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ON THE DYNAMICAL BEHAVIORS OF A QUADRATIC DIFFERENCE
EQUATION OF ORDER THREE

E. M. ELSAYED1,2, J. G. AL-JUAID1,3,∗, H. MALAIKAH1

Abstract. In this paper provides proof of the existence of periodicity, asymptotic behavior,
and boundedness of the following quadratic three order difference equation

wn+1 = ζwn−1 +
ηw2

n−1 + ρwn−1wn−2 + κw2
n−2

αw2
n−1 + βwn−1wn−2 + γw2

n−2

, n = 0, 1, 2, . . . ,

constants ζ, η, ρ, κ, α, β and γ are positive real numbers and the initial conditions w−2, w−1 and
w0 are arbitrary non zero real numbers.

1. Introduction

Difference equations in mathematical models have become increasingly popular in recent
years among researchers looking to explain problems in various sciences. Additionally, a variety
of nonlinear difference equations can be explored, with rational nonlinear difference equations
being one of the most popular. However, there are two main directions for difference equations
research: the analysis of solution behavior comes first. In order to better understand the
stability of the equilibrium points and the presence of periodic solutions for the nonlinear
difference equations, a ton of publications have been published. The second approach is to
obtain the solution’s expressions if it is feasible since there are insufficient and explicit methods
to find the solution of nonlinear difference equation.
Khaliq and Elsayed [24] studied the dynamics behavior and existence of the periodic solution
of the difference equation:

wn+1 = ζ1wn−2 +
ζ2w

2
n−2

β1wn−2 + β2wn−5

.

Sadiq and Kalim [32] get the solution behavior of the difference equation:

wn+1 = ζ1wn−9 +
ζ2w

2
n−19

ζ3wn−9 + ζ4wn−19

.
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Also, the authors in [18] considered the stability, periodicity character of the following third
order difference equation

wn+1 = ζwn + ηwn−1 +
ρ+ κwn−2

γ + βwn−2

.

In [3] Amleh considered some special cases of

wn+1 =
(ηwn + ρwnwn−1 + κwn−1)wn
Bwn + Cwnwn−1 +Dwn−1

.

Kostrov et al. [26] analyzed the existence of the boundedness, local and global stability of the
following second order recursive equation

wn+1 =
η + κwn−1

γwn + αwnwn−1 + wn−1

.

The purpose of this research paper is to study the following new rational difference equation

(1) wn+1 = ζwn−1 +
ηw2

n−1 + ρwn−1wn−2 + κw2
n−2

αw2
n−1 + βwn−1wn−2 + γw2

n−2

, n = 0, 1, 2, . . . ,

constants ζ, η, ρ, κ, α, β and γ are positive real numbers andthe initial conditions w−2, w−1 and
w0 are arbitrary non zero real numbers.

2. Some Basic Theorems

In this part, we recall some basic theorems that we use in this paper.
Let Z be some interval of real numbers and the function ψ has continuous partial deriva-

tives on Zk+1 where Zk+1 = Z × Z × · · · × Z(k + 1 − times). Then, for initial conditions
w−k, w−k+1, . . . , w0 ∈ Z, it is clear to see that the difference equation

(2) wn+1 = ψ(wn,wn−1, . . . , wn−k), n = 0, 1, . . . ,

has a unique solution {wn}∞n=−k.

A point w̄ ∈ Z is called an equilibrium point of Eq.(2) if

w̄ = ψ(w̄, w̄, . . . , w̄).

That is, wn = w̄ for n ≥ 0 is a solution of Eq.(2), or equivalently, w̄ is a fixed point of ψ.

Definition 1.(Stability). (i) The equilibrium point w̄ of Eq.(2) is locally stable if for every ε > 0,
there exists δ > 0 such that for all w−k, w−k+1, . . . , w0 ∈ Z with

|w−k − w̄|+ |w−k+1 − w̄|+ · · ·+ |w0 − w̄| < δ,

we have
|wn − w̄| < ε for all n ≥ −k.

(ii) The equilibrium point w̄ of Eq.(2) is locally asymptotically stable if w̄ is locally stable
solution of Eq.(2) and there exists γ > 0, such that for all w−k, w−k+1, . . . , w0 ∈ Z with

|w−k − w̄|+ |w−k+1 − w̄|+ · · ·+ |w0 − w̄| < γ,

we have
lim
n−→∞

wn = w̄.
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(iii) The equilibrium point w̄ of Eq.(2) is global attractor if for all w−k, w−k+1, . . . , w0 ∈ Z, we
have

lim
n−→∞

wn = w̄.

(iv) The equilibrium point w̄ of Eq.(2) is globally asymptotically stable if barwis locally stable,
and w̄ is also a global attractor of Eq.(2).
(v) The equilibrium point w̄ of Eq.(2) is unstable if w̄ is not locally stable. The linearized
equation of Eq.(2) about the equilibrium w̄ is the linear difference equation

(3) sn+1 = Σk
i=0

∂ψ(w̄, w̄, . . . , w̄)

∂wn−i
sn−i.

Now, assume that the characteristic equation associated with Eq.(3) is

p(λ) = p0λ
k + p1λ

k−1 + · · ·+ pk−1λ+ pk = 0.

where pi = ∂ψ(w̄,w̄,...,w̄)
∂wn−i

.

Theorem A [15]. Assume that pi ∈ R ,i = 1, 2 . . . and k ∈ {0, 1, 2, . . . }. Then

Σk
i=1|pi| < 1,

is a suffcient condition for the asymptotic stability of the difference equation

sn+k + p1sn+k+1 + · · ·+ pksn = 0, n = 0, 1, . . . .

Theorem B [35]. Let g : [a, b]k+1 −→ [a, b], be a continuous function, where k is a positive
integer, and where [a, b] is an interval of real numbers. Consider the difference equation

(4) wn+1 = g(wn, wn−1, . . . , wn−k), n = 0, 1, . . . .

Suppose that g satisfies the following conditions.
(1) For each integer i with 1 ≤ i ≤ k + 1; the function g(z1, z2, . . . , zk+1) is weakly monotonic
in zi for fixed z1, z2, . . . , zi−1, zi+1, . . . , zk+1.
(2) If m,M is a solution of the system

m = g(m1,m2, . . . ,mk+1), M = g(M1,M2, . . . ,Mk+1),

then m = M , where for each i = 1, 2, . . . , k + 1, we set

mi = {m, if g is non−decreasing in zi
M, if g is non−increasing in zi

}, Mi = {M, if g is non−decreasing in zi
m, if g is non−increasing in zi

}.

Then there exists exactly one equilibrium point w̄ of Equation (4), and every solution of
Equation (4) converges to w̄.

3. Linearized Stability of Equation (1)

This section proves that Eq.(1) has a unique equilibrium point which is asymptotically stable
under a certain condition. The fixed point of Eq.(1) is given by

w̄ = ζw̄ +
ηw̄2 + ρw̄w̄ + κw̄2

αw̄2 + βw̄w̄ + γw̄2
,
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from which we can obtain the following unique equilibrium point:

w̄ =
η + ρ+ κ

(1− ζ)(α + β + γ)
.

Next, we deifne a function ψ : (0,∞)2 −→ (0,∞) as follows:

(5) ψ(χ, ν) = ζχ+
ηχ2 + ρχν + κν2

αχ2 + βχν + γν2
.

We now turn to find the following partial derivatives:

∂ψ(χ, ν)

∂χ
= ζ +

(2ηχ+ ρν)(αχ2 + βχν + γν2)− (ηχ2 + ρχν + κν2)(2αχ+ βν)

(αχ2 + βχν + γν2)2

= ζ +
(ηβ − ρα)χ2ν + 2(ηγ − κα)χν2 + (ργ − κβ)ν3

(αχ2 + βχν + γν2)2
.

∂ψ(χ, ν)

∂ν
=

(ρχ+ 2κν)(αχ2 + βχν + γν2)− (ηχ2 + ρχν + κν2)(βχ+ 2γν)

(αχ2 + βχν + γν2)2

=
2(κα− ηγ)χ2ν + 2(κβ − ργ)χν2 + (ρα− ηβ)χ3

(αχ2 + βχν + γν2)2
.

Next, evaluating these partial derivatives at the fixed point gives

∂ψ(w̄, w̄)

∂χ
= ζ +

(ηβ − ρα)w̄3 + 2(ηγ − κα)w̄3 + (ργ − κβ)w̄3

(αw̄2 + βw̄ + γw̄2)2

= ζ +
((η − κ)β − (2κ+ ρ)α + (2η + ρ)γ)(1− ζ)

(α + β + γ)(η + ρ+ κ)
= −p1,

∂ψ(w̄, w̄)

∂ν
=

2(κα− ηγ)w̄3 + 2(κβ − ργ)w̄3 + (ρα− ηβ)w̄3

(αw̄2 + βw̄2 + γw̄2)2

= ζ +
((κ− η)β + (2κ+ ρ)α− (2η + ρ)γ)(1− ζ)

(α + β + γ)(η + ρ+ κ)
= −p2.

The corresponding linearized difference equation of Eq.(1) about the equilibrium point is
given by

sn+1 + p1sn + p2sn−1 = 0.

Theorem 1. Suppose that

2|E| < (α + β + γ)(η + ρ+ κ), ζ < 1,

where
E = (η − κ)β − (2κ+ ρ)α + (2η + ρ)γ.

Then, the equilibrium point of Eq.(1) is locally asymptotically stable.
Proof. As stated in Theorem A the fixed point of Eq.(1) is asymptotically stable if

|p1|+ |p2| < 1.

This can be written as

|ζ +
E(1− ζ)

(α + β + γ)(η + ρ+ κ)
|+ | − E(1− ζ)

(α + β + γ)(η + ρ+ κ)
| < 1,

https://doi.org/10.28919/ejma.2023.3.1
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|ζ(α + β + γ)(η + ρ+ κ) + E(1− ζ + E(1− ζ)| < (α + β + γ)(η + ρ+ κ).

Thus,

2|E(1− ζ)| < (1− ζ)(α + β + γ)(η + ρ+ κ).

If ζ < 1, we have

2|E| < (α + β + γ)(η + ρ+ κ).

The proof is complete.

4. Global Attractivity Results

In this section, we will study the global stability of the equilibrium point.
Theorem 2. Let Eq.(5) be increasing in the first and the second variable. Then, the fixed
point of Eq.(1) is a global attractor if ζ 6= 1.
Proof. Assume that Eq.(5) is increasing in the first and the second variable, and let (m,M)

be a solution of the following system:

m = ψ(m,m) = ζm+
ηm2 + ρm2 + κm2

αm2 + βm2 + γm2
,

M = ψ(M,M) = ζM +
ηM2 + ρM2 + κM2

αM2 + βM2 + γM2
.

Simplifying this gives

(6) m(α + β + γ) = am(α + β + γ)η + ρ+ κ,

(7) M(α + β + γ) = aM(α + β + γ)η + ρ+ κ.

Subtracting Eq.(7) from Eq.(6) yields

(1− ζ)(m−M) = 0.

If ζ 6= 1 , we have

m = M.

As claimed by Theorem B, the equilibrium point of Eq.(1) is a global attractor.

Theorem 3.Let Eq.(5) be decreasing in the first and the second variable. Then, the
equilibrium point of Eq.(1) is a global attractor.
Proof. The proof is similar to the previous one and it will be omitted.

Theorem 4. Let Eq.(5) be increasing in the first variable and decreasing in the sec-
ond variable. Then, the fixed point of Eq.(1) is a global attractor if ζ < 1, γ < α + β and
η < κ.

https://doi.org/10.28919/ejma.2023.3.1
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Proof. Let Eq.(5) be increasing in χ and decreasing in ν, and assume that (m,M) is a
solution of the system

m = ψ(m,M) = ζm+
ηm2 + ρmM + κM2

αm2 + βmM + γM2
,

M = ψ(M,m) = ζM +
ηM2 + ρMm+ κm2

αM2 + βMm+ γm2
,

from which we obtain

(8) αm3 + βm2M + γmM2 = ζαm3 + ζβm2M + ζγmM2 + bm2 + ρMm+ κM2,

(9) αM3 + βM2m+ γMm2 = ζαM3 + ζβM2m+ ζγMm2 + bM2 + ρMm+ κm2.

Subtracting Eq.(9) from Eq.(8) and simplifying the result give

(m−M){(1− ζ)[α(m2 +M2) + (α + β − γ)mM ] + (κ− η)(m+M)} = 0.

Hence, if ζ < 1, γ < α + β and η < κ, then

m = M.

The equilibrium point of Eq. (1) is a global attractor, as by Theorem B.

Theorem 5. Let Eq.(5) be decreasing in the first variable and increasing in the sec-
ond variable. Then, the equilibrium point of Eq.(1) is a global attractor if ζ < 1,α < γ and
κ < η.
Proof. Suppose that Eq.(5) is decreasing in χ and increasing in ν, and let (m,M) be a
solution of the following system:

m = ψ(M,m) = ζM +
ηM2 + ρMm+ κm2

αM2 + βMm+ γm2
,

M = ψ(m,M) = ζm+
ηm2 + ρmM + κM2

αm2 + βmM + γM2
,

which can be written as

(10) αmM2 + βMm2 + γm3 = ζαM3 + ζβM2m+ ζγm2M + bM2 + ρMm+ κm2,

(11) αm2M + βmM2 + γM3 = ζαm3 + ζβm2M + ζγmM2 + bm2 + ρmM + κM2.

Subtract Eq.(11) from Eq.(10) and simplify the result to have

(m−M){[β − α + ζ(β − γ) + γ]mM + (γ + ζα)(m2 +M2) + (η − κ)(m+M)} = 0.

Or,

(m−M){[β(1 + ζ)− (1− ζ)(γ − α)]mM + (γ + ζα)(m2 +M2) + (η − κ)(m+M)} = 0.

https://doi.org/10.28919/ejma.2023.3.1
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Hence, if ζ < 1, α < γ and κ < η, then

m = M.

The fixed point in Eq. (1) is a global attractor as a result, according to Theorem B.

5. Periodic Solution

In this section, we will present a principal theorem that proves the existence of periodic two
solutions of Eq.(1).

Theorem 6. Eq.(1) has positive prime periodic two solutions if

η + ρr + κr2

(r − ζ)(α + βr + γr2)
=

ηr2 + ρr + κ

(1− ζr)(αr2 + βr + γ)
, r 6= 0,±1, r ∈ R.

Proof. . Assume that there exist a prime period two solution

. . . p, q, p, q, . . . ,

of Eq.(1). Then, it can be observed from Eq.(1) that

p = ζq +
ηq2 + ρqp+ κp2

αq2 + βqp+ γp2
,

q = ζp+
ηp2 + ρpq + κq2

αp2 + βpq + γq2
.

Clearing the denominator gives

(12) αpq2 + βp2q + γp3 = ζαq3 + ζβq2p+ ζγp2q + ηq2 + ρpq + κp2,

(13) αp2q + βpq2 + γq3 = ζαp3 + ζβp2q + ζγpq2 + ηp2 + ρpq + κq2,

Dividing Eq.(12) and Eq.(13) by p3and q3, respectively, yields

(14) α(
q

p
)2 + β(

q

p
) + γ = ζα(

q

p
)3 + ζβ(

q

p
)2 + ζγ(

q

p
) + η(

q2

p3
) + ρ(

q

p2
) +

κ

p
,

(15) α(
p

q
)2 + β(

p

q
) + γ = ζα(

p

q
)3 + ζβ(

p

q
)2 + ζγ(

p

q
) + η(

p2

q3
) + ρ(

p

q2
) +

κ

q
.

Now, we suppose that p = rq, r ± 0,±1, r ∈ R. Then, Eq.(14) and Eq.(15)become

(16)
α

r2
+
β

r
+ γ =

ζα

r3
+
ζβ

r2
+
ζγ

r
+

η

r2p
+

ρ

rp
) +

κ

p
,

(17) αr2 + βr + γ = ζαr3 + ζβr2 + ζγr +
ηr2

q
+
ρr

q
) +

κ

q
.

Multiplying Eq.(16) by r3 and simplifying yields

https://doi.org/10.28919/ejma.2023.3.1
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(18) p =
r(η + ρr + κr2)

(r − ζ)(α + βr + γr2)
.

Now, we can obtain from Eq.(17) that

(19) q =
ηr2 + ρr + κ

(1− ζr)(αr2 + βr + γr2)
.

Since p = rq, it is easy to see from Eq.(18) and Eq.(19) that

r(η + ρr + κr2)

(r − ζ)(α + βr + γr2)
=

r(ηr2 + ρr + κ)

(1− ζr)(αr2 + βr + γr2)
.

The proof is complete.

6. Existence of Bounded Solution

In this section, we will study the existence of the boundedness of Eq.(1)

Theorem 7. Every solution of Eq.(1) is bounded if ζ < 1 .
Proof. Let {wn}∞n=−2 be a solution of Eq.(1). Then, it follows from Eq.(1) that

wn+1 = ζwn−1 +
ηw2

n−1 + ρwn−1wn−2 + κw2
n−2

αw2
n−1 + βwn−1wn−2 + γw2

n−2

= ζwn−1 +
ηw2

n−1

αw2
n−1 + βwn−1wn−2 + γw2

n−2

+
ρwn−1wn−2

αw2
n−1 + βwn−1wn−2 + γw2

n−2

+
κw2

n−2

αw2
n−1 + βwn−1wn−2 + γw2

n−2

≤ ζwn−1 +
η

α
+
ρ

β
+
κ

γ
.

By using comparison, we have

sn+1 = ζsn−1 +
η

α
+
ρ

β
+
κ

γ
.

This difference equation has the following solution:

sn+1 = ζns0 + constant,

which is asymptotically stable if ζ < 1; and converges to the equilibrium point

s̄ =
ηβγ + ραγ + καβ

αβγ(1− ζ)
.

Therefore,

lim
n−→∞

supwn ≤
ηβγ + ραγ + καβ

αβγ(1− ζ)
.

Theorem 8. Every solution of Eq.(1) is unbounded if ζ > 1 .
Proof. Let {wn}∞n=−2 be a solution of Eq.(1). Then, it follows from Eq.(1) that

wn+1 = ζwn−1 +
ηw2

n−1 + ρwn−1wn−2 + κw2
n−2

αw2
n−1 + βwn−1wn−2 + γw2

n−2

> ζwn−1, for all n ≥ 1.

https://doi.org/10.28919/ejma.2023.3.1
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Hence, the right hand side can be written as follows sn+1 = asn, which has the following solution

sn = ζns0 + constant.

Since ζ > 1 ; limn−→∞ sn =∞. Then, by using ratio test {wn}∞n=−2 is unbounded from above.

7. Numerical Examples

This section aims to validate our theoretical work from the earlier sections.
Example 1. This example demonstrates how the behavior of the solution in Eq.(1) when we
assume that ζ = 0.2, η = 1, ρ = 0.3, κ = 1, α = 4, β = 2.8, γ = 5.1, w−2 = 0.1, w−1 = 0.4

and w0 = 0.56. See Figure 1.
Example 2. In figure 2 illustrates the stability of the solution to Equation (1) when we take
the supposition that ζ = 0.2, η = 0.13, ρ = 0.4, κ = 0.1, α = 1, β = 2, γ = 3, w−2 =

0.1, w−1 = 0.31 and w0 = 0.2.
Example 3. Figure 3 We present that Eq. (1) is unbounded if we let ζ = 4, η = 1, ρ =

0.3, κ = 5, α = 8, β = 4, γ = 2, w−2 = 8, w−1 = 5 and w0 = 2.
Example 4. This illustration shows how Eq is periodic (1)if we assume that
ζ = 0.2111, η = 5.5, ρ = 0.3, κ = 1, α = 3, β = 2, γ = 5.2, r = 2, and let us
assume that the initial conditions are w−2 = p, w−1 = q Eqs. (19) and (18) describe this,
respectively. The behavior of the Eq. (1) solution is then seen in Figure 4.

Figure 1.

https://doi.org/10.28919/ejma.2023.3.1
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Figure 2.

Figure 3.

Figure 4.
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