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BERNSTEIN-VON MISES THEOREM FOR FRACTIONAL SPDES WITH
SMALL VOLATILITY

JAYA P. N. BISHWAL

Abstract. The Bernstein-von Mises theorem, concerning the convergence of suitably normal-
ized and centred posterior density to normal density, is proved for a certain class of linearly
parametrized fractional stochastic partial differential equations (SPDEs) driven by space-time
color noise as the volatility decreases to zero. As a consequence, the Bayes estimators of the
drift parameter, for smooth loss functions and priors, are shown to be strongly consistent and
asymptotically normal, asymptotically efficient and asymptotically equivalent to the maximum
likelihood estimator as the volatility decreases to zero. Also computable quasi-posterior density
and quasi-Bayes estimators based on finite dimensional projections are shown to have similar
asymptotics as the volatility decreases to zero and the dimension of the projection remains
fixed.

1. Introduction

Infinite dimensional diffusion models of Heath, Jarrow and Morton (HJM) type has been used
for modeling forward interest rate, see Carmona and Tehranchi [10]. Bayesian inference for a
structural discrete time credit risk model with stochastic volatility and stochastic interest rates
was studied in Rodriguez et al. [27]. Batista and Laurini [1] studied Bayesian estimation of term
structure models by the Hamiltonian Monte Carlo method. It is natural that interest rates have
long memory. Loges [23] initiated the study of parameter estimation in infinite dimensional
stochastic differential equations. When the length of the observation time becomes large, he
obtained consistency and asymptotic normality of the maximum likelihood estimator (MLE)
of a real valued drift parameter in a Hilbert space valued SDE. Koski and Loges [21] extended
the work of Loges [23] to minimum contrast estimators. Koski and Loges [20] applied the
work to a stochastic heat flow problem. Bishwal [5] obtained asymptotic statistical results for
discretely sampled diffusions. See Bishwal [6] for recent results on likelihood asymptotics and
Bayesian asymptotics for drift estimation of finite and infinite dimensional stochastic differential
equations. Large time asymptotics for Bayes estimators for Hilbert valued SDEs is studied in
Bishwal [6].

Huebner, Khasminskii and Rozovskii [14] started statistical investigation in SPDEs. They
gave two contrast examples of parabolic SPDEs in one of which they obtained consistency,
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asymptotic normality and asymptotic efficiency of the MLE as the intensity of noise decreases
to zero under the condition of absolute continuity of measures generated by the process for
different parameters (the situation is similar to the classical finite dimensional case) and in the
other they obtained these properties as the finite dimensional projection becomes large under
the condition of singularity of the measures generated by the process for different parameters.
The second example was extended by Huebner and Rozovskii [15] and the first example was
extended by Huebner [13] to MLE for general parabolic SPDEs where the partial differential
operators commute and satisfy different order conditions in the two cases.

Huebner [12] extended the problem to the ML estimation of multidimensional parameter.
Lototsky and Rozovskii [24] studied the same problem without the commutativity condition.
Small noise asymptotics of the nonparmetric estimation of the drift coefficient was studies by
Ibragimov and Khasminskii [17].

The Bernstein-von Mises theorem (BVT, in short), concerning the convergence of suitably
normalized and centered posterior distribution to normal distribution, plays a fundamental role
in asymptotic Bayesian inference, see Le Cam and Yang [22]. Borwanker et al. [8] obtained
the BVT for discrete time Markov processes. Bose [9] extended the BVT to the homogeneous
nonlinear diffusions. As a further refinement in BVT, Bishwal [3] obtained sharp rates of
convergence to normality of the posterior distribution and the Bayes estimators for the Ornstein-
Uhlenbeck process.

All these above work on BVT are concerned with finite dimensional SDEs. Bishwal [2] proved
the BVT and obtained asymptotic properties of regular Bayes estimator of the drift parameter
in a Hilbert space valued SDE when the corresponding ergodic diffusion process is observed
continuously over a time interval [0, T ]. The asymptotics are studied as T → ∞ under the
condition of absolute continuity of measures generated by the process. Results are illustrated
for the example of an SPDE.

Bishwal [4] obtained BVT and spectral asymptotics of Bayes estimators for parabolic SPDEs
when the number of Fourier coefficients becomes large. In that case, the measures generated
by the process for different parameters are singular. Here we treat the case when the measures
generated by the process for different parameters are absolutely continuous under some condi-
tions on the order of the partial differential operators. We study the asymptotic properties of
the posterior distributions and Bayes estimators when we have either fully observed process or
finite-dimensional projections. The asymptotic parameter is only the intensity of noise. In this
paper we treat the more general model.

The rest of the paper is organized as follows : Section 2 contains model, assumptions and
preliminaries. In Section 3 we prove the Bernstein-von Mises theorems and Section 4 contains
the asymptotic properties of regular Bayes estimator and quasi Bayes estimator. Section 5
provides heat equation as an example of fSPDE.

2. Model and Preliminaries

Let G be a smooth bounded domain in Rd. We assume that the boundary ∂G of this domain is
a C∞-manifold of dimension (d−1) and locally G is totally on one side of ∂G. For a multi-index
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γ = (γ1, . . . , γd) we write

Dγf(x) :=
∂|γ|

∂xγ11 . . . ∂xγdd
f(x)

where |γ| = γ1 + γ2 + . . .+ γd.
Let A0 and A1 be partial differential operators of order m0 and m1 (the order of the highest

derivative in it) respectively, written in the form

Ai(x)u := −
∑

|α|,|β|≤mi

(−1)|α|Dα(aαβi (x)Dβ(u))

where aαβi (x) ∈ C∞(G). For θ ∈ R, write Aθ = θA1 +A0 and aαβ(θ, x) = θaαβ1 (x) +aαβ0 (x). Let
us fix θ0, the unknown true value of the parameter θ. Let (Ω,F , P ) be a complete probability
space andW (t, x) be a cylindrical Brownian motion on on this space with values in the Schwarz
space of distributions D′(G).

A cylindrical Brownian motion (C.B.M) is W = W (t, x) is a distribution valued process such
that for every such that for every φ ∈ C∞0 (G) with ‖φ‖L2(G) = 1 the inner product 〈W (t, ·), φ(·)〉
is a one dimensional Brownian motion and for every φ1, φ2 ∈ C∞0 (G),

E(〈W (s, ·), φ1(·)〉〈W (t, ·), φ2(·)〉) = (s ∧ t)(φ1, φ2)L2(G).

The C.B.M.W can be expanded in the seriesW (t, x) =
∑∞

i=1 Wi(t)hi(x) where {Wi(t)}∞i=1 are
independent one dimensional Brownian motions and {hi}∞i=1 is complete orthonormal system
in L2(G). The latter series converges P -a.s.

We will consider the Dirichlet problem for a parabolic SPDE associated with the operator
Aθ, and driven by the C.B.M. W :

∂u(t, x)

∂t
= Aθ(x)u(t, x) +

∂

∂t
W (t, x) (2.1)

u(0, x) = u0(x) (2.2)

Dγu(t, x)|∂G = 0 (2.3)

for all multi-indices γ with |γ| ≤ m− 1.

The problem (2.1) - (2.3) is understood in the sense of distributions.
A cylindrical fractional Brownian motion (C.F.B.M) isW = WH(t, x) is a distribution valued

process such that for every such that for every φ ∈ C∞0 (G) with ‖φ‖L2(G) = 1 the inner product
〈W (t, ·), φ(·)〉 is a one dimensional fractional Brownian motion and for every φ1, φ2 ∈ C∞0 (G),

E(〈WH(s, ·), φ1(·)〉〈WH(t, ·), φ2(·)〉) = (s ∧ t)(φ1, φ2)L2(G).

The C.F.B.M. WH can be expanded in the series WH(t, x) =
∑∞

i=1W
H
i (t)hi(x) where

{WH
i (t)}∞i=1 are independent one dimensional fractional Brownian motions and {hi}∞i=1 is com-

plete orthonormal system in L2(G). The latter series converges P -a.s.
Recall that a fractional Brownian motion (fBM) has the covariance

C̃H(s, t) =
1

2

[
s2H + t2H − |s− t|2H

]
, s, t > 0.

For H > 0.5 the process has long range dependence or long memory and the process is self-
similar. For H 6= 0.5, the process is neither a Markov process nor a semimartingale. For
H = 0.5, the process reduces to standard Brownian motion. Fractional Brownian motion
can be represented as a Riemann-Liouville (fractional) derivative of Gaussian white noise, see
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Decreusefond and Ustunel [11] and Jumarie [18]. For deterministic fractional calculus, see
Samko et al. [28].

Let σ be the strength of noise. On the complete probability space (Ω,F , P ) define the
parabolic SPDE

duσ(t, x) = Aθuσ(t, x)dt+ σdWH(t, x), 0 ≤ t ≤ T, x ∈ G (2.4)

with Dirichlet boundary conditions

u(0, x) = u0(x) (2.5)

Dγu(t, x)|∂G = 0 (2.6)

for all multi-indices γ with |γ| ≤ m− 1

where Aθ = θA1 + A0, A1 and A0 are partial differential operators of orders m1 and m2

respectively, Aθ has order 2m = max(m1,m0), the process W (t, x) is a cylindrical Brownian
motion in L2([0, T ] × G) where G is a bounded domain in Rd and u0 ∈ L2(G), and σ > 0

is the volatility which is assumed to be known. For estimation od σ, see Bishwal [7]. Here
θ ∈ Θ ⊆ R is the unknown parameter to be estimated on the basis of the observations of the
field uθ(t, x), t ∈ [0, T ], x ∈ G. Let θ0 be the true value of the unknown parameter.

The following regularity conditions are assumed:
(R1) m1 < m− d/2 where d denotes the dimension of the x−space G.
(R2) The operators A1 and A0 are formally self-adjoint, i.e., for i = 0, 1,∫

G

Aiuvdx =

∫
G

uAivdx for all u, v ∈ C∞0 (G).

(R3) There is a compact neighborhood Θ of θ0 so that {Aθ, θ ∈ Θ} is a family of uniformly
strongly elliptic operators of order 2m = max(m1,m0).

The latter means that there exists a positive constant δ such that for all x ∈ G, θ ∈ Θ and
ξ ∈ Rd, ∑

|α|,|β|=m

aαβ(θ, x)ξαξβ ≥ δ|ξ|2m,

where ξγ := ξγ1i . . . ξγdd .
For s > 0, denote the closure of C∞0 (G) in the Sobolev space W s,2(G) by W s.2

0 . It is well
known from the theory of self-adjoint elliptic operators that the operator Aθ with boundary
condition (2.6) can be extended to a closed, self-adjoint operator Lθ on L2(G). The domain
of Lθ, written D(Lθ), is the set of all functions u ∈ Wm,2

0 such that Lθu ∈ L2(G). For all
v ∈ Wm,2

0

aθ(u, v) := −
∑

|α|,|β|≤m

∫
G

aαβ(θ, x)Dβu(x)Dαv(x)dx = (Lθu, v)L2(G)

and Lθu = Aθu in the sense of distribution. Under (R3), Lθ is lower semibounded (i.e., there
is a constant k(θ) so that k(θ)I − Lθ > 0 and the resolvent (k(θ)I − Lθ)−1 is compact). Let
Λθ := (k(θ)I − Lθ)1/2m, the spectrum of this operator is a discrete set Σ(Λθ) consisting of
eigenvalues of finite multiplicity. We enumerate them in order of magnitude,

Σ(Λθ) = {λi(θ)}∞i=1, 0 < λi(θ) < λ2(θ) < . . .
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where each one is counted repeatedly as many times as its multiplicity. Let {hi(θ)}∞i=1 be
an orthonormal system of eigenfunctions of Λθ. Then {hi(θ)}∞i=1 is complete in L2(G) and
hi(θ) ∈ Wm,2

0 (G) ∩ C∞(G) for all i.
In general, the functions hi(θ) might depend on θ. For the sake of simplicity we shall rule

out this possibility in future. We assume :
(R4) There exists a complete orthonormal system {hi}∞i=1 in L2(G) such that for every

i = 1, 2, . . . , hi ∈ Wm,2
0 (G) ∩ C∞(G) and

Λθhi = λi(θ)hi, and Lθhi = µi(θ)hi for all θ ∈ Θ

where Lθ is a closed self adjoint extension of Aθ, Λθ := (k(θ)I−Lθ)1/2m, k(θ) is a constant and
and the spectrum of the operator Λθ consists of eigenvalues {λi(θ)}∞i=1 of finite multiplicities
and µi(θ) = −λ2m

i (θ) + k(θ).

(R5) The operator A1 is uniformly strongly elliptic and has the same system of eigenfunctions
{hi}∞i=1 as Lθ.

Now we focus on the fundamental semimartingale behind the SPDE model. Define

κH := 2HΓ(3/2−H)Γ(H + 1/2), kH(t, s) := κ−1
H (s(t− s))

1
2
−H ,

λH :=
2HΓ(3− 2H)Γ(H + 1

2
)

Γ(3/2−H)
, vt ≡ vHt := λ−1

H t2−2H , MH
t :=

∫ t

0

kH(t, s)dWH
s .

From Norros et al. [25] it is well known thatMH
k,t is a Gaussian martingale, called the funda-

mental martingale whose variance function 〈MH
k 〉t is vHt . Moreover, the natural filtration of

the martingaleMH coincides with the natural filtration of the fBm WH since

WH
k,t :=

∫ t

0

K(t, s)dMH
k,s

holds for H ∈ (1/2, 1) where

KH(t, s) := H(2H − 1)

∫ t

s

rH−
1
2 (r − s)H−

3
2dr, 0 ≤ s ≤ t

and for H = 1/2, the convention K1/2 ≡ 1 is used.
Define

Qk,t :=
d

dvt

∫ t

0

kH(t, s)uk,sds.

Define the process Zk = (Zk,t, t ∈ [0, T ], k ≥ 1) by

Zk,t :=

∫ t

0

kH(t, s)duk,s.

It is easy to see that

Qk,t =
λH

2(2− 2H)

{
t2H−1Zk,t +

∫ t

0

r2H−1dZk,s

}
.

The following facts are known from Kleptsyna and Le Breton [19]:

(i) Zk is the fundamental semimartingale associated with the process uk.
(ii) Zk is a (Ft) -semimartingale with the decomposition

Zk,t = θ

∫ t

0

Qk,sdvs +MH
k,t.
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(iii) uk admits the representation

uk,t =

∫ t

0

KH(t, s)dZk,s.

(iv) The natural filtration (Zt) of Zk and (Ut) of uk coincide.

We have

Qk,t =
d

dvt

∫ t

0

kH(t, s)uk,sds

= κ−1
H

d

dvt

∫ t

0

s1/2−H(t− s)1/2−Huk,sds

= κ−1
H λHt

2H−1 d

dt

∫ t

0

s1/2−H(t− s)1/2−Huk,sds

= κ−1
H λHt

2H−1

∫ t

0

d

dt
s1/2−H(t− s)1/2−Huk,sds

= κ−1
H λHt

2H−1

∫ t

0

s1/2−H(t− s)−1/2−Huk,sds.

The process Qk depends continuously on uk and therefore, the discrete observations of uk does
not allow one to obtain the discrete observations of Q. The process Qk can be approximated
by

Q̃k,n = κ−1
H λHn

2H−1

n−1∑
j=0

j1/2−H(n− j)−1/2−Huk,j.

It is easy to show that Q̃n → Qt almost surely as n→∞, see Tudor and Viens [29].
Define a new partition 0 ≤ r1 < r2 < r3 < · · · < rmk = tk, k = 1, 2, · · · , n and

Q̃i(tk) := κ−1
H ηHt

2H−1
k

mk∑
j=1

r
1/2−H
j (rmk − rj)−1/2−Hui(rj)(rj − rj−1),

k = 1, 2, · · · , n. It is easy to show that Q̃i(tk) → Qi(t) almost surely as mk → ∞ for each
k = 1, 2, · · · , n and i ≥ 1, see Tudor and Viens [29].

We use this approximate observation in the calculation of our estimators. Thus our observa-
tions are

ui(t) ≈
∫ t

0

KH(t, s)dZ̃i(s) where Z̃i(t) = θ

∫ t

0

Q̃i(s)dvs +MH
i,t

observed at t1, t2, . . . , tn.
Note that for equally spaced data

∆vti := vti − vti−1
= λ−1

H

(
T

n

)2−2H

[i2−2H − (i− 1)2−2H ].

For H = 0.5,

vti − vti−1
= λ−1

H

(
T

n

)2−2H

[i2−2H − (i− 1)2−2H ] =
T

n
, i = 1, 2, . . . , n

the standard equispaced partition. In this paper we do not need to assume T/n→ 0 unlike the
finite dimensional diffusion models as we take advantage of the decreasing volatility σ → 0 in
this paper.

https://doi.org/10.28919/ejma.2023.3.2
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For α > d/2, define the Hilbert space H−α with norm ‖ · ‖ as in Huebner and Rozovskii [15].
Let P T,σ

θ the measure generated by the solution {uσ(t, x), t ∈ [0, T ], x ∈ G} to the problem (2.4)
– (2.6) on the space C([0, T ];H−α) with the associated Borel σ-algebra BT . Note that condition
(R1) is equivalent to ∫ T

0

‖ A1Q
σ(s) ‖2 ds <∞ a. s. for fixed σ.

Thus under (R1), for different θ, the measures P T,σ
θ are mutually absolutely continuous.

The Radon-Nikodym derivative (likelihood) of P T,σ
θ with respect to P T,σ

θ0
is given by

Λθ
T,σ(Q) :=

dPT,σθ

dPT,σθ0

(Qσ) = exp

{
σ−1(θ − θ0)

∫ T

0

(A1Q
σ(s), dZσ(s))0

−1

2
σ−2(θ2 − θ2

0)

∫ T

0

‖A1u
σ(s)‖2

0dvs

−σ−1(θ − θ0)

∫ T

0

(A1Q
σ(s), A0Q

σ(s))0dvs

}
.

(2.7)

Maximizing Λθ
T,σ(Q) with respect to θ provides the maximum likelihood estimator (MLE) given

by

θ̂σ =

∫ T
0

(A1Q
σ(s), dZσ(s)− A0Q

σ(s)dvs)0∫ T
0
‖A1Qσ(s)‖2

0dvs
. (2.8)

The Fisher information I(θ0) related to dPT,σθ

dPT,σθ0

is given by

I(θ0) := Eθ0

∫ T

0

‖A1Q
σ(s)‖2

0dvs.

Note that uσ(t, x) is the observation at time t at point x. In practice, it is impossible to
observe the field Qσ(t, x) at all points t and x. Hence, only a finite dimensional projection
Qn,σ := (Qσ

1 (t), . . . , Qσ
n(t)), t ∈ [0, T ] of the solution of the equation (2.4) are observable. In

other words, we can observe the first n highest nodes in the Fourier expansion

Qσ(t, x) =
∞∑
t=1

Qσ
i (t)φi(x)

corresponding to some orthogonal basis {φi(x)}∞i=1. We consider observation continuous in
time t ∈ [0, T ]. Note that Qθ

i (t), i ≥ 1 are independent one dimensional Ornstein-Uhlenbeck
processes (see Huebner and Rozovskii [15]).

Consider the projection of H−α on to the subspace Rn. Let P T,n,σ
θ be the measure generated

by un,σ on C[(0, T ];Rn) with the associated Borel σ-algebra BnT .
For θ ∈ Θ, the measures P T,n,σ

θ and P T,n,σ
θ0

are mutually absolutely continuous with Radon-
Nikodym derivative (likelihood ratio) given by

Λθ
T,n,σ(Q) :=

dPT,n,σθ

dPT,n,σθ0

(Qn,σ) = exp

{
σ−1(θ − θ0)

∫ T

0

(A1Q
n,σ(s), dZn,σ(s))0

−1

2
σ−2(θ2 − θ2

0)

∫ T

0

‖A1Q
n,σ(s)‖2

0dvs

−σ−1(θ − θ0)

∫ T

0

(A1Q
n,σ(s), A0Q

n,σ(s))0dvs

}
.

(2.9)

https://doi.org/10.28919/ejma.2023.3.2
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Maximizing Λθ
n,σ(u) with respect to θ provides the approximate maximum likelihood estimator

(AMLE) given by

θ̂n,σ =

∫ T
0

(A1Q
n,σ(s), dZn,σ(s)− A0Q

n,σ(s)dvs)0∫ T
0
‖A1Qn,σ(s)‖2

0dvs
. (2.10)

Assumption (R5) implies in particular that for every i, µi := µi(θ0) = θ0νi + ki and A1hi =

νihi and A0hi = kihi.
Thus

θ̂σ =

∑∞
i=1 λ

2α
i νi

∫ T
0
Qσ
i (t)(dQσ

i (t)− kiQσ
i (t)dvt)∑∞

i=1 λ
2α
i ν

2
i

∫ T
0
|Qσ

i |2(t)dvt
and

θ̂n,σ =

∑n
i=1 λ

2α
i νi

∫ T
0
Qσ
i (t)(dQσ

i (t)− kiQσ
i (t)dvt)∑n

i=1 λ
2α
i ν

2
i

∫ T
0
|Qσ

i |2(t)dvt
.

The normalized errors are given by

σ−1(θ̂σ − θ0) =

∑∞
i=1 λ

2α
i νi

∫ T
0
Qσ
i (t)dWH

i (t)∑∞
i=1 λ

2α
i ν

2
i

∫ T
0
|Qσ

i |2(t)dvt
and

σ−1(θ̂n,σ − θ0) =

∑n
i=1 λ

2α
i νi

∫ T
0
Qσ
i (t)dWH

i (t)∑n
i=1 λ

2α
i ν

2
i

∫ T
0
|Qσ

i |2(t)dvt
.

Recall that the Fisher information is given by

I(θ0) = Eθ0

∫ T

0

‖A1Q
σ(s)‖2

0dvs.

By the central limit theorem for stochastic integrals (see Nourdin and Peccati [26]), σ−1(θ̂σ−
θ0)→ N (0, I(θ0)−1) as σ → 0 and σ−1(θ̂n,σ − θ0)→ N (0, In(θ0)−1) as σ → 0.

Now we will derive the Fisher information I(θ0). The observations Qσ
i (t), Qσ

2 (t), . . . where
Qσ
i (t), i ≥ 1 are the Fourier coefficients of the Qσ(t, x) satisfy the system of fractional stochastic

differential equations (fractional Vasicek models)

dQσ
i (t) = µi(θ)Q

σ
i (t)dt+ σλ−αi WH

i (t),

Qσ
i (0) = Q0i

where µi(θ0) = ki + θ0νi. The solution of the above fSDE is

Qσ
i (t) = Q0ie

µi(θ0)t + σλ−αi

∫ t

0

eµi(θ0)(t−s)dWH
i (s).

The likelihood Λθ
T,n,σ(u) can be written as

Λθ
T,n,σ(u) :=

dPT,n,σθ

dPT,n,σθ0

(Qn,σ) = exp

{
σ−1(θ − θ0)

n∑
i=1

λ2α
i νi

∫ T

0

Qσ
i (t)dWH

i (t)

−1

2
σ−2(θ − θ0)2

n∑
i=1

λ2α
i ν

2
i

∫ T

0

|Qσ
i |2(t)dvt

}
.

(2.11)

The Fisher information corresponding to the likelihood Λθ
T,n,σ(u) is given by

In,σ(θ0) = σ−2E
n∑
i=1

λ2α
i ν

2
i

∫ T

0

|Qσ
i (t)|2dvt
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= σ−2

n∑
i=1

λ2α
i ν

2
i

2µi
Q2

0i(e
2µiT − 1)− T

n∑
i=1

ν2
i

2µi
+

n∑
i=1

ν2
i

(
e2µiT − 1

4µ2
i

)
.

For smooth initial conditions, i.e.,
∑∞

i=1 i
2s/dQ2

0i <∞ for some s, the first sum converges as
n→∞. The second sum dominates the third.

Similar to the operator Aθ, the operator A1 supplemented by the Dirichlet boundary condi-
tions Dγu(t, x)|∂G = 0 for all |γ| ≤ r − 1 can be extended to a closed self-adjoint operator on
L2(G). We will denote this operator by L1. Its domain D(L1) consists of all functions u ∈ W r,2

0

such that L1 ∈ L2(G). Thus A1hi = νihi for all i = 1, 2, . . .. According to the spectral theory
of self-adjoint operators, the asymptotics of the eigenvalues µi and νi are given by |νi| ∼ im1/d

and µi ∼ −i2m/d, 2m = max(m0,m1).

Due to the asymptotics of the eigenvalues we have

−
∞∑
i=1

ν2
i

µi
=
∞∑
i=1

i2(m1−m)/d <∞

since 2(ord(A1)− ord(A0 + θA1))/d = 2(m1 −m)/d < −1 by (R1).
Hence

lim
n→∞

lim
σ→0

σ2In,σ(θ0) = lim
σ→0

lim
n→∞

σ2In,σ(θ0) =
∞∑
i=1

λ2α
i ν

2
i

2µi
Q2

0i(e
2µiT − 1) =: I(θ0).

With smooth initial condition this sum converges and the Fisher information is finite I(θ0) <

∞ and if u0i 6= 0, then I(θ0) > 0.
The Fisher information In(θ0) related to dPT,n,σθ

dPT,n,σθ0

is given by

lim
σ→0

σ2In,σ(θ0) =
n∑
i=1

λ2
i

2µi
Q2

0i(e
2µiT − 1) =: In(θ0).

Let ω be a real valued, non-negative loss function of polynomial majorant defined on R, which
are symmetric, ω(0) = 0 and monotone on the positive real line.

Under the conditions (R1) – (R5), Huebner [13] showed that θ̂σ and θ̂σ,n are strongly
consistent, asymptotically normally distributed with normalization σ−1 and asymptotically
efficient with respect to the loss function ω as σ → 0 and n and T are fixed.

3. Bernstein-von Mises Theorem

In this section, we show the convergence of the posterior distributions to normal distribution,
which is called the Bernsten-von Mises theorem or Bayesian central limit theorem. Suppose
that Π is a prior probability measure on (Θ,D), where D is the σ-algebra of Borel subsets of
Θ. Assume that Π has a density π(·) with respect to the Lebesgue measure and the density is
continuous and positive in an open neighborhood of θ0.

The posterior density of θ given Qσ is given by

p(θ|uσ) :=
Λθ
T,σ(u)π(θ)∫

Θ
Λθ
T,σ(u)π(θ)dθ

. (3.1)
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Let τ := σ−1(θ − θ̂σ). Then the posterior density of σ−1(θ − θ̂σ) is given by

p∗(τ |uσ) := σ−1p(θ̂σ + στ |Qσ).

Let

νT,σ(τ) :=
dP T,σ

θ̂σ+στ
/dP T,σ

θ0

dP T,σ

θ̂σ
/dP T,σ

θ0

=
dP T,σ

θ̂σ+στ

dP T,σ

θ̂σ

, Cσ :=

∫ ∞
−∞

νσ(τ)π(θ̂σ + στ)dτ.

Clearly
p∗(τ |uσ) = C−1

σ νT,σ(τ)π(θ̂σ + στ).

The quasi-posterior density of θ given in Qn,σ is given by

q(θ|Qn,σ) :=
Λθ
T,n,σ(u)π(θ)∫

Θ
Λθ
T,n,σ(u)π(θ)dθ

. (3.2)

The idea behind quasi-posterior density is that while a regular posterior density uses the full
exact likelihood, quasi-posterior uses the partial likelihood based on the finite number of Fourier
coefficients Qn,σ := (Qσ

1 (t), . . . , Qσ
n(t)), t ∈ [0, T ]. Because the complete observation can not be

observed in practice, quasi-posterior density has computational advantage.
Let φ := σ−1(θ − θ̂n,σ). Then the quasi-posterior density of σ−1(θ − θ̂n,σ) is given by

q∗(φ|Qn,σ) := σ−1q(θ̂n,σ + σφ|Qn,σ).

Let

νT,n,σ(φ) :=
dP T,n,σ

θ̂n,σ+σφ
/dP T,n,σ

θ0

dP T,n,σ

θ̂n,σ/dPT,n,σθ0

=
dP T,n,σ

θ̂n,σ+σφ

dP T,n,σ

θ̂n,σ

, Dn,σ :=

∫ ∞
−∞

νT,n,σ(φ)π(θ̂σ + σφ)dφ.

Clearly
q∗(φ|Qn,σ) = D−1

n,σνT,n,σ(φ)π(θ̂n,σ + σφ).

Let K(·) be a non-negative measurable function satisfying the following two conditions :
(K1) There exists a number η, 0 < η < 1, for which∫ ∞

−∞
K(τ) exp{−1

2
τ 2(1− η)}dτ <∞.

(K2) For every λ > 0 and δ > 0

e−λσ
−2

∫
|τ |>δ

K(σ−1τ)π(θ̂σ + τ)dτ → 0 a.s. [Pθ0 ] as σ → 0.

We need the following Lemma to prove the Bernstein-von Mises theorem.
Lemma 3.1 Under the assumptions (R1) – (R5) and (K1) – (K2),
(i) There exists a δ0 > 0 such that

lim
σ→0

∫
|τ |≤δ0σ−1

K(τ)

∣∣∣∣νσ(τ)π(θ̂σ + σ−1τ)− π(θ0) exp(−1

2
I(θ0)τ 2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

(ii) For every δ > 0,

lim
σ→0

∫
|τ |≥δσ−1

K(τ)

∣∣∣∣νσ(τ)π(θ̂σ + σ−1τ)− π(θ0) exp(−1

2
I(θ0)τ 2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

Proof. From (3.1) and (3.2), it is easy to check that

log νσ(τ) = −1

2
τ 2σ2

∫ T

0

‖A1Q
σ(s)‖2

0dvs.
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Now (i) follows by an application of dominated convergence theorem.
For every δ > 0, there exists λ > 0 depending on δ and β such that

lim
σ→0

∫
|τ |≥δσ−1

K(τ)

∣∣∣∣νσ(τ)π(θ̂n + στ)− π(θ0) exp(−1

2
τ 2)

∣∣∣∣ dτ
≤

∫
|τ |≥δσ−1

K(τ)νσ(τ)π(θ̂n + στ)dτ +

∫
|τ |≥δσ−1

π(θ0) exp(−1

2
τ 2)dτ

≤ e−λσ
−2

∫
|τ |≥δσ−1

K(τ)π(θ̂n + στ)dτ + π(θ0)

∫
|τ |≥δσ−1

exp(−1

2
τ 2)dτ

=: Fσ +Gσ

By condition (K2), it follows that Fσ → 0 a.s. [Pθ0 ] as σ → 0 for every δ > 0. Condition
K(1) implies that Gσ → 0 as σ → 0. This completes the proof of the Lemma.

Now we are ready to prove the generalized version of the Bernstein-von Mises theorem for
parabolic fractional SPDEs.

Theorem 3.1 Under the assumptions (R1) – (R5) and (K1) – (K2), we have

lim
σ→0

∫ ∞
−∞

K(τ)

∣∣∣∣p∗(τ |Qσ)− (
I(θ0)

2π
)1/2 exp(−1

2
I(θ0)τ 2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

Proof. From Lemma 3.1, we have

lim
σ→0

∫ ∞
−∞

K(τ)

∣∣∣∣νσ(τ)π(θ̂σ + στ)− π(θ0) exp(−1

2
I(θ)τ 2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ]. (3.3)

Substituting K(τ) = 1 which trivially satisfies (K1) and (K2), we have

Cσ =

∫ ∞
−∞

νn(τ)π(θ̂σ + στ)→ π(θ0)

∫ ∞
−∞

exp(−1

2
I(θ)τ 2)dτ a.s. [Pθ0 ]. (3.4)

Therefore, by (3.3) and (3.4), we have∫ ∞
−∞

K(τ)

∣∣∣∣p∗(τ |Qσ)− (
β

2π
)1/2 exp(−1

2
τ 2)

∣∣∣∣ dτ
≤

∫ ∞
−∞

K(τ)

∣∣∣∣C−1
σ νn(τ)π(θ̂σ + στ)− C−1

σ π(θ0) exp(−1

2
I(θ0)τ 2)

∣∣∣∣ dτ
+

∫ ∞
−∞

K(τ)

∣∣∣∣C−1
σ π(θ0) exp(−1

2
τ 2)− (

I(θ0)

2π
)1/2 exp(−1

2
I(θ0)τ 2)

∣∣∣∣ dτ
−→ 0 a.s. [Pθ0 ] as σ → 0.

Theorem 3.2 Suppose (R1)-(R5) and
∫∞
−∞ |θ|

rπ(θ)dθ < ∞ for some non-negative integer r
hold. Then

lim
σ→0

∫ ∞
−∞
|τ |r

∣∣∣∣p∗(τ |Qσ)− (
I(θ0)

2π
)1/2 exp(−1

2
I(θ0)τ 2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

Proof. For r = 0, the verification of (K1) and (K2) is easy and the theorem follows from
Theorem 3.1. Suppose r ≥ 1. LetK(τ) = |τ |r, δ > 0 and σ > 0. Using |a+b|r ≤ 2r−1(|a|r+|b|r),

https://doi.org/10.28919/ejma.2023.3.2
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we have

e−λσ
−2

∫
|τ |>δ

K(τσ−1)π(θ̂σ + τ)dτ

≤ σ−r/2e−λσ
−1

∫
|τ−θ̂σ |>δ

π(τ)|τ − θ̂σ|rdτ

≤ 2r−1σ−re−λσ
−2

[

∫
|τ−θ̂σ |>δ

π(τ)|τ |rdτ +

∫
|τ−θ̂σ |>δ

π(τ)|θ̂σ|rdτ ]

≤ 2r−1σ−re−λσ
−1

[

∫ ∞
−∞

π(τ)|τ |rdτ + |θ̂σ|r]

−→ 0 a.s. [Pθ0 ] as σ → 0

from the strong consistency of θ̂σ (see Huebner [13]) and hypothesis of the theorem. Thus the
theorem follows from Theorem 3.1.

Results similar to Theorems 3.1 and 3.2 hold when the posterior density is replaced by the
quqasi-posterior density, the MLE by the AMLE and the Fisher information by In(θ0).

Theorem 3.3 Under the assumptions (R1) – (R5) and (K1) – (K2), we have

lim
σ→0

∫ ∞
−∞

K(τ)

∣∣∣∣q∗(φ|Qn,σ)− (
In(θ0)

2π
)1/2 exp(−1

2
In(θ0)τ 2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

Theorem 3.4 Suppose (R1)–(R5) and
∫∞
−∞ |θ|

rπ(θ)dθ < ∞ for some non-negative integer r
hold. Then

lim
σ→0

∫ ∞
−∞
|φ|r

∣∣∣∣q∗(φ|Qn,σ)− (
In(θ0)

2π
)1/2 exp(−1

2
In(θ0)τ 2)

∣∣∣∣ dφ = 0 a.s. [Pθ0 ].

Remark 3.1 For r = 0 in Theorem 3.2, we have

lim
σ→0

∫ ∞
−∞

∣∣∣∣p∗(τ |Qσ)− (
I(θ0)

2π
)1/2 exp(−1

2
I(θ0)τ 2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

For r = 0 in Theorem 3.4, we have

lim
σ→0

∫ ∞
−∞

∣∣∣∣q∗(τ |Qσ)− (
In(θ0)

2π
)1/2 exp(−1

2
In(θ0)τ 2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

These are the classical forms of Bernstein-von Mises theorem for parabolic fSPDEs in its
simplest form.

As a special case of Theorem 3.2, we obtain for all r ≥ 1,

Eθ0 [σ
−1(θ̂σ − θ0)]r → E[ξr]

as σ → 0 where ξ ∼ N (0, I(θ0)).

As a special case of Theorem 3.4, we obtain for all r ≥ 1,

Eθ0 [σ
−1(θ̂n,σ − θ0)]r → E[ζr]

as σ → 0 where ζ ∼ N (0, In(θ0)).

4. Bayes Estimation
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As an application of Theorem 3.1, we obtain the asymptotic properties of a regular Bayes
estimator of θ. Suppose l(θ, φ) is a loss function defined on Θ × Θ. Assume that l(θ, φ) =

l(|θ− φ|) ≥ 0 and l(·) is non decreasing. Suppose that J is a non-negative function on R+ and
K(·) and G(·) are functions on R such that

(B1) J(σ)l(τσ) ≤ G(τ) for all σ > 0,
(B2) J(σ)l(τσ)→ K(τ) as σ → 0 uniformly on bounded subsets of R.
(B3)

∫∞
−∞K(τ + s) exp{−1

2
τ 2}dτ has a strict minimum at s = 0.

(B4) G(·) satisfies (K1) and (K2).
Let

Bσ(ψ) :=

∫
Θ

l(θ, ψ)p(θ|Qσ)dθ.

A regular Bayes estimator θ̃σ based on Qσ is defined as

θ̃σ := arg inf
ψ∈Θ

Bσ(ψ).

Assume that such an estimator exists.
Further assume that J̃ is a non-negative function on N×R+ and K(·) and G(·) are functions

on R such that
(M1) J̃(n, σ)l(τσ) ≤ G(τ) for all n and σ > 0,
(M2) J̃(n, σ)l(τσ)→ K(τ) as σ → 0 uniformly on bounded subsets of R.
(M3)

∫∞
−∞K(τ + s) exp{−1

2
τ 2}dτ has a strict minimum at s = 0.

(M4) G(·) satisfies (K1) and (K2).
Let

Mn,σ(ψ) =

∫
Θ

l(θ, ψ)q(θ|Qn,σ)dθ.

A quasi-Bayes estimator θ̃n,σ based on Qn,σ is defined as

θ̃n,σ := arg inf
ψ∈Θ

Mn,σ(ψ).

Assume that such an estimator exists.
The following Theorem shows that MLE and Bayes estimators are asymptotically equivalent

as σ → 0.

Theorem 4.1 Assume that (R1) – (R5), (K1) – (K2) and (B1) – (B4) hold. Then we have
(i) σ−1(θ̃σ − θ̂σ)→ 0 a.s. [Pθ0 ] as σ → 0,

(ii) lim
σ→0

J(σ)Bσ(θ̃σ) = lim
σ→0

J(σ)Bσ(θ̂σ) = (
1

2π
)1/2

∫ ∞
−∞

K(τ) exp(−1

2
I−1(θ0)τ 2)dτ a.s. [Pθ0 ].

Proof. The proof is analogous to Theorem 4.1 in Borwanker et al. [8]. We omit the details.

Corollary 4.1 Under the assumptions of Theorem 4.1, we have
(i) θ̃σ → θ0 a.s. [Pθ0 ] as σ → 0.
(ii) σ−1(θ̃σ − θ0)

L→ N (0, I−1(θ0)) as σ → 0.

Proof. (i) and (ii) follow easily by combining Theorem 4.1 and the strong consistency and
asymptotic normality results of the MLE in Huebner [13].
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Theorem 4.2 Under the assumptions of Theorem 4.1, we have

lim
δ→∞

lim
σ→0

sup
|θ−θ0|<δ

Eω
(
σ−1(θ̃σ − θ0)

)
= Eω(ξ), L(ξ) = N (0, I−1(θ0)),

where ω(·) is a loss function as defined at the end of Section 2.
Proof. The Theorem follows from Theorem III.2.1 in Ibragimov-Has’minskii [16] since here
conditions (N1) – (N4) of the said theorem are satisfied using Lemmas 3.1 – 3.3 and local
asymptotic normality (LAN) property.

The following theorem shows that the AMLE and quasi-Bayes estimators are asymptotically
equivalent.

Theorem 4.3 Assume that (R1) – (R5), (K1) – (K2) and (M1) – (M4) hold. Then we have
(i) σ−1(θ̃n,σ − θ̂n,σ)→ 0 a.s. [Pθ0 ] as σ → 0,

(ii) lim
σ→0

R(n, σ)Mn,σ(θ̃n,σ) = lim
σ→0

R(n, σ)Mn,σ(θ̂n,σ)

= (
1

2π
)1/2

∫ ∞
−∞

K(φ) exp(−1

2
I−1
n (θ0)φ2)dφ a.s. [Pθ0 ].

Corollary 4.2 Under the assumptions of Theorem 4.3, we have
(i) θ̃n,σ → θ0 a.s. [Pθ0 ] as σ → 0.
(ii) σ−1(θ̃n,σ − θ0)

L→N (0, I−1
n (θ0)) as σ → 0.

Theorem 4.4 Under the assumptions of Theorem 4.3, we have

lim
δ→∞

lim
σ→0

sup
|θ−θ0|<δ

Eω
(
σ−1(θ̃n,σ − θ0)

)
= Eω(ζ), L(ζ) = N (0, I−1

n (θ0)),

where ω(·) is a loss function as defined at the end of Section 2.

5. Example

Here we give an example where the conditions of the previous theorems are satisfied. Consider
the parabolic SPDE

duσ(t, x) = θuσ(t, x) +
∂2

∂x2
uσ(t, x)dt+ σdWH(t, x), 0 ≤ t ≤ T, x ∈ [0, 1] (5.1)

u(0, x) = u0(x) ∈ L2([0, 1]) (5.2)

uσ(t, 0) = uσ(t, 1) (5.3)

Here A0 = ∂2

∂x2
, A1 = I. Thus m1 = ord(A1) = ord(I) = 0, m0 = ord(A0) = ord( ∂2

∂x2
) = 2.

Recall that 2m = ord(Aθ) = max(m1,m0). Hence m = ord( ∂2

∂x2
+ θI)/2 = 1. The dimension of

the x-space d = 1 since x ∈ [0, 1]. Hence m − d
2

= 1 − 1
2

= 1
2
> 0. So (R1) is satisfied. Other

conditions are trivially satisfied. Thus al the results of the previous sections hold for this case.
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