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ON THE NULLITY OF SOME FAMILIES OF R-PARTITE GRAPHS

LYCA DC. MARCELINO1,2,∗, ISAGANI B. JOS2

Abstract. The nullity of a graph G, denoted by η(G) is defined to be the multiplicity of the
eigenvalue zero in the spectrum of a graph. The spectrum of a graph G is a two-row matrix, the
first row elements are the distinct eigenvalues of its adjacency matrix A(G) and the second row
elements are its corresponding multiplicities. Furthermore, the rank of G, denoted by rank(G)
is also the rank of A(G), that is rank(G) = rank(A(G)). In addition, given that G is of order
n, it is known that η(G) = n− rank(G). Thus, any result about rank can be stated in terms of
nullity and vice versa. In this paper, we investigate some families of r-partite graphs of order
n and we determine the nullity of these r-partite families using its rank. First, we consider the
complete r-partite graphs denoted by Kn1,n2,n3,...,nr where n = n1+n2+n3+ ...+nr and r ≥ 4.
Second, we also consider a family of r-partite graphs where n ≥ 2r − 1 and r ≥ 4, which is an
extension of a family of tripartite graphs introduced in the paper “On the nullity of a family of
tripartite graphs" by Farooq, Malik, Pirzada and Naureen.

1. Introduction

Let G = (V,E) be a simple graph where V = {v1, v2, ..., vn} is a finite set of vertices and E
is a finite set of edges. The order of graph G is the number of its vertices denoted by n while
the size of graph G is the number of its edges denoted by m. Throughout this paper, the order
of G is n.

A square matrix that is used to represent a graph G is called its adjacency matrix. The
adjacency matrix A(G) of G of order n is the n × n symmetric matrix [aij] such that aij = 1

if vi and vj are adjacent and 0 otherwise, for any pair vi, vj ∈ V . The main concern of this
study is on multiplicity of one of the eigenvalues of the adjacency matrix of G. The nullity
of a graph G, denoted by η(G) is defined to be the multiplicity of the eigenvalue zero in the
spectrum of a graph. The spectrum of a graph G is a two-row matrix, the first row elements
are the distinct eigenvalues of its adjacency matrix A(G) and the second row elements are its
corresponding multiplicities. Moreover, the rank of G, denoted by rank(G) is also the rank of
A(G), that is rank(G) = rank(A(G)). Recall that the rank of A(G) is defined as the maximum
number of linearly independent row/column vectors in A(G). In addition, it is known that
η(G) = n − rank(G), thus any result about rank can be stated in terms of nullity and vice
versa.
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A notion on graphs which is important is the isomorphism of graphs. Let G = (V,E) and
G′ = (V ′, E ′) be two graphs. The graph G and G′ are said to be isomorphic and we write
G ∼= G′, if there exists a bijection φ : V 7→ V ′ such that xy ∈ E ⇐⇒ φ(x)φ(y) ∈ E ′ for all
x, y ∈ V .

Collatz and Sinogowitz [5], first posed the problem of characterizing all graphs which satisfy
η(G) > 0. This question is of great interest in chemistry. As has been shown in [6], for a bipartite
graph G corresponding to an alternant hydrocarbon, if η(G) > 0, then it indicates that the
molecule which such a graph represents is unstable. The nullity of a graph is also important in
mathematics, since it is related to the singularity of A(G). Ashraf and Bamdad [7] considered
the opposite problem where graphs have nullity zero.

Cheng and Liu [2] characterized the extremal graphs attaining the upper bound n − 2 and
the second upper bound n−3. They discussed the nullity of a complete bipartite and complete
tripartite graphs. Fan and Qian [3] determined the nullity set of bipartite graphs of order n
and characterized the bipartite graphs with nullity n− 4 and the regular bipartite graphs with
nullity n − 6. Farooq et. al [1] obtained the nullity set of a class of n-vertex tripartite graphs
and characterized these tripartite graphs with nullity n − 4 and some tripartite graphs with
nullity n− 6 in this class. Moreover, Farooq et. al also mentioned that the nullity problem in
tripartite graphs does not follow as an extension to that of the nullity of bipartite graphs.

In this paper, we considered and investigated some families of r-partite graphs of order n
and the nullity of these graphs is going to be determine using its rank. First, the complete
r-partite graphs denoted by Kn1,n2,n3,...,nr where n = n1 +n2 +n3 + ...+nr and r ≥ 4 was found
to have a nullity of n− r. Second, the family of r-partite graphs where n ≥ 2r − 1 and r ≥ 4

with nullity n − (r − 1 + 2rank(D)), where D is a matrix defined on Section 3.2. This follow
as an extension of family of tripartite graphs and as expansion of some results discussed in On
the nullity of a family of tripartite graphs by Farooq, Malik, Pirzada and Naureen [1].

2. Preliminaries

Let G = (V,E) be a graph of order n. Consider S ⊆ V , where S is nonempty. The neighbor
set of S in G, denoted by N(S) is a set containing those vertices of G that are adjacent to some
vertex in S. The subgraph of G induced by S, denoted by G[S] is defined to be the graph whose
vertex set is S and whose edge set consists of all of the edges in E that have both endpoints
in S. For any v ∈ V , the degree of vertex v, denoted by d(v), is defined to be the number of
edges incident to v. Now, the union of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted by
G1 ∪G2, is defined to be the graph with vertex set V1 ∪V2 and edge set E1 ∪E2. In this paper,
we consider disjoint union of graphs where the union of vertex sets and the union of edge sets
are disjoint.

The graph G is a bipartite if its vertex set can be partitioned into two subsets X and Y

such that G[X] and G[Y ] are empty graphs and the partition (X, Y ) is called a bipartition. A
complete bipartite graph is a bipartite graph with bipartition (X, Y ) in which each vertex of
X is joined to each vertex of Y .

We also consider expanded path and expanded cycle in this study.

Definition 1. The n-vertex graph G is said to be an expanded path of length k if its vertex set
V can be partitioned into V1, V2, ..., Vk, k ≥ 2 such that
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(1) G[Vi] is an empty graph for 1 ≤ i ≤ k,
(2) G[Vi ∪ Vi+1] is a complete bipartite graph for 1 ≤ i ≤ k − 1,
(3) G[Vi ∪ Vj] is an empty graph for 1 ≤ i, j ≤ k with |i− j| > 1.

In addition, the expanded path of length k is denoted by Pk(V1, V2, ..., Vk) or Pk and each Vi
is called an expanded vertex of order |Vi|.

V1 V2 V3 V4 ... Vk−1 Vk

Figure 1: Expanded Path of length k

Definition 2. An expanded cycle of length k where k ≥ 3, denoted by Ck(V1, V2, ..., Vk) or Ck is
obtained from the expanded path Pk by adding edges between each vertex of V1 and each vertex
of Vk.

Definition 3. An expanded decomposition of the graph G is a list of expanded subgraphs such
that each edge of G appears in exactly one expanded subgraph in the list.

The graph in Figure 2 has expanded decomposition C5,C3,P2.

V3 V2

V1

V5V4

V6

V7

Figure 2: C5(V1, V2, V3, V4, V5),C3(V5, V6, V7) and P2(V2, V6)

3. Results and Discussion

In this section, we define two different families of r-partite graphs and determine its rank
and nullity.

Remark 1. All graphs considered in this section are expanded graphs.

3.1. Nullity of a complete r-partite graph. Let r ≥ 2 be an integer. A r-partite graph is
a graph G in which vertex set V is partitioned into r nonempty subsets P1, P2, ..., Pr in such
a way that no edge joins two vertices in the same partite sets, that is, G[Pi], i = 1, 2, 3, ..., r

are empty graphs. A complete r-partite graph denoted by Kn1,n2,n3...,nr is a r-partite graph in
which each vertex of Pi joined to each vertex of G−Pi where |Pi| = ni, n = n1+n2+n3+ ...+nr

and n1, n2, ..., nr > 0. For an isolated vertex K1, we denote by rK1 the r copies of K1.
In [2], Cheng and Liu discussed the nullity of a simple graph G such that G is isomorphic

to a complete bipartite graph/complete tripartite graph.

The succeeding theorem is about the nullity of a simple graph G that is isomorphic to a
complete r-partite graph, where r ≥ 4.

https://doi.org/10.28919/ejma.2022.2.16
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Theorem 1. Let G be a simple graph with n vertices and G has no isolated vertices. If G
is isomorphic to a complete r-partite graph Kn1,n2,...,nr where n = n1 + n2 + ... + nr, then
rank(G) = r and η(G) = n− r.

Proof. Suppose G is isomorphic to a complete r-partite graph, that is G ∼= Kn1,n2,...,nr and let
P1, P2, P3, P4, ..., Pr be the partite sets of G. Thus, the adjacency matrix A(G) of G is

P1 P2 P3 P4 · · · Pr

P1

P2

P3

P4

...
Pr



0n1×n1 1n1×n2 1n1×n3 1n1×n4 · · · 1n1×nr

1n2×n1 0n2×n2 1n2×n3 1n2×n4 · · · 1n2×nr

1n3×n1 1n3×n2 0n3×n3 1n3×n4 · · · 1n3×nr

1n4×n1 1n4×n2 1n4×n3 0n4×n4 · · · 1n4×nr

...
...

...
... . . . ...

1nr×n1 1nr×n2 1nr×n3 1nr×n4 · · · 0nr×nr


,

observe that the A(G) have r sets of identical rows. Now, multiply -1 to row (
j∑

i=1

ni) + 1, then

add to row (
j∑

i=1

ni) + 2, (
j∑

i=1

ni) + 3 , ... , (
j∑

i=1

ni) + nj+1, where j = 0, 1, ..., r − 1. By doing

this, it will result to a matrix with r non-zero rows and all the other rows are zero rows. Then
these r non-zero rows are linearly independent and the proof is straightforward. It follows
that rank(A(G)) = rank(G) = r. Moreover, it is known that η(G) = n − rank(G), therefore
η(G) = n− r. �

3.2. Nullity of the extension of family of tripartite graphs introduced in “On the
nullity of a family of tripartite graphs". In [1] a special class of tripartite graphs was
introduced and its nullity determined. We extend this family to a family of r-partite graphs,
where r ≥ 4. We also established the nullity of these graphs.

3.2.1. For r = 4, 4-partite graphs. Let G = (V,E) be a graph of order n. Suppose G is
a 4-partite with vertex set V partitioned into four subsets P1,P2,P3 and P4 such that G[Pi],
i = 1, 2, 3, 4 are empty graphs and the partition {P1, P2, P3, P4} is called a 4-partition. We
consider a special class of 4-partite graphs defined as follows. Let F4n be the family of those n
- vertex 4-partite graphs G, n ≥ 7, whose 4-partition {P1, P2, P3, P4} satisfies the following:

(1) G[P2 ∪ P3 ∪ P4] is a complete tripartite.

(2) NP2(P
′
1) 6= P2, NP3(P

′
1) 6= P3 and NP4(P

′
1) 6= P4, ∀P ′1 ⊆ P1.

Consider G ∈ F4n with 4-partition {P1, P2, P3, P4}. Since G ∈ F4n , G satisfies property (1) and
(2). So, we can define the adjacency matrix A(G) of G as

A(G) =

P2 P3 P4 P1

P2

P3

P4

P1


0 J C D1

J t 0 M D2

Ct M t 0 D3

Dt
1 Dt

2 Dt
3 0
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such that J , C and M denote the matrices with all entries 1 while 0 denote zero matrix.
Furthermore, D1, D2, D3 denote the matrices that shows the relationship of P1 to P2, P3, P4,
respectively.
Let B and D be defined as follow,

B =

 0 J C

J t 0 M

Ct M t 0


and

D =

D1

D2

D3


Thus, the matrix A(G) can be written as

(3) A(G) =

[
B D

Dt 0

]
.

Let

(4) U =
[
B D

]
, L =

[
Dt 0

]
.

Then A(G) can be written as

A(G) =

[
U

L

]
.

For vertex v ∈ V , denote by Uv the row of A(G) corresponding to the vertex v if v ∈ P2∪P3∪P4,
and by Lv if v ∈ P1.
Now, consider S ⊆ P2 ∪ P3 ∪ P4. Thus from the matrix A(G), we have

(5)
∑
v∈S

qvUv = [b1 b2 b3 d]

where b1, b2, b3 are constant row matrices respectively of dimension 1×|P2|, 1×|P3| and 1×|P4|,
while d is a row vector of dimension 1× |P1|, and qv’s are real constants. Equivalently, for any
P ′1 ⊆ P1, we can write

(6)
∑
v∈P ′

1

q′vLv = [d1 d2 d3 0]

where d1, d2, d3 and 0 are row vectors respectively of dimension 1× |P2|, 1× |P3|, 1× |P4| and
1× |P1|, and q′v’s are real constants.

The following results gives information about the rank of a 4-partite graph in F4n .

Lemma 2. Let G ∈ F4n with 4-partition {P1, P2, P3, P4} and the adjacency matrix A(G) defined
by (3). Then rank(G) = rank(U) + rank(L) where U and L are defined by (4).

Proof. To prove rank(G) = rank(U) + rank(L), it is enough to show that if
∑

v∈S qvUv 6= 0

and
∑

v∈P ′
1
q′vLv 6= 0 where qv’s and q′v’s are real constants, then

∑
v∈S qvUv 6=

∑
v∈P ′

1
q′vLv.

Let S and P ′1 be an arbitrary subsets of P2 ∪ P3 ∪ P4 and P1, respectively. Now, we have∑
v∈S qvUv = [b1 b2 b3 d] and

∑
v∈P ′

1
q′vLv = [d1 d2 d3 0] such that b1, b2, b3, d, d1, d2, d3, and 0

are defined in (5) and (6).

https://doi.org/10.28919/ejma.2022.2.16
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Suppose
∑

v∈S qvUv =
∑

v∈P ′
1
q′vLv, then [b1 b2 b3 d] = [d1 d2 d3 0]. By condition (2), there

exists a vertex in P2, a vertex in P3 and a vertex in P4 which are not adjacent to any vertex
in P1. This implies that each of D1, D2, D3 has at least one zero row which also implies that
there is at least one zero column in each Dt

1, D
t
2, D

t
3. It follows that there are at least three zero

columns in Dt corresponding to a vertex in each P2, P3 and P4. Thus, there are zero entries in
vectors d1, d2 and d3.
In addition, since [b1 b2 b3 d] = [d1 d2 d3 0] and as b1, b2 and b3 are constant vectors, thus vectors
b1, b2, b3, d, d1, d2, d3 are all zero vectors. Therefore,

∑
v∈S qvUv = 0 and

∑
v∈P ′

1
q′vLv = 0.

This completes the proof. �

Theorem 3. Let G ∈ F4n with 4-partition {P1, P2, P3, P4} and the adjacency matrix A(G)

defined by (3). Then rank(G) = 3 + 2rank(D).

Proof. Consider G ∈ F4n and let A(G) be the adjacency matrix defined in (3). Now, by
similar arguments applied in Lemma 1, then we have rank(U) = rank(B) + rank(D) and
rank(L) = rank(Dt) = rank(D). Since matrix B is an adjacency matrix of complete tripartite
graph, it follows that rank(B) = 3. Thus by Lemma 1, we can get rank(G) = rank(U) +

rank(L) = (rank(B) + rank(D)) + rank(D) and it implies that rank(G) = 3 + 2rank(D). �

Corollary 4. If G ∈ F4n with 4-partition {P1, P2, P3, P4}, then η(G) = n− (3 + 2rank(D)).

Let Ck(ē) denote an expanded cycle of length k with an expanded chord ē joining two
non-adjacent expanded vertices of the cycle Ck such that the expanded vertices joined by ē

form a complete bipartite.

Now, we have the following observations.

Theorem 5. If G is a graph of order n such that G has expanded decomposition C7(ē) ∪ kK1,
2C3, P2 shown in Figure 3, k ≥ 0, then G ∈ F4n and η(G) = n− 5.

P ′3 P ′4

P ∗2 P ′2

P ∗4 P ∗3

P ∗1 P ′1

ē

Figure 3

Proof. We need to show that (i) G ∈ F4n and (ii) η(G) = n− 5.
(i). Suppose P1 = P ∗1 ∪ P ′1, P2 = P ∗2 ∪ P ′2, P3 = P ∗3 ∪ P ′3 and P4 = P ∗4 ∪ P ′4 where P ′1 is
possibly empty and k = |P ′1|. Thus, we notice that G is a 4-partite graph with 4-partition
{P1, P2, P3, P4}. Furthermore, G satisfies property (2) since NP2(P1) 6= P2, NP3(P1) 6= P3 and
NP4(P1) 6= P4. In addition, see that G[P2 ∪ P3 ∪ P4] = C3(P2, P3, P4) which is a complete

https://doi.org/10.28919/ejma.2022.2.16
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tripartite graph, it follows that G satisfies property (1). Therefore G ∈ F4n.
(ii). Since G ∈ F4n , it follows from (3) that the adjacency matrix of G is given by

A(G) =

P ∗2
P ′2
P ∗3
P ′3
P ∗4
P ′4
P ∗1
P ′1



0 0 1 1 1 1 1 0

0 0 1 1 1 1 0 0

1 1 0 0 1 1 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 1 0

1 1 1 1 0 0 0 0

1 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0


where 1 denotes all-ones matrix and 0 denotes the zero matrix with appropriate sizes. Observe
the adjacency matrix of G, the sub matrix D where its columns correspond to P ∗1 , P ′1 and the
sub matrix Dt with rows correspond to P ∗1 , P ′1. Then, we see that rows of P ∗1 are identical while
the rows of P ′1 are all zero rows, it implies that rank(D) = 1. By using Corollary 1, it follows
that η(G) = n− (3 + 2rank(D)) = n− (3 + 2(1)). Therefore, η(G) = n− 5. �

Theorem 6. Let G be a graph of order n. If G has one of the following expanded decomposition,

(1) C7(ē), 2C3, 2P2 shown in Figure 4 (a,b,c)
(2) C7(ē), 2C3, 3P2 shown in Figure 5 (d,e,f),

then G ∈ F4n and η(G) = n− 7.

P ′3 P ′4

P ∗2 P ′2

P ∗4 P ∗3

P ∗1 P ′1

ē

P ′3 P ′4

P ∗2 P ′2

P ∗4 P ∗3

P ∗1 P ′1

ē

P ′3 P ′4

P ∗2 P ′2

P ∗4 P ∗3

P ∗1 P ′1

ē

(a) (b) (c)
Figure 4

P ′3 P ′4

P ∗2 P ′2

P ∗4 P ∗3

P ∗1 P ′1

ē

P ′3 P ′4

P ∗2 P ′2

P ∗4 P ∗3

P ∗1 P ′1

ē

P ′3 P ′4

P ∗2 P ′2

P ∗4 P ∗3

P ∗1 P ′1

ē

(d) (e) (f)
Figure 5

Proof. We want to show that (i) G ∈ F4n and (ii) η(G) = n− 7.
(i). For both decomposition, let P1 = P ∗1 ∪P ′1, P2 = P ∗2 ∪P ′2, P3 = P ∗3 ∪P ′3 and P4 = P ∗4 ∪P ′4.

https://doi.org/10.28919/ejma.2022.2.16
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We see that G is a 4-partite graph with 4-partition {P1, P2, P3, P4}. Now, observe that G
satisfies Property (2), because NP2(P1) 6= P2, NP3(P1) 6= P3 and NP4(P1) 6= P4. Similar to
Theorem 12, G satisfies Property (1) because G[P2 ∪ P3 ∪ P4] = C3(P2, P3, P4) is a complete
tripartite graph. Since G satisfies Property (1) and (2), G ∈ F4n .
(ii). By (3), the adjacency matrix of G can be written as follow since we already established
that G ∈ F4n ,

(a).

P ∗2
P ′2
P ∗3
P ′3
P ∗4
P ′4
P ∗1
P ′1



0 0 1 1 1 1 1 1

0 0 1 1 1 1 0 0

1 1 0 0 1 1 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 1 0

1 1 1 1 0 0 0 0

1 0 1 0 1 0 0 0

1 0 0 0 0 0 0 0


(b).

P ∗2
P ′2
P ∗3
P ′3
P ∗4
P ′4
P ∗1
P ′1



0 0 1 1 1 1 1 0

0 0 1 1 1 1 0 0

1 1 0 0 1 1 1 1

1 1 0 0 1 1 0 0

1 1 1 1 0 0 1 0

1 1 1 1 0 0 0 0

1 0 1 0 1 0 0 0

0 0 1 0 0 0 0 0



(c).

P ∗2
P ′2
P ∗3
P ′3
P ∗4
P ′4
P ∗1
P ′1



0 0 1 1 1 1 1 0

0 0 1 1 1 1 0 0

1 1 0 0 1 1 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 1 1

1 1 1 1 0 0 0 0

1 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0


(d).

P ∗2
P ′2
P ∗3
P ′3
P ∗4
P ′4
P ∗1
P ′1



0 0 1 1 1 1 1 1

0 0 1 1 1 1 0 0

1 1 0 0 1 1 1 1

1 1 0 0 1 1 0 0

1 1 1 1 0 0 1 0

1 1 1 1 0 0 0 0

1 0 1 0 1 0 0 0

1 0 1 0 0 0 0 0



(e).

P ∗2
P ′2
P ∗3
P ′3
P ∗4
P ′4
P ∗1
P ′1



0 0 1 1 1 1 1 1

0 0 1 1 1 1 0 0

1 1 0 0 1 1 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 1 1

1 1 1 1 0 0 0 0

1 0 1 0 1 0 0 0

1 0 0 0 1 0 0 0


(f).

P ∗2
P ′2
P ∗3
P ′3
P ∗4
P ′4
P ∗1
P ′1



0 0 1 1 1 1 1 0

0 0 1 1 1 1 0 0

1 1 0 0 1 1 1 1

1 1 0 0 1 1 0 0

1 1 1 1 0 0 1 1

1 1 1 1 0 0 0 0

1 0 1 0 1 0 0 0

0 0 1 0 1 0 0 0


where 1 denotes all-ones matrix and 0 denotes zero matrix with appropriate sizes. Through
the adjacency matrix of G, the sub matrix D where its columns correspond to P ∗1 , P ′1 and the
sub matrix Dt with rows correspond to P ∗1 , P ′1. Thus, we notice that in both decomposition,
rows of P ∗1 are identical and rows of P ′1 are also identical, it follows that rank(D) = 2. Now,
by Corollary 1, it implies that η(G) = n − (3 + 2rank(D)) = n − (3 + 2(2)). Therefore,
η(G) = n− 7. �

Theorem 7. For graph G ∈ F4n with 4-partition {P1, P2, P3, P4}, η(G) = n− 3 if and only if
G = C3(P2, P3, P4)

⋃
|P1|K1.

https://doi.org/10.28919/ejma.2022.2.16
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Proof. ( =⇒ ) Suppose G ∈ F4n with 4-partition {P1, P2, P3, P4}. Using Corollary 1, we have
the equation η(G) = n−(3+2rank(D)) and since η(G) = n−3 from our assumption, it implies
that rank(D) = 0. Thus, the degree of v or d(v) is zero, for all v ∈ P1 which implies that all
vertices in P1 are isolated vertex. Hence, G = C3(P2, P3, P4)

⋃
|P1|K1.

( ⇐= ) Suppose G = C3(P2, P3, P4)
⋃
|P1|K1. Then by Theorem 2.2 from the paper On the

nullity of bipartite graphs [3], its follows that η(G) = n− 3.
This completes the proof. �

3.2.2. For r ≥ 5. This is an extension of family of 4-partite graphs discussed in Section 3.2.1.

Let G = (V,E) be a graph of order n. Now, consider a special class of r-partite graphs
defined as follows. Let Frn be the family of those n - vertex r-partite graphs G with n ≥ 2r−1,
whose r-partition {P1, P2, P3, ..., Pr} satisfies the following:

(7) G[P2 ∪ P3 ∪ ... ∪ Pr] is complete (r − 1)-partite.

(8) NPj
(P ′1) 6= Pj, where j = 2, 3, ..., r ∀ P ′1 ⊆ P1.

Let G ∈ Frn with r-partition {P1, P2, P3, ..., Pr}. The adjacency matrix A(G) of G is defined
by

A(G) =

P2 P3 P4 · · · Pr P1

P2

P3

P4

...
Pr

P1



0n2×n2 1n2×n3 1n2×n4 · · · 1n2×nr D1

1n3×n3 0n3×n3 1n3×n4 · · · 1n3×nr D2

1n4×n2 1n4×n3 0n4×n4 · · · 1n4×nr D3

...
...

... . . . ...
...

1nr×n2 1nr×n3 1nr×n4 · · · 0nr×nr Dr−1

Dt
1 Dt

2 Dt
3 · · · Dt

r−1 0


such that Dk, k = 1, 2, 3..., r − 1 denote the matrices that shows the relationship of P1 to Pj,
j = 2, 3, 4, ..., r, respectively.
Let B and D denote the matrices defined as follows,

B =

P2 P3 P4 · · · Pr

P2

P3

P4

...
Pr


0n2×n2 1n2×n3 1n2×n4 · · · 1n2×nr

1n3×n2 0n3×n3 1n3×n4 · · · 1n3×nr

1n4×n2 1n4×n3 0n4×n4 · · · 1n4×nr

...
...

... . . . ...
1nr×n2 1nr×n3 1nr×n4 · · · 0nr×nr


and D =

P1

P2

P3

P4

...
Pr


D1

D2

D3

...
Dr−1


.

The matrix A(G) can be viewed as

(9) A(G) =

[
B D

Dt 0

]
.

Let

(10) U =
[
B D

]
, L =

[
Dt 0

]
.
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Then A(G) can be written as

A(G) =

[
U

L

]
.

For vertex v ∈ V , denote by Uv the row of A(G) corresponding to the vertex v if v ∈ P2 ∪P3 ∪
P4 ∪ P5 ∪ ... ∪ Pr, and by Lv if v ∈ P1.
Let S ⊆ P2 ∪ P3 ∪ P4 ∪ P5 ∪ ... ∪ Pr. Then from the matrix A(G), we see that

(11)
∑
v∈S

qvUv = [b1 b2 b3 b4 ...br−1 d]

where b1, b2, b3, b4, ..., br−1 are constant row matrices respectively of dimension 1 × |P2|,
1× |P3|, 1× |P4|, 1× |P5|, ... , 1× |Pr| and d is row vector of dimension 1× |P1| and qv’s are
real constants. Similarly, for any P ′1 ⊆ P1, we can write

(12)
∑
v∈P ′

1

q′vLv = [d1 d2 d3 d4 ...dr−1 0]

where d1, d2, d3, d4, ..., dr−1 and 0 are row vectors respectively of dimension 1×|P2|, 1×|P3|,
1× |P4|, 1× |P5|, ... , 1× |Pr| and 1× |P1|, and q′v’s are real constants.

The following result gives information about the rank of a r-partite graph in Frn .

Lemma 8. Let G ∈ Frn with r-partition {P1, P2, P3, ..., Pr} and the adjacency matrix A(G)

defined by (9). Then rank(G) = rank(U) + rank(L) where U and L are defined by (10).

Proof. Similar to Lemma 1, to prove rank(G) = rank(U) + rank(L), it is enough to show that
if
∑

v∈S qvUv 6= 0 and
∑

v∈P ′
1
q′vLv 6= 0 where qv’s and q′v’s are real constants, then

∑
v∈S qvUv 6=∑

v∈P ′
1
q′vLv.

Suppose S and P ′1 be an arbitrary subsets of P2 ∪ P3 ∪ P4 ∪ ... ∪ Pr and P1, respectively. We
can write

∑
v∈S qvUv = [b1 b2 b3 ... br−1 d] and

∑
v∈P ′

1
q′vLv = [d1 d2 d3 ... dr−1 0] such that

b1, b2, ..., br−1, d, d1, d2, ..., dr−1, and 0 are defined in (11) and (12).
Assume that

∑
v∈S qvUv =

∑
v∈P ′

1
q′vLv, it implies that [b1 b2 b3 ... br−1 d] = [d1 d2 d3 ... dr−1 0].

Because of condition (8), there exists a vertex in each Pj, j = 2, 3, 4, ..., r, which are not adjacent
to any vertex in P1. It follows that each Dk, k = 1, 2, 3..., r− 1, has at least one zero row which
also means that there is at least one zero columns in each Dt

k. Thus, there are at least r−1 zero
columns in Dt corresponding to a vertex in each Pj. That is, there are zero entries in vectors
dk. Futhermore, since [b1 b2 b3 ... br−1 d] = [d1 d2 d3 ... dr−1 0] and as b1, b2, b3, ..., br−1 are
constant vectors, then vectors b1, b2, b3, ..., br−1, d, d1, d2, ..., dr−1 are all zero vectors. Therefore,∑

v∈S qvUv = 0 and
∑

v∈P ′
1
q′vLv = 0.

This completes the proof. �

Farooq et. al already established in [1] that the r(G) = 2 + 2rank(C) for G ∈ Tn and in
section 3.2.1, we have proved that rank(G) = 3 + 2rank(D) for G ∈ F4n . We now give a
generalization of the rank of a graph G belonging to the family Frn of r-partite graph satisfying
condition (7) and (8)

Theorem 9. Let G ∈ Frn with r-partition {P1, P2, P3, ..., Pr} and the adjacency matrix A(G)

defined by (9). Then rank(G) = (r − 1) + 2rank(D).
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Proof. We prove Theorem 6 using induction.
i.) Let r = 5, show that rank(G) = 4+2r(D). Let F5n be the family of those n-vertex 5-partite
graphs, n ≥ 9 , whose 5-partition {P1, P2, P3, P4, P5} satisfies the following:
NP2(P

′
1) 6= P2, NP3(P

′
1) 6= P3, NP4(P

′
1) 6= P4, NP5(P

′
1) 6= P5, ∀ P ′1 ⊆ P1.

G[P2 ∪ P3 ∪ P4 ∪ P5] is complete 4 - partite.
Thus, for G ∈ F5n , the adjacency matrix A(G) can be defined by

A(G) =

[
B D

Dt 0

]

where

B =

P2 P3 P4 P5

P2

P3

P4

P5


0n2×n2 1n2×n3 1n2×n4 1n2×n5

1n3×n2 0n3×n3 1n3×n4 1n3×n5

1n4×n2 1n4×n3 0n4×n4 1n4×n5

1n5×n2 1n5×n3 1n5×n4 0n5×n5


and

D =

P1

P2

P3

P4

P5


D1

D2

D3

D4


Since the A(G) can be viewed as (9), by the same arguments stated in Lemma 2, we can have
rank(U) = rank(B) + rank(D) and rank(L) = rank(Dt) = rank(D). Now, observe that B is
an adjacency matrix of complete 4-partite graphs. It follows that the rank(B) = 4. Thus, by
using rank(G) = rank(U) + rank(L), we get rank(G) = (rank(B) + rank(D)) + rank(Dt) =

(rank(B)+rank(D))+rank(D) = rank(B)+2rank(D). Therefore, rank(G) = 4+2rank(D).
ii.) Let r = k, assume that it is true for k. That is, rank(G) = (k − 1) + 2rank(D) where
G ∈ Fkn and Fkn is the family of those n-vertex k-partite graphs, n ≥ 2k−1, whose k-partition
{P1, P2, P3, ..., Pk} satisfies the following:
NPj

(P ′1) 6= Pj,where j = 2, 3, ..., k ∀ P ′1 ⊆ P1.

G[P2 ∪ P3 ∪ ... ∪ Pk] is complete (k − 1) - partite.
In addition, for G ∈ Fkn

A(G) =

[
B D

Dt 0

]
where

B =

P2 P3 P4 · · · Pk

P2

P3

P4

...
Pk


0n2×n2 1n2×n3 1n2×n4 · · · 1n2×nk

1n3×n2 0n3×n3 1n3×n4 · · · 1n3×nk

1n4×n2 1n4×n3 0n4×n4 · · · 1n4×nk

...
...

... . . . ...
1nk×n2 1nk×n3 1nk×n4 · · · 0nk×nk
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and

D =

P1

P2

P3

P4

...
Pk


D1

D2

D3

...
Dk−1


.

Moreover, since the matrix B is an adjacency matrix of a complete (k − 1)-partite graphs, it
implies that rank(B) = k − 1.

Next, we need to show that rank(G) = (r − 1) + 2rank(D) is also true for r = k + 1,
that is rank(G) = (k + 1− 1) + 2rank(D) = (k + 2rank(D).
Now, add one partition Pk+1 with nk+1 vertices to G ∈ Fkn to form G ∈ F(k+1)n such that
G[Pk+1] is an empty graph.
Thus F(k+1)n is the family of those n - vertex (k+ 1)-partite graphs, n ≥ 2(k+ 1)− 1 = 2k+ 1,
whose (k + 1)-partition {P1, P2, P3, ..., Pk, Pk+1} satisfies the following:
NPj

(P ′1) 6= Pj,where j = 2, 3, ..., k + 1, ∀ P ′1 ⊆ P1.

G[P2 ∪ P3 ∪ ... ∪ Pk ∪ Pk+1] is complete k-partite.
Since the A(G) where G ∈ Fkn can be defined as (9), thus A(G) such that G ∈ F(k+1)n can

also be formed as (9), that is

[
B D

Dt 0

]
.

But by adding partite set Pk+1, the matrix B and the matrix D in A(G) for which G ∈ F(k+1)n

will result to

B =

P2 P3 P4 · · · Pk Pk+1

P2

P3

P4

...
Pk

Pk+1



0n2×n2 1n2×n3 1n2×n4 · · · 1n2×nk
1n2×nk+1

1n3×n2 0n3×n3 1n3×n4 · · · 1n3×nk
1n3×nk+1

1n4×n2 1n4×n3 0n4×n4 · · · 1n4×nk
1n4×nk+1

...
...

... . . . ...
...

1nk×n2 1nk×n3 1nk×n4 · · · 0nk×nk
1nk×nk+1

1nk+1×n2 1nk+1×n3 1nk+1×n4 · · · 1nk+1×nk
0nk+1×nk+1


and

D =

P1

P2

P3

P4

...
Pk

Pk+1



D1

D2

D3

...
Dk−1

Dk


.

From our assumption, the rank(B) for G ∈ Fkn is k − 1.
But, by adding Pk+1, the rank(B) will increase by 1, that is rank(B) = (k − 1) + 1 = k.
Moreover, B is an adjacency matrix of a complete k-partite graphs for G ∈ F(k+1)n . It follows
that rank(G) = rank(B) + 2rank(D) = k + 2rank(D). �
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Corollary 10. If G ∈ Frn with r-partition {P1, P2, P3, ..., Pr}, then η(G) = n − ((r − 1) +

2rank(D)).

This is an illustration of theorems in Section 3.2.

Illustration: Let G ∈ F6n with 6-partition {P1, P2, P3, P4, P5, P6} where P1 = {a1, a2, a3},P2 =

{b1, b2, b3, b4},P3 = {c1, c2, c3, c4},P4 = {d1, d2, d3, d4},P5 = {e1, e2, e3} and P6 = {f1, f2, f3}.
The 6-partition satisfies the following:
G[P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6] is complete 5-partite and NP2(P

′
1) 6= P2, NP3(P

′
1) 6= P3, NP4(P

′
1) 6=

P4, NP5(P
′
1) 6= P5, NP6(P

′
1) 6= P6 ∀P ′1 ⊆ P1

b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4 e1 e2 e3 f1 f2 f3

a1 a2 a3

Now, we have the adjacency matrix of G,



b1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
b2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
b3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
b4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
c1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0
c2 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1
c3 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
c4 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
d1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0
d2 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1
d3 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1
d4 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0
e1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1
e2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0
e3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0
f1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
f2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
f3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
a1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0
a2 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0
a3 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0

where U =
[
B D

]
=



b1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
b2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
b3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
b4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
c1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0
c2 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1
c3 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
c4 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
d1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0
d2 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1
d3 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1
d4 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0
e1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1
e2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0
e3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0
f1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
f2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
f3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
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and L =
[
Dt 0

]
=[ ]a1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0

a2 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0
a3 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 .

In addition,

B =





b1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1
c2 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1
c3 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1
c4 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1
d1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1
d2 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1
d3 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1
d4 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1
e1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
e2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
e3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
f1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
f2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
f3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

and

D =





b1 1 1 0
b2 0 0 0
b3 0 1 1
b4 0 0 1
c1 0 0 0
c2 0 0 1
c3 1 1 0
c4 1 0 0
d1 0 0 0
d2 1 1 1
d3 0 0 1
d4 1 0 0
e1 0 0 1
e2 0 1 0
e3 0 0 0
f1 1 1 1
f2 0 0 0
f3 0 0 0

.

By computation, we get the following, rank(G) = 11, rank(U) = 8, rank(L) = 3, rank(B) = 5

and rank(D) = 3. From Lemma 2, rank(G) = 11 = 8 + 3 = rank(U) + rank(L) and from
Theorem 6, rank(G) = 11 = 5 + 2(3) = rank(B) + 2rank(D). Now by Corollary 2, since the
rank(G) = 11 and n = 21, it follows that η(G) = 10.

4. Conclusion

In this paper, we studied and investigated some families of r-partite graphs where r ≥ 4,
these are the complete r-partite graphs of order n and the n-vertex r-partite graphs satisfying
(7) and (8). We were able to established that the rank of complete r-partite graphs is r and the
rank of n-vertex r-partite graphs satisfying (7) and (8) is (r−1)+2rank(D). We also obtained
the nullity of these r-partite graphs by using its rank. As a special type, the complete r-partite
graphs denoted by Kn1,n2,n3,...,nr where n = n1 + n2 + n3 + ...+ nr and r ≥ 4 was found to have
a nullity of n− r. The n-vertex r-partite graphs satisfying (7) and (8) and its nullity follows as
an extension of family of tripartite graphs introduced in the paper “On the nullity of a family
of tripartite graphs" by Farooq, Malik, Pirzada and Naureen.
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