %(w) > 0.

Thus there exists T = Tω > 0 such that (1− SH(t, ω)) = 1
2%(w) > 0, ∀t ≥ T . So,

∫ ∞
0

(1− SH(s, ω))ds =
∫ T

0
(1− SH(s, ω))ds+

∫ ∞
T

(1− SH(s, ω))ds

>
∫ ∞
T

(1− SH(s, ω))ds =∞.

This implies that: C ⊂ D where, D :=
{
ω ∈ Ω :

∫ ∞
0

(1− SH(s)(ω))ds =∞
}
. Yet inequality

(22), P(D) = 0, leads to a contradiction. So, lim
t→∞

(1− SH(t)) = 0 a.s. Using similar reasoning,
we show that lim

t→∞
(1− Sm(t)) = 0 a.s. This completes the proof. �

3.3. Persistence of dengue fever. Before establishing the persistence results, we will state
a lemma that will be used in the proofs.

Lemma 3.2. Let (SH(.), IH(.), RH(.), Sm(.), Im(.)) a solution of system (11) with initial con-
ditions
(SH(0), IH(0), IH(0), Sm(0), Im(0)) ∈ (0; 1)5. Then

lim
t→+∞

SH(t) + IH(t) +RH(t) + Sm(t) + Im(t)
t

= 0, a.s.(23)

So,

lim
t→+∞

SH(t)
t

= 0,(24)

lim
t→+∞

IH(t)
t

= 0,(25)

lim
t→+∞

RH(t)
t

= 0,(26)

lim
t→+∞

Sm(t)
t

= 0,(27)

lim
t→+∞

Im(t)
t

= 0. a.s.(28)
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Proof. Our approach is inspired by the works of Yanan Zhao and Daqing Jiang (see [23])
and Yanli Zhou and Weiguo Zhang (see [25]).
Let X(t) = SH(t) + IH(t) +RH(t) + Sm(t) + Im(t). Define V (X(t)) = (1 +X(t))θ where, θ is a
positive constant.
Applying Itô’s formula to V , we get

dV (X(t)) = θ(1 +X(t))θ−1dX + 1
2θ(θ − 1)(1 +X(t))θ−2(dX(t))2.(29)

We have

(dX(t))2 = [d (SH(t) + IH(t) +RH(t) + Sm(t) + Im(t))]2(30)

= (dSH(t) + dIH(t) + dRH(t) + dSm(t) + dIm(t))2(31)

= (dSH(t))2 + (dIH(t))2 + (dRH(t))2 + (dSm(t))2 + (dIm(t))2 + dϕ(t)(32)

where,

dϕ(t) = 2 (dSH(t)dIH(t) + dSH(t)dRH(t) + dSH(t)dSm(t) + dSH(t)dIm(t))(33)

+2 (dIH(t)dRH(t) + dIH(t)dSm(t) + dIH(t)dIm(t) + dRH(t)dSm(t))(34)

+2 (dRH(t)dIm(t) + dSm(t)dIm(t)) .(35)

Let’s calculate (dX(t))2.
We get

dRH(t)dIm(t) = 0, dSH(t)dIH(t) = −σ2
1I

2
mS

2
Hdt, dSm(t)dIm(t) = −σ2

2I
2
HS

2
mdt.(36)

Then,

(dSm(t))2 = (dIm(t))2 = σ2
2I

2
HS

2
mdt,

(dSH(t))2 = (dIH(t))2 = σ2
1I

2
mS

2
Hdt,

(dRH(t))2 = dSH(t)dRH(t) = 0.

Also,

dSH(t)dSm(t) = dSH(t)dIm(t) = 0,(37)

dIH(t)dRH(t) = dIH(t)dSm(t) = 0,(38)

dIH(t)dIm(t) = dRH(t)dSm(t) = 0.(39)

Thus, we get

(dX(t))2 = 2σ2
1I

2
mS

2
Hdt+ 2σ2

2I
2
HS

2
mdt− 2

(
σ2

1I
2
mS

2
Hdt+ σ2

2I
2
HS

2
mdt

)
= 0.

So,

dV (X(t)) = θ(1 +X(t))θ−1dX

= LV (X(t)) dt.

Where,

LV (X(t))(40)

= θ(1 +X(t))θ−1 [µH − µH (SH(t) + IH(t) +RH(t))− αHIH(t) + µm − µm (Sm(t) + Im(t))]

≤ θ(1 +X(t))θ−1 [(µH + µm)− µH (SH(t) + IH(t) +RH(t))− µm (Sm(t) + Im(t))] .
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Set

µ1 = max (µH , µm) ,(41)

µ2 = min (µH , µm) .(42)

The following mark-up is obtained

LV (X(t)) ≤ θ(1 +X(t))θ−1 [2µ1 − µ2 (SH(t) + IH(t) +RH(t))− µm (Sm(t) + Im(t))]

≤ θ(1 +X(t))θ−1 [2µ1 − µ2X(t)]

≤ θ(1 +X(t))θ−2 [(1 +X(t))(2µ1 − µ2X(t))]

≤ θ(1 +X(t))θ−2
[
2µ1 + (2µ1 − µ2)X(t)− µ2X

2(t)
]
.

It follows that

dV (X(t)) ≤ θ(1 +X(t))θ−2
[
2µ1 + (2µ1 − µ2)X(t)− µ2X

2(t)
]
dt.(43)

For p > 0, we get

d
[
eptV (X(t))

]
= L

[
eptV (X(t))

]
dt

= peptV (X(t)) dt+ eptdV (X(t)) dt

≤ pept(1 +X(t))θ + θept(1 +X(t))θ−2
[
2µ1 + (2µ1 − µ2)X(t)− µ2X

2(t)
]
dt

≤ θept(1 +X(t))θ−2
[
p

θ
(1 +X(t))2 − µ2X

2(t) + (2µ1 − µ2)X(t) + 2µ1

]
dt

≤ θept(1 +X(t))θ−2
[
−
(
µ2 −

p

θ

)
X2(t) + (2µ1 − µ2 + 2p

θ
)X(t) +

(
2µ1 + p

θ

)]
dt

≤ θeptHdt,(44)

where,

H := sup
t∈R+

{
(1 +X(t))θ−2

[
−
(
µ2 −

p

θ

)
X2(t) + (2µ1 − µ2 + 2p

θ
)X(t) +

(
2µ1 + p

θ

)]}
.(45)

Since (SH(.), IH(.), IH(.), Sm(.), Im(.)) ∈ (0, 1)5, then X(.) ∈ (0, 25).
So, 0 < H <∞. Passing to the integral from 0 to t in (44), we get∫ t

0
d
[
epξV (X(ξ)) dξ

}
≤
∫ t

0
θepξHdξ,(46)

eptV (X(t)) ≤ V (X(0)) + θHept

p
− θH

p
.(47)

It can be deduced that

EeptV (X(t)) ≤ V (X(0)) + θHept

p
− θH

p
.

That is to say,

E
[
(1 +X(t))θ

]
≤ (1 +X(0))θ

ept
+ θH

P

≤ (1 +X(0))θ + θH.

https://doi.org/10.28919/ejma.2023.3.3


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2023.3.3 17

Set C = (1 +X(0))θ + θH.
Then,

E
[
(1 +X(t))θ

]
≤ C.

∀ δ > 0 sufficiently small, p = 1, 2, 3, ..., by integrating (43) from pδ to t, we get

(1 +X(t))θ ≤ (1 +X(pδ))θ +
∫ t

pδ
θ(1 +X(ξ))θ−2

[
2µ1 + (2µ1 − µ2)X(ξ)− µ2X

2(ξ)
]
dξ.

It follows that

sup
pδ≤t≤(p+1)δ

(1 +X(t))θ ≤ (1 +X(pδ))θ

+ sup
pδ≤t≤(p+1)δ

∣∣∣∣∫ t

pδ
θ(1 +X(ξ))θ−2

[
2µ1 + (2µ1 − µ2)X(ξ)− µ2X

2(ξ)
]
dξ

∣∣∣∣
Taking the mathematical expectation of both sides of the latter inequality we get

E

[
sup

pδ≤t≤(p+1)δ
(1 +X(t))θ

]
≤ E

[
(1 +X(pδ))θ

]
+ J,(48)

where,

J = E

[
sup

pδ≤t≤(p+1)δ

∣∣∣∣∫ t

pδ
θ(1 +X(ξ))θ−2

[
2µ1 + (2µ1 − µ2)X(ξ)− µ2X

2(ξ)
]
dξ
∣∣∣∣
]

(49)

= E

[
sup

pδ≤t≤(p+1)δ

∣∣∣∣∫ t

pδ
θ(1 +X(ξ))θ−2 (1 +X(ξ)) (2µ1 − µ2X(ξ)) dξ

∣∣∣∣
]

(50)

= E

[
sup

pδ≤t≤(p+1)δ

∣∣∣∣∫ t

pδ
θ(1 +X(ξ))θ−1 (2µ1 − µ2X(ξ)) dξ

∣∣∣∣
]

(51)

= E

[
sup

pδ≤t≤(p+1)δ

∣∣∣∣∣
∫ t

pδ
θ(1 +X(ξ))θ × 2µ1 − µ2X(ξ)

(1 +X(ξ)) dξ

∣∣∣∣∣
]
.(52)

Set

l = θ sup
pδ≤t≤(p+1)δ

∣∣∣∣∣2µ1 − µ2X(ξ)
(1 +X(ξ))

∣∣∣∣∣ .(53)

It follows that

J ≤ lE

[
sup

pδ≤t≤(p+1)δ

∣∣∣∣∫ t

pδ
(1 +X(ξ))θdξ

∣∣∣∣
]

(54)

≤ lE

[∫ (p+1)δ

pδ
(1 +X(ξ))θdξ

]
(55)

≤ lE

[
δ sup
pδ≤ξ≤(p+1)δ

(1 +X(ξ))θ
]

(56)

≤ lδE

[
sup

pδ≤ξ≤(p+1)δ
(1 +X(ξ))θ

]
(57)

≤ lδE

[
sup

pδ≤t≤(p+1)δ
(1 +X(t))θ

]
.(58)

As a result

E

[
sup

pδ≤t≤(p+1)δ
(1 +X(t))θ

]
≤ E

[
(1 +X(pδ))θ

]
+ lδE

[
sup

pδ≤t≤(p+1)δ
(1 +X(t))θ

]
.(59)
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Choose δ > 0 such as lδ ≤ 1
2 , then

E

[
sup

pδ≤t≤(p+1)δ
(1 +X(t))θ

]
≤ 2E

[
(1 +X(pδ))θ

]
.(60)

By using (48), we get

E

[
sup

pδ≤t≤(p+1)δ
(1 +X(t))θ

]
≤ 2C.(61)

Let εX an arbitrarily chosen positive constant. Applying Markov’s inequality, we get

P

{
sup

pδ≤t≤(p+1)δ
(1 +X(t))θ > (pδ)1+εX

}
≤

E
[
suppδ≤t≤(p+1)δ (1 +X(t))θ

]
(pδ)1+εX(62)

≤ 2C
(pδ)1+εX .(63)

Let Up = { sup
pδ≤t≤(p+1)δ

(1 +X(t))θ > (pδ)1+εX} then
∞∑
p=1

P (Up) <
∞∑
p=1

2C
(pδ)1+εX .

Since 1 + εX > 1 then
∞∑
p=1

2C
(pδ)1+εX < ∞ the Borel-Cantelli lemma (see [19]) yields that for

almost all ω ∈ Ω

sup
pδ≤t≤(p+1)δ

(1 +X(t))θ ≤ (pδ)1+εX , p = 1, 2, 3, ...(64)

Since this inequality holds for all p, then there exists a positive inter p0 = p0(ω) for almost all
ω ∈ Ω such that (64) remains true, ∀p ≥ p0. Therefore, for almost all ω ∈ Ω, if p ≥ p0 and
pδ ≤ t ≤ (p+ 1)δ,

ln (1 +X(t))θ

ln t ≤ (1 + εX) ln (pδ)
ln (pδ)(65)

= 1 + εX .(66)

So,

lim sup
t→∞

ln (1 +X(t))θ

ln t ≤ 1 + εX , a.s.(67)

Let’s make εX −→ 0, we get

lim sup
t→∞

ln (1 +X(t))θ

ln t ≤ 1, a.s.(68)

For θ > 1, we get

lim sup
t→∞

ln (X(t))
ln t ≤ lim sup

t→∞

ln (1 +X(t))
ln t ≤ 1

θ
, a.s.(69)

That is to say, for 0 < γ < 1− 1
θ
, there exists a constant T = T (ω) such as, ∀t ≥ T

ln (1 +X(t)) ≤
(1
θ

+ γ
)

ln t.(70)
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That is to say, for 0 < γ < 1 − 1
θ
, there exists a constant T = T (ω) and a set Ωγ such as

P (Ωγ) ≥ 1− γ and, ∀t ≥ T , ω ∈ Ωγ,

ln (X(t)) ≤
(1
θ

+ γ
)

ln t.(71)

As a result

lim sup
t→∞

X(t)
t
≤ lim sup

t→∞

t
1
θ

+γ

t
= 0.(72)

This leads to

lim
t→∞

X(t)
t

= lim
t→∞

SH(t) + IH(t) +RH(t) + Sm(t) + Im(t)
t

= 0. a.s.(73)

Thanks to the positivity of SH , IH , RH , Sm and Im. So, we get

lim
t→∞

SH(t)
t

= lim
t→∞

IH(t)
t

= lim
t→∞

RH(t)
t

= lim
t→∞

Sm(t)
t

= lim
t→∞

Im(t)
t

= 0 a.s.(74)

This completes the proof. �

Lemma 3.3. Let (SH(.), IH(.), RH(.), Sm(.), Im(.)) a solution of (11) with initial conditions
(SH(0), IH(0), IH(0), Sm(0), Im(0)) ∈ (0; 1)5. Then

lim
t→∞

1
t

∫ t

0
Im(ξ)SH(ξ)I−1

H (ξ)dB1(ξ) = 0,(75)

lim
t→∞

1
t

∫ t

0
IH(ξ)Sm(ξ)I−1

m (ξ)dB2(ξ) = 0 .a.s.(76)

Proof. Let

M1(t) =
∫ t

0
Im(ξ)SH(ξ)I−1

H (ξ)dB1(ξ),(77)

M2(t) =
∫ t

0
IH(ξ)Sm(ξ)I−1

m (ξ)dB2(ξ).(78)

As the maps IH , SH and Im are continous then by using the Weierstrass theorem, we get

sup
0≤ξ≤t

{Im(ξ)SH(ξ)I−1
H (ξ)} = C1 <∞.(79)

Thus

〈M1(t),M1(t)〉 < C1t. a.s. and lim sup
t→∞

〈M1(t),M1(t)〉
t

< C1. a.s.(80)

By using the strong law of large numbers for local martingales, we conclude that

lim
t→∞

M1(t)
t

= 0. a.s.(81)

In the same way we get

lim
t→∞

M2(t)
t

= 0. a.s.(82)

Hence the lemma has been established. �

Lemma 3.4. Let f ∈ C ([0;∞)× Ω, (0,∞)). If there are positive constants λ0, λ and T such
that

ln f(t) ≥ λt− λ0

∫ t

0
f(ξ)dξ + F (t),(83)
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∀t ≥ T with F ∈ C ([0;∞)× Ω,R), lim
t→∞

F (t)
t

= l a.s. and λ+ l > 0. Then

lim inf
t→∞

1
t

∫ t

0
f(ξ)dξ ≥ λ+ l

λ0
a.s.(84)

Proof
Our approach is inspired by the work of Zhaoa, Daqing Jiang and Donal O’Reganc (see [24])
and Liu Huaping and Ma Zhien (see [12]) .

Note that lim
t→∞

F (t)
t

= l a.s. then for arbitrary 0 < ε < λ+ l there exists a T0 = T0(ω) > 0 and

a set Ωr such that P (Ωr) > 0 and
∣∣∣∣∣F (t)
t
− l
∣∣∣∣∣ ≤ ε for all t ≥ T0, ω ∈ Ωε. Let T = T ∨ T0 and

ψ(t) =
∫ t

0
f(ζ)dζ for t ≥ T , ω ∈ Ωr.

Since f ∈ C ([0,∞)× Ω, (0,∞)), then ψ is differentiable on [T ,∞) a.s. and

dψ(t) = f(t) > 0 for t ≥ T , ω ∈ Ωr.(85)

Substituting dψ(t)
dt

and ψ(t) into (83), we have

ln
(
dψ(t)
dt

)
≥ λt− λ0ψ(t) + F (t)(86)

≥ (λ− ε+ l)t− λ0ψ(t), for t ≥ T , ω ∈ Ωr.(87)

So

exp (λ0ψ(t)) dψ(t)
dt
≥ exp (λ− ε+ l) t, for t ≥ T , ω ∈ Ωr.(88)

Integrating this inequality from T to t results in

λ−1
0

[
exp(λ0ψ(t))− exp(λ0ψ(T ))

]
≥
[
exp((λ+ l − ε)t)− exp((λ+ l − ε)T )

]
(89)

This inequality can be rewritten into

exp(λ0ψ(t)) ≥ λ0(λ+ l − ε)−1
[
exp((λ+ l − ε)t)− exp((λ+ l − ε)T )

]
+ exp(λ0ψ(T ).(90)

Taking the logarithm of both sides yields

ψ(t) ≥ λ−1
0 ln

[
λ0(λ+ l − ε)−1 exp((λ+ l − ε)t) + λT

]
,(91)

where,

λT = exp(λ0ψ(T ))− λ0(λ+ l − ε)−1 exp((λ+ l − ε)T )(92)

or ∫ t

0
f(ζ)dζ ≥ λ−1

0 ln
[
λ0(λ+ l − ε)−1 exp((λ+ l − ε)t) + λT

]
, for t ≥ T , ω ∈ Ωr.(93)

Dividing both sides by t ≥ T > 0 gives

t−1
∫ t

0
f(ζ)dζ ≥ λ−1

0 t−1 ln
[
λ0(λ+ l − ε)−1 exp((λ+ l − ε)t) + λT

]
, for t ≥ T , ω ∈ Ωr.(94)

Taking the limit superior of both sides and applying L’Hospital’s rule on the right-hand side of
this inequality, we obtain
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lim sup
t→∞

t−1
∫ t

0
f(ζ)dζ ≥ λ+ l − ε

λ0
for ω ∈ Ωr.(95)

Letting ε→ 0 yields

lim sup
t→∞

t−1
∫ t

0
f(ζ)dζ ≥ λ+ l

λ0
for a.s.(96)

This finishes the proof of the Lemma. �

We now turn to the study of the persistence in the mean of the system (11). To this
end, we present a definition of persistence in the mean that can be found in [5, 16].

Definition 3.1. We say that the system (11) is persistent in mean if

lim inf
t→∞

〈IH(t)〉 > 0 or lim inf
t→∞

〈Im(t)〉 > 0,(97)

where 〈z(t)〉 = 1
t

∫ t

0
z(ξ)dξ.

For future needs, define the following threshold parameters

RH
0 =

µH

(
λH −MH −

1
2σ

2
1c1

)
λHMH

, whith c1 = sup
ξ∈R+

{I−1
H (ξ)},(98)

Rm
0 =

(
λm − µm −

1
2σ

2
2c2

)
λm

, whith c2 = sup
ξ∈R+

{I−1
m (ξ)}(99)

and formulate the following hypotheses

(H)1 IH(t)I−1
m (t) ≤ 1, ∀t ≥ 0, and RH

0 > 0,(100)

(H)2 IH(t)I−1
m (t) > 1, ∀t ≥ 0, and Rm

0 > 0.(101)

Theorem 3.4. Let (SH(.), IH(.), IH(.), Sm(.), Im(.)) a solution of system (11) with the initial
conditions (SH(0), IH(0), IH(0), Sm(0), Im(0)) ∈ (0; 1)5.

(i) If the assumption (H)1 is verified then lim inf
t→∞

〈IH(t)〉 > 0 a.s.
(ii) If the assumption (H)2 is verified then lim inf

t→∞
〈Im(t)〉 > 0 a.s.

Proof. Applying the integral between 0 and t the two sides of the two first equation of
system (11), we get

SH(t)− SH(0)
t

= µH − λH 〈SH(t)Im(t)〉 − µH 〈SH(t)〉 − σ1

t

∫ t

0
SH(ξ)Im(ξ)dB1(ξ),(102)

IH(t)− IH(0)
t

= −MH 〈IH(t)〉+ λH 〈SH(t)Im(t)〉+ σ1

t

∫ t

0
SH(ξ)Im(ξ)dB1(ξ).(103)

By member by member sum of (102) and (103), we get
SH(t)− SH(0)

t
+ IH(t)− IH(0)

t
= µH − µH 〈SH(t)〉 −MH 〈IH(t)〉 .

Which yields

〈SH(t)〉 = 1− MH

µH
〈IH(t)〉+ φ(t)(104)

where, φ(t) = −1
µH

[
SH(t)− SH(0)

t
+ IH(t)− IH(0)

t

]
.
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Using the results of the lemma 3.2, we get lim
t→∞

φ(t) = 0. By applying the Itô formula to the
second equation of the system (11), we obtain

d ln (IH(t)) = 1
IH(t)dIH −

1
2

1
I2
H(t) (dIH(t))2(105)

=
[
λH

SH(t)Im(t)
IH(t) −MH −

1
2σ

2
1
S2
H(t)I2

m(t)
I2
H(t)

]
dt+ σ1

SH(t)Im(t)
IH(t) dB1(t).(106)

Passing to the integral between 0 and t of this last equality, it follows that

ln (IH(t))− ln (IH(0))
t

= λH
〈
SH(t)Im(t)I−1

H (t)
〉
−MH(107)

+ σ1
1
t

∫ t

0

SH(ξ)Im(ξ)
IH(ξ) dB1(ξ)− 1

2σ
2
1

〈
S2
H(t)I2

m(t)I−2
H (t)

〉
.(108)

By applying the integral from 0 to t of the two sides of the last two equations of system (11),
we get

Sm(t)− Sm(0)
t

= µm − λm 〈Sm(t)IH(t)〉 − µm 〈Sm(t)〉 − σ2

t

∫ t

0
Sm(ξ)IH(ξ)dB2(ξ),(109)

Im(t)− Im(0)
t

= −µm 〈Im(t)〉+ λm 〈Sm(t)IH(t)〉+ σ2

t

∫ t

0
Sm(ξ)IH(ξ)dB2(ξ).(110)

By member to member sum of (109) and (110), it follows that

Sm(t)− Sm(0)
t

+ Im(t)− Im(0)
t

= µm − µm 〈Sm(t)〉 − µm 〈Im(t)〉 .(111)

Which yields

〈Sm(t)〉 = 1− 〈Im(t)〉+ ψ(t),(112)

where, ψ(t) = −1
µm

[
Sm(t)− Sm(0)

t
+ Im(t)− Im(0)

t

]
.(113)

Using the result of the lemma 3.2, we get lim
t→∞

ψ(t) = 0. By applying the Itô formula to the
fourth equation of system (11), we obtain

d ln (Im(t)) = 1
Im(t)dIm −

1
2

1
I2
m(t) (dIm(t))2(114)

=
[
λm

Sm(t)IH(t)
Im(t) − µm −

1
2σ

2
2
S2
m(t)I2

H(t)
I2
m(t)

]
dt+ σ2

Sm(t)IH(t)
Im(t) dB2(t).(115)

Passing to the integral between 0 and t of this last equality, we get

ln (Im(t))− ln (Im(0))
t

= λm
〈
Sm(t)IH(t)I−1

m (t)
〉
− µm(116)

+σ2
1
t

∫ t

0

Sm(ξ)IH(ξ)
Im(ξ) dB2(ξ)− 1

2σ
2
2

〈
S2
m(t)I2

H(t)I−2
m (t)

〉
.(117)

We distinguish two cases:
1rt case: Suppose that (H)1 is verified. From the equality (107)-(108), we get the following
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minoration:

ln (IH(t))− ln (IH(0))
t

≥ λH 〈SH(t)〉 −MH(118)

+σ1
1
t

∫ t

0

SH(ξ)Im(ξ)
IH(ξ) dB1(ξ)− 1

2σ
2
1

〈
S2
H(t)I2

m(t)I−2
H (t)

〉
,(119)

≥ λH 〈SH(t)〉 −MH(120)

+σ1
1
t

∫ t

0

SH(ξ)Im(ξ)
IH(ξ) dB1(ξ)− 1

2σ
2
1

〈
I−2
H (t)

〉
,

because SH and Im are in (0, 1). By using (104), to replace 〈SH(t)〉 in (120), give

ln (IH(t))− ln (IH(0))
t

≥ λH

(
1− MH

µH
〈IH(t)〉+ φ(t)

)
−MH

+σ1
1
t

∫ t

0

SH(ξ)Im(ξ)
IH(ξ) dB1(ξ)− 1

2σ
2
1

〈
I−2
H (t)

〉
(121)

≥ MH

(
λH
MH

− 1
)
− λHMH

µH
〈IH(t)〉+ λHφ(t) +G(t).(122)

where

G(t) = σ1
1
t

∫ t

0

SH(ξ)Im(ξ)
IH(ξ) dB1(ξ)− 1

2σ
2
1c1.(123)

Clearly lim
t→∞

G(t) = −1
2σ

2
1c1.

It follows that

ln (IH(t)) ≥MH

(
λH
MH

− 1
)
t− λHMH

µH

∫ t

0
IH(ξ)dξ + F1(t).(124)

where,

F1(t) = tG(t) + λHtφ(t) + ln (IH(0)).(125)

Using the result of the lemma 3.2 and lemma 3.3 we get lim
t→∞

F1(t)
t

= −1
2σ

2
1c1. Thus applying

the lemma 3.4 we get

lim inf
t→∞

1
t

∫ t

0
IH(ξ)dξ ≥ RH

0 .(126)

2th case: Suppose that (H)2 is verified. From the equality (116)-(117), we get the following
minoration

ln (Im(t))− ln (Im(0))
t

≥ λm 〈Sm(t)〉 − µm(127)

+σ2
1
t

∫ t

0

Sm(ξ)IH(ξ)
Im(ξ) dB2(ξ)− 1

2σ
2
2

〈
S2
m(t)I2

H(t)I−2
m (t)

〉
,

≥ λm 〈Sm(t)〉 − µm(128)

+σ2
1
t

∫ t

0

Sm(ξ)IH(ξ)
Im(ξ) dB2(ξ)− 1

2σ
2
2

〈
I−2
m (t)

〉
,
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thanks to the fact that Sm and IH are in (0, 1). By using (112), to replace 〈Sm(t)〉 in (128),
give

ln (Im(t))− ln (Im(0))
t

≥ λm (1− 〈Im(t)〉+ ψ(t))− µm

+σ2
1
t

∫ t

0

Sm(ξ)IH(ξ)
Im(ξ) dB2(ξ)− 1

2σ
2
2

〈
I−2
m (t)

〉
≥ µm

(
λm
µm
− 1

)
− λm 〈Im(t)〉+ λmψ(t) +G2(t).

where

G2(t) = σ2
1
t

∫ t

0

Sm(ξ)IH(ξ)
Im(ξ) dB2(ξ)− 1

2σ
2
2c2.(129)

Clearly lim
t→∞

G2(t) = −1
2σ

2
2c2.

It follows that

ln (Im(t)) ≥ µm

(
λm
µm
− 1

)
t− λm

∫ t

0
Im(ξ)dξ + F2(t)(130)

where

F2(t) = tG2(t) + λmtψ(t) + ln (Im(0)).(131)

Using the result of the lemma 3.2 and lemma 3.3 we get limt→∞
F2(t)
t

= −1
2σ

2
2c2. Thus,

applying the lemma 3.4, we find:

lim inf
t→∞

1
t

∫ t

0
Im(ξ)dξ ≥ Rm

0 .(132)

This completes the proof of the theorem. �

Remark 3.1. The average persistence of the model means that there are almost certainly a
number of infectious individuals in the human or mosquito population. That is, dengue persists
in mean with a probability one.

4. Numerical simulations

In this section, we perform numerical simulations of the deterministic model as well as the
stochastic model in order to show forth our results.

4.1. Numerical simulations of the deterministic model. We use the software MATLAB
as the simulation environment. The figure we present in this section give the dynamics of the
different compartments in the case where,R0 is less than one. The values of the parameters used
are given by: µH = 0, 3, µm = 0, 2, γH = 0, 4, αH = 0, 001, λH = 0, 0005 and λm = 0, 0021.
With these given parameters values, we find R0 = 0.002 < 1. The curves in figure 1 show
respectively the variation of SH , IH , IH , Sm, and Im over time. The deterministic model
stabilises at the free equilibrium point when R0 is less than one as illustrated by the proposition
2.4.
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Figure 1. Graphs showing the behavior of trajectories SH , IH , IH , Sm, and Im
of the deterministic model for R0 less than one.

4.2. Numerical simulations of the stochastic model. For the simulation of the stochastic
model, we use the MATLAB software and the technique described in [11]. The graphs we
present in this section give the dynamics of the different compartments in the case where, R0 is
less than one. The values of the parameters used are given by: µH = 0, 3, µm = 0, 2, γH = 0, 4,
αH = 0, 001, λH = 0, 0005, and λm = 0, 0021. With these given parameters values, we find
R0 = 0.002 < 1. The stochastic model stabilises at the free equilibrium point when R0 is less
than one as illustrated by the theorem 3.2.
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Figure 2. Graphs illustrate the behavior of trajectories SH , IH , IH , Sm, and
Im of the stochastic case for R0 less than one.

5. Numerical example and remarks

Let’s judiciously choose values for the parameters λm, λH ,MH et µm for which, the deterministic
model is in extinction yet there is persistence in the mean for the stochastic model.
Consider the following table containing data when dengue fever is spreading:

Parameters λH λm µm MH µH σ1 c1

Values 0.8 0.021 0.2 0.6 0.3 0.6 1

With these values, we get the following threshold values:

R0 RH
0

0.14 0.0125

We can notice that R0 < 1 thus according to the proposition 2.4 the equilibrium point E0 of
the system is globally asymptotically stable that is to say that the dengue stops propagating.
However and RH

0 being greater than zero shows that dengue persists in the mean according to
the theorem 3.4 under the assumption (H)1. Hence the importance of taking the randomness
aspect into account when modelling the spread of dengue.
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6. Conclusion

In this paper, we focused on the comparative mathematical analysis of a deterministic and a
stochastic epidemic model of dengue. First, we built a deterministic model of dengue fever. We
showed the local stability of the disease-free equilibrium point by using a resolution method
developed by Van den Driessche, P., Wathmough J and then showed the global stability of
this point by constructing an appropriate Lyapunov function. Then we developed a stochastic
model by adding two white noises at the contact rates. This addition is done in order to take
into account the fluctuations in the transmission of dengue. We have shown the existence and
uniqueness of a positive solution using a Lyapunov function and the îto formula. To analyse the
extinction of dengue, we established that the disease-free equilibrium point is n-exponentially
stable, and then the almost certain convergence of the solution to the disease-free equilibrium
point when R0 is less than one, by successively constructing a Lyapunov function and applying
the Itô’s formula. We have also, established a persistence condition in mean of the stochastic
differential system by constructing an appropriate Lyapunov function followed by an application
of the Itô’s formula and by using many other methods of stochastic analysis. In the last section
we performed simulations to evaluate our results and then compared the two models. However,
challenges remain in this work. We intend to conceive and analyse a discrete stochastic model
of dengue. We also wish to analyse the transmission dynamics of other vector-borne diseases
such as lymphatic filariasis, yellow fever and Zika. l’évenement
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