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ON THE NULLITY OF SOME FAMILIES OF R-PARTITE GRAPHS
LYCA DC. MARCELINO2* ISAGANI B. JOS?

ABSTRACT. The nullity of a graph G, denoted by 7(G) is defined to be the multiplicity of the
eigenvalue zero in the spectrum of a graph. The spectrum of a graph G is a two-row matrix, the
first row elements are the distinct eigenvalues of its adjacency matrix A(G) and the second row
elements are its corresponding multiplicities. Furthermore, the rank of G, denoted by rank(G)
is also the rank of A(G), that is rank(G) = rank(A(G)). In addition, given that G is of order
n, it is known that n(G) = n —rank(G). Thus, any result about rank can be stated in terms of
nullity and vice versa. In this paper, we investigate some families of r-partite graphs of order
n and we determine the nullity of these r-partite families using its rank. First, we consider the
complete r-partite graphs denoted by Ky, n, ns,....n, Where n =ny+ng+ns+...4+n, and r > 4.
Second, we also consider a family of r-partite graphs where n > 2r — 1 and r > 4, which is an
extension of a family of tripartite graphs introduced in the paper “On the nullity of a family of
tripartite graphs” by Farooq, Malik, Pirzada and Naureen.

1. INTRODUCTION

Let G = (V, E) be a simple graph where V' = {vy, v, ..., v,,} is a finite set of vertices and E
is a finite set of edges. The order of graph G is the number of its vertices denoted by n while
the size of graph G is the number of its edges denoted by m. Throughout this paper, the order
of G is n.

A square matrix that is used to represent a graph G is called its adjacency matrix. The
adjacency matrix A(G) of G of order n is the n x n symmetric matrix [a;;] such that a;; = 1
if v; and v; are adjacent and 0 otherwise, for any pair v;,v; € V. The main concern of this
study is on multiplicity of one of the eigenvalues of the adjacency matrix of G. The nullity
of a graph G, denoted by n(G) is defined to be the multiplicity of the eigenvalue zero in the
spectrum of a graph. The spectrum of a graph G is a two-row matrix, the first row elements
are the distinct eigenvalues of its adjacency matrix A(G) and the second row elements are its
corresponding multiplicities. Moreover, the rank of G, denoted by rank(G) is also the rank of
A(G), that is rank(G) = rank(A(G)). Recall that the rank of A(G) is defined as the maximum
number of linearly independent row/column vectors in A(G). In addition, it is known that
n(G) = n — rank(G), thus any result about rank can be stated in terms of nullity and vice

versa.
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A notion on graphs which is important is the isomorphism of graphs. Let G = (V, E) and
G' = (V', E') be two graphs. The graph G and G’ are said to be isomorphic and we write
G = @', if there exists a bijection ¢ : V +— V'’ such that zy € F <= ¢(z)¢(y) € E’ for all
z,y€eV.

Collatz and Sinogowitz [5], first posed the problem of characterizing all graphs which satisfy
n(G) > 0. This question is of great interest in chemistry. As has been shown in [6], for a bipartite
graph G corresponding to an alternant hydrocarbon, if n(G) > 0, then it indicates that the
molecule which such a graph represents is unstable. The nullity of a graph is also important in
mathematics, since it is related to the singularity of A(G). Ashraf and Bamdad [7] considered
the opposite problem where graphs have nullity zero.

Cheng and Liu [2] characterized the extremal graphs attaining the upper bound n — 2 and
the second upper bound n — 3. They discussed the nullity of a complete bipartite and complete
tripartite graphs. Fan and Qian [3] determined the nullity set of bipartite graphs of order n
and characterized the bipartite graphs with nullity n — 4 and the regular bipartite graphs with
nullity n — 6. Farooq et. al [1] obtained the nullity set of a class of n-vertex tripartite graphs
and characterized these tripartite graphs with nullity n — 4 and some tripartite graphs with
nullity n» — 6 in this class. Moreover, Farooq et. al also mentioned that the nullity problem in
tripartite graphs does not follow as an extension to that of the nullity of bipartite graphs.

In this paper, we considered and investigated some families of r-partite graphs of order n
and the nullity of these graphs is going to be determine using its rank. First, the complete
r-partite graphs denoted by K, ny.ns....n, Where n =mn; +ns+ns+...+n, and r > 4 was found
to have a nullity of n — r. Second, the family of r-partite graphs where n > 2r — 1 and r > 4
with nullity n — (r — 1 4 2rank(D)), where D is a matrix defined on Section 3.2. This follow
as an extension of family of tripartite graphs and as expansion of some results discussed in On
the nullity of a family of tripartite graphs by Farooq, Malik, Pirzada and Naureen [l].

2. PRELIMINARIES

Let G = (V, E) be a graph of order n. Consider S C V', where S is nonempty. The neighbor
set of S in G, denoted by N(5) is a set containing those vertices of G that are adjacent to some
vertex in S. The subgraph of G induced by S, denoted by G[S] is defined to be the graph whose
vertex set is S and whose edge set consists of all of the edges in E that have both endpoints
in S. For any v € V, the degree of vertex v, denoted by d(v), is defined to be the number of
edges incident to v. Now, the union of two graphs G; = (V4, E1) and Gy = (V3, E»), denoted by
G1 UG-, is defined to be the graph with vertex set V; UV, and edge set Fy U Es. In this paper,
we consider disjoint union of graphs where the union of vertex sets and the union of edge sets
are disjoint.

The graph G is a bipartite if its vertex set can be partitioned into two subsets X and Y
such that G[X]| and G[Y] are empty graphs and the partition (X,Y") is called a bipartition. A
complete bipartite graph is a bipartite graph with bipartition (X,Y’) in which each vertex of
X 1is joined to each vertex of Y.

We also consider expanded path and expanded cycle in this study.

Definition 1. The n-vertex graph G is said to be an expanded path of length k if its vertex set
V' can be partitioned into Vi, Va, ..., Vi, k > 2 such that


https://doi.org/10.28919/ejma.2022.2.16

Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.16 3

(1) G[Vi] is an empty graph for 1 <i <k,
(2) GIV; U V1] is a complete bipartite graph for 1 <1 <k —1,
(3) G[V; UV}] is an empty graph for 1 <i, j <k with |i — j| > 1.

In addition, the expanded path of length k is denoted by Py (V4, Vs, ..., Vi) or P, and each V;
is called an expanded vertex of order |V}].

i— Ve — Vs — Vi — o — Vi — W

Figure 1: Fxpanded Path of length k

Definition 2. An ezpanded cycle of length k where k > 3, denoted by Cy(V1, Vs, ..., Vi) or Cy, is
obtained from the expanded path Py by adding edges between each vertex of Vi and each vertex
Of Vk

Definition 3. An expanded decomposition of the graph G is a list of expanded subgraphs such
that each edge of G appears in exactly one expanded subgraph in the list.

The graph in Figure 2 has expanded decomposition Cs,Cs,Ps.

V3 Va

‘ \V\V
1 6

o/

Figure 2: C5(‘/1;‘/2a‘/3a‘/4a‘/5);c3(v57‘/67‘/7) a’nd PQ(%;%)

3. RESULTS AND DISCUSSION

In this section, we define two different families of r-partite graphs and determine its rank

and nullity.
Remark 1. All graphs considered in this section are expanded graphs.

3.1. Nullity of a complete r-partite graph. Let r > 2 be an integer. A r-partite graph is
a graph G in which vertex set V' is partitioned into r» nonempty subsets Py, P, ..., P, in such
a way that no edge joins two vertices in the same partite sets, that is, G[P], i = 1,2,3,...,r
are empty graphs. A complete r-partite graph denoted by K, n,ns..n, iS @ r-partite graph in
which each vertex of P; joined to each vertex of G — P, where |P;| = n;, n = ny+nas+ng+...+n,
and nqy,ns,...,n, > 0. For an isolated vertex K, we denote by rK; the r copies of Kj.

In 2], Cheng and Liu discussed the nullity of a simple graph G such that G is isomorphic

to a complete bipartite graph/complete tripartite graph.

The succeeding theorem is about the nullity of a simple graph G that is isomorphic to a

complete r-partite graph, where r > 4.
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Theorem 1. Let G be a simple graph with n vertices and G has no isolated vertices. If G
s isomorphic to a complete r-partite graph Ky, n,. .n

n, Where n = ny + ng + ... + n,, then
rank(G) =r and n(G) =n —r.

Proof. Suppose G is isomorphic to a complete r-partite graph, that is G = K, , ., and let
Py, Py, P3, Py, ..., P, be the partite sets of G. Thus, the adjacency matrix A(G) of G is

P P Py Py F,
Pl -Onl Xn1 1n1 Xng 1n1 Xns 1n1 XNy 1n1 an-
P2 1n2 XNy Onz Xng ]-n2 Xns ]-nz XNy 1n2 XNy
P3 1n3><n1 1n3 Xnag Ong Xns3 1n3 XNy 1n3><nr 5
P4 1n4><n1 1n4><n2 1n4 Xns On4 XM4 1n4><nr
Pr _1n,o><n1 1n7a XN ]-n,n Xnsg 1n,,-><n4 e Onrxnr_

observe that the A(G) have r sets of identical rows. Now, multiply -1 to row (

)

J J J

add to row (> n;)+2, O ni)+3, ..., (D_n) + njs1, where j = 0,1,...,r — 1. By doing
i=1 i=1 i=1

this, it will result to a matrix with r non-zero rows and all the other rows are zero rows. Then

n;) + 1, then

J
=1

these r non-zero rows are linearly independent and the proof is straightforward. It follows
that rank(A(G)) = rank(G) = r. Moreover, it is known that 7(G) = n — rank(G), therefore
n(G)=n-—r. O

3.2. Nullity of the extension of family of tripartite graphs introduced in “On the
nullity of a family of tripartite graphs”. In [!] a special class of tripartite graphs was
introduced and its nullity determined. We extend this family to a family of r-partite graphs,
where r > 4. We also established the nullity of these graphs.

3.2.1. For r = 4, 4-partite graphs. Let G = (V,FE) be a graph of order n. Suppose G is
a 4-partite with vertex set V' partitioned into four subsets P;,P,P; and P, such that G[F}],
i = 1,2,3,4 are empty graphs and the partition {Py, P», P3, Py} is called a 4-partition. We
consider a special class of 4-partite graphs defined as follows. Let F,, be the family of those n
- vertex 4-partite graphs G, n > 7, whose 4-partition {P;, P, P, P,} satisfies the following:

(1) G[P> U P3 U Py is a complete tripartite.

(2) Np,(P)) # P», Np,(P)) # Ps and Np,(P) # Py, VP, C P1.

Consider G € F,, with 4-partition { Py, P, P3, Py}. Since G € F,,, G satisfies property (1) and
(2). So, we can define the adjacency matrix A(G) of G as

P PP P
p [0 J C D
AG =pr, |Jt 0 M D,
P |Ct MY 0 Dy
P, |Dt DY Dt 0
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such that J, C' and M denote the matrices with all entries 1 while 0 denote zero matrix.
Furthermore, D;, Dy, D3 denote the matrices that shows the relationship of P; to P, Ps, Py,
respectively.

Let B and D be defined as follow,

o J C
B=1|J" 0 M
ct M' 0
and
D,
D= D2
Dy
Thus, the matrix A(G) can be written as
B D
3 AG) =
) @)=
Let
(4) U:[B D],L:[Dt o}.
Then A(G) can be written as
U
A(G) =
=]

For vertex v € V', denote by U, the row of A(G) corresponding to the vertex v if v € P,UP;UP;,
and by L, if v € P.
Now, consider S C P, U P; U P,. Thus from the matrix A(G), we have

(5) > Uy = [by by b3 d]

vES
where by, by, b3 are constant row matrices respectively of dimension 1 x | P, 1 x | P3| and 1 X | Py,
while d is a row vector of dimension 1 X |P;|, and ¢,’s are real constants. Equivalently, for any
P C P;, we can write
(6) D Ly = [di dy ds 0]

veEP]
where dy, dy, d3 and 0 are row vectors respectively of dimension 1 X |Py|, 1 X | P3|, 1 x |P,| and

1 x |Py|, and ¢)’s are real constants.
The following results gives information about the rank of a 4-partite graph in Fy, .

Lemma 2. Let G € Fy, with J-partition { Py, Py, Py, P;} and the adjacency matriz A(G) defined
by (3). Then rank(G) = rank(U) + rank(L) where U and L are defined by (/).

Proof. To prove rank(G) = rank(U) + rank(L), it is enough to show that if ) _.q,U, # 0
and Zvep{ ¢,L, # 0 where ¢,’s and ¢’s are real constants, then ) _¢q,U, # ZUGP{ q,L,.

Let S and P] be an arbitrary subsets of P, U P3 U Py and Pj, respectively. Now, we have
Z’UGS quv = [bl bQ b3 d] and ZUEP{ qquLv = [dl d2 d3 0] such that bl,bg,bg,d, dl,dQ,dg, and 0
are defined in (5) and (6).
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Suppose Y, s @Uy = ZueP{ q,L,, then [by by b3 d] = [dy dy d3 0]. By condition (2), there
exists a vertex in P, a vertex in P; and a vertex in P, which are not adjacent to any vertex
in P;. This implies that each of Dy, Dy, D3 has at least one zero row which also implies that
there is at least one zero column in each D}, Di D%. Tt follows that there are at least three zero
columns in D! corresponding to a vertex in each P, P; and P,. Thus, there are zero entries in
vectors dy, ds and ds.

In addition, since [by by b3 d] = [d; da d3 0] and as by, by and by are constant vectors, thus vectors
b1, ba, b3, d, dy,dy,ds are all zero vectors. Therefore, Y ¢ q,U, = 0 and ZveP{ q,L, = 0.

This completes the proof. O

Theorem 3. Let G € Fy, with 4-partition {Py, Ps, P, P,} and the adjacency matriz A(G)
defined by (3). Then rank(G) = 3 + 2rank(D).

Proof. Consider G € Fy, and let A(G) be the adjacency matrix defined in (3). Now, by
similar arguments applied in Lemma 1, then we have rank(U) = rank(B) + rank(D) and
rank(L) = rank(D') = rank(D). Since matrix B is an adjacency matrix of complete tripartite
graph, it follows that rank(B) = 3. Thus by Lemma 1, we can get rank(G) = rank(U) +
rank(L) = (rank(B) + rank(D)) + rank(D) and it implies that rank(G) = 3+ 2rank(D). O

Corollary 4. If G € F,, with 4-partition { Py, Py, P3, Py}, then n(G) = n — (3 + 2rank(D)).

Let Ci(e) denote an expanded cycle of length & with an expanded chord € joining two
non-adjacent expanded vertices of the cycle Cj such that the expanded vertices joined by é
form a complete bipartite.

Now, we have the following observations.

Theorem 5. If G is a graph of order n such that G has expanded decomposition C(e) U kK,
2C3, Py shown in Figure 3, k > 0, then G € F,, and n(G) =n — 5.

Figure 3

Proof. We need to show that (i) G € F,, and (ii) n(G) =n — 5.

(i). Suppose P, = PFUP|, P, = PfUP,, P, = P; U Pj and P, = P; U P, where P] is
possibly empty and k = |P{|. Thus, we notice that G is a 4-partite graph with 4-partition
{P1, Py, P5, P,}. Furthermore, G satisfies property (2) since Np,(P;) # P2, Np,(P;) # P; and
Np,(P)) # P,. In addition, see that G[P, U Py U P;] = Cs3(F,, P5, P,) which is a complete
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tripartite graph, it follows that G satisfies property (1). Therefore G € F4,,.
(ii). Since G € Fy,, it follows from (3) that the adjacency matrix of G is given by

P, 00111110
P, 00111100
P, 11001110
A@=p T e
4
P11 1110000
Pr 10101000
P, 0000000 O

where 1 denotes all-ones matrix and 0 denotes the zero matrix with appropriate sizes. Observe
the adjacency matrix of GG, the sub matrix D where its columns correspond to P;, P and the
sub matrix D' with rows correspond to Py, P/. Then, we see that rows of P} are identical while
the rows of P| are all zero rows, it implies that rank(D) = 1. By using Corollary 1, it follows
that n(G) =n — (3 +2rank(D)) =n — (3 +2(1)). Therefore, n(G) =n — 5. O

Theorem 6. Let G be a graph of order n. If G has one of the following expanded decomposition,
(1) Cz(e), 2C3, 2Py shown in Figure 4 (a,b,c)
(2) Cz(€), 2C3, 3Py shown in Figure 5 (d,e,f),

then G € Fy, and n(G) =n—T.

P, — P

(b) (c)

Figure 4
P, — P

(d) (e) (f)

Figure 5

Proof. We want to show that (i) G € F,, and (ii) n(G) =n — 1.
(i). For both decomposition, let P, = PfUP], P, = PyUP,y, P;= PfUPjand P, = P{UP,.
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We see that G is a 4-partite graph with 4-partition {Py, P», P3, Py}. Now, observe that G
satisfies Property (2), because Np,(P)) # P, Np,(P1) # P; and Np,(P;) # P;. Similar to
Theorem 12, G satisfies Property (1) because G[P, U P; U Py] = C3(P,, Ps, P,) is a complete
tripartite graph. Since G satisfies Property (1) and (2), G € Fy,.

(ii). By (3), the adjacency matrix of G can be written as follow since we already established
that G € Fy,,

Ppfo0o111111 P, 00111110
P, 100111100 P, 00111100
P [11001110 P11 001111
(a)Pg 11001100(]0)'13; 11001100
Pro{1 1110010 Pro{1 1110010
P 11110000 P11 110000
P; 10101000 Pr 10101000
P [100O0O0OO0 O Pl 0010000 0
P 0011111 0] P 0011111 1]
P, 00111100 P, 100111100
P 11001110 P11 001111
(C)Pg 11001100(01)'34 11001100
Pro|1 11100011 Pr {1 1110010
P|11110000 P 11110000
P; 10101000 P; 10101000
P 0000100 0 P |1 0100000
P 0011111 1] P, J001 1111 0]
P, 00111100 P, 100111100
P11 001110 P 11001111
(e>P§ 11001100(&133: 11001100
Pro|1 11100011 Pro{1 11100011
P|11110000 P |11110000
Py (10101000 Pr 10101000
P 1000100 0 P lo010100 0

where 1 denotes all-ones matrix and 0 denotes zero matrix with appropriate sizes. Through
the adjacency matrix of GG, the sub matrix D where its columns correspond to Pj, P and the
sub matrix D' with rows correspond to P;, P{. Thus, we notice that in both decomposition,
rows of P} are identical and rows of P| are also identical, it follows that rank(D) = 2. Now,
by Corollary 1, it implies that n(G) = n — (3 + 2rank(D)) = n — (3 + 2(2)). Therefore,
n(G)=n-T1. O

Theorem 7. For graph G € F,, with 4-partition { Py, Ps, P3, P}, n(G) = n — 3 if and only if
G - Cg(P27P37P4) U |P1|K1
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Proof. (= ) Suppose G € F,, with 4-partition {Py, P, P3, Py}. Using Corollary 1, we have
the equation n(G) = n— (34 2rank(D)) and since n(G) = n— 3 from our assumption, it implies
that rank(D) = 0. Thus, the degree of v or d(v) is zero, for all v € P; which implies that all
vertices in P are isolated vertex. Hence, G = C3(Ps, P3, Py) | |P1|K;.

( <= ) Suppose G = C3(Py, P5, Py) |J |Pi|K;. Then by Theorem 2.2 from the paper On the
nullity of bipartite graphs [7], its follows that n(G) = n — 3.

This completes the proof. U

3.2.2. Forr > 5. This is an extension of family of 4-partite graphs discussed in Section 3.2.1.

Let G = (V, E) be a graph of order n. Now, consider a special class of r-partite graphs
defined as follows. Let F,, be the family of those n - vertex r-partite graphs G with n > 2r —1,
whose r-partition { Py, Ps, Ps, ..., P, } satisfies the following:

(7) G[P,U Py U ...U P,] is complete (r — 1)-partite.
(8)

Let G € F,, with r-partition {P;, P, P, ..., P.}. The adjacency matrix A(G) of G is defined
by

NP]-(P{) # P;, where j =2,3,...,rV Pl’ C P.

P Py Py IS &
P2 [ no Xng 1n2><n3 1n2><n4 no XNy Dl
PS n3xXns On3><n3 1n3><n4 ng Xng, D2
AG) =Dy Lnixne  Lugxns  Ongxng lngscn, Ds
P, 1nr><n2 1nr><ns~, 1nr><n4 Oann'r D,y
P LDy Dy Dy Dy 0

such that Dy, kK = 1,2,3...,7 — 1 denote the matrices that shows the relationship of P, to F;,

J=2,3,4,....r, respectively.

Let B and D denote the matrices defined as follows,

Py Ps Py P, Py
P2 Ongxng 1n2><n3 1n2><n4 no Xng. P2 Dl
B _ P3 ngXnag 0n3><n3 1n3><n4 ngXngy and D _ PS D2
P4 1n4><n2 1n4><113 0n4><n4 N4 XNy P4 D3
Pr _1nr><n2 1nr><ng 1nr><n4 Onrxnr_ Pr _Dr—l_
The matrix A(G) can be viewed as
B D
9 A(G) =
) (G
Let
(10) U= [B D] L= [Dt o}
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Then A(G) can be written as

For vertex v € V, denote by U, the row of A(G) corresponding to the vertex v if v € P, U PyU
P4UP5U...UPT, andbyLv ifUEPl.
Let SC P,UP3;UP;UPsU...UP,. Then from the matrix A(G), we see that

(11) > Uy = [by by by by ..br_y d]

veS
where by, by, b3, by, ..., b._1 are constant row matrices respectively of dimension 1 X |Ps|,
1 X |Ps], 1 X |Py|, 1 X|Ps], ... ,1x|P,| and d is row vector of dimension 1 x |P;| and ¢,’s are

real constants. Similarly, for any P; C P;, we can write

(12) Z q;Lv = [dl d2 d3 d4 ---dr—l O]

veP]
where dy, ds, d3, dy, ..., d,_1 and 0 are row vectors respectively of dimension 1 x |P,|, 1 x | P3|,
1 X |Py], 1 x |Ps, ... ,1x|P.|and 1 x |P|, and ¢’s are real constants.

The following result gives information about the rank of a r-partite graph in F,, .

Lemma 8. Let G € F,, with r-partition {Py, Py, Ps, ..., P.} and the adjacency matriz A(G)
defined by (9). Then rank(G) = rank(U) + rank(L) where U and L are defined by (10).

Proof. Similar to Lemma 1, to prove rank(G) = rank(U) + rank(L), it is enough to show that
if Y, cs@Uy # 0 and Z’UEP{ ¢, L, # 0 where ¢,’s and ¢,’s are real constants, then ) _«q,U, #
ZveP{ q, L.

Suppose S and P| be an arbitrary subsets of P, U Py U Py U ...U P, and P, respectively. We
can write Y _«qU, = [b1 by bs ... b,—; d] and Zvep{ q,L, = [dy dy ds3 ... d._1 0] such that
by, bo, ..., br_1,d,dy,dy, ...,d,_1, and 0 are defined in (11) and (12).

Assume that ) _cqU, = ZueP{ ¢, L, it implies that [by by bs ... b._y d] = [dy da d5 ... d.—; 0].
Because of condition (8), there exists a vertex in each P;, j = 2, 3,4, ..., 7, which are not adjacent
to any vertex in Py. It follows that each Dy, k = 1,2,3...,7 — 1, has at least one zero row which
also means that there is at least one zero columns in each D}. Thus, there are at least r — 1 zero
columns in D' corresponding to a vertex in each P;. That is, there are zero entries in vectors
dy. Futhermore, since [by by b3 ... b1 d] = [dy dy d3 ... d,—1 0] and as by, by, bs, ..., b,_1 are
constant vectors, then vectors by, by, b3, ...,b,_1,d, dy,d>, ..., d,._1 are all zero vectors. Therefore,
> ves @wUo =0and - p gLy = 0.

This completes the proof. O

Farooq et. al already established in [I| that the r(G) = 2 4 2rank(C) for G € T, and in
section 3.2.1, we have proved that rank(G) = 3 + 2rank(D) for G € Fy,. We now give a

generalization of the rank of a graph G belonging to the family F,  of r-partite graph satisfying
condition (7) and (8)

Theorem 9. Let G € F,, with r-partition {Py, Py, Ps, ..., P, } and the adjacency matriz A(G)
defined by (9). Then rank(G) = (r — 1) + 2rank(D).
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Proof. We prove Theorem 6 using induction.

i.) Let r = 5, show that rank(G) = 4+2r(D). Let F5, be the family of those n-vertex 5-partite
graphs, n > 9, whose 5-partition { Py, P, Ps, Py, P5} satisfies the following:

NPy(P) # oy Ney(P) # Py, Noy(P) # Poy Npy(P) £ P5, ¥ P C P,

G[P, U Py U Py U Ps] is complete 4 - partite.

Thus, for G € F;,, the adjacency matrix A(G) can be defined by

B D
A(G) = Dt O]
where
IS = T N &
Py Onyxny lnoxng lnoxng  Llnoxns
B=P Lngxns Onaxns  lnsxng  Lngxng
Py Lugsng  lnaxns Ongxng Lngxns
Ps Lusxng  lnsgxng lusxng  Ongxns
and
Py
Py D,
D =Py D,y
Py | D3
Ps Dy

Since the A(G) can be viewed as (9), by the same arguments stated in Lemma 2, we can have
rank(U) = rank(B) + rank(D) and rank(L) = rank(D") = rank(D). Now, observe that B is
an adjacency matrix of complete 4-partite graphs. It follows that the rank(B) = 4. Thus, by
using rank(G) = rank(U) + rank(L), we get rank(G) = (rank(B) + rank(D)) + rank(D") =
(rank(B)+rank(D))+rank(D) = rank(B)+ 2rank(D). Therefore, rank(G) = 4+ 2rank(D).
ii.) Let r = k, assume that it is true for k. That is, rank(G) = (k — 1) + 2rank(D) where
G € Fi, and Fy, is the family of those n-vertex k-partite graphs, n > 2k — 1, whose k-partition
{Py, Py, P, ..., P, } satisfies the following:

Np,(P)) # Pj,where j = 2,3, ...k ¥V P/ C Pp.

G[P, U P3 U ...U By is complete (k — 1) - partite.

In addition, for G € F,

B D
A(G) = Do
where
T & T R
Py [Opysny Lngwns Looxns o+ Lngxog |
B_Ps naxny  Ongxns  lnaxng =" logxny
Py Lugxny  lnaxns Ongxng =+ logxny,

Pk‘ _1nk><n2 17Lk Xns 1nk><n4 e Onk Xng |
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and
P
P, [ D]
Do Py D,
Py Ds
Py [ Dg-1]

Moreover, since the matrix B is an adjacency matrix of a complete (k — 1)-partite graphs, it
implies that rank(B) =k — 1.

Next, we need to show that rank(G) = (r — 1) + 2rank(D) is also true for r = k + 1,

that is rank(G) = (k + 1 — 1) + 2rank(D) = (k + 2rank(D).

Now, add one partition P,y with n,y, vertices to G € Fy, to form G € F;41), such that

G[Py+1] is an empty graph.

Thus Fj41), is the family of those n - vertex (k + 1)-partite graphs, n > 2(k+1) =1 = 2k +1,

whose (k + 1)-partition { Py, Ps, Ps, ..., Py, Pi11} satisfies the following:

Np,(Pl) # Pj,where j = 2,3,...k+1, ¥V Pl C Py,

G[P, U P3U...U Py U P4 is complete k-partite.

Since the A(G) where G € Fj,, can be defined as (9), thus A(G) such that G € Fiq1), can
D

D' 0

But by adding partite set Py, the matrix B and the matrix D in A(G) for which G € Fi1y,

will result to

also be formed as (9), that is

P2 P3 P4 o Pk Pk+1
p2 [ Ongxng 1n2 Xnsg 1n2><n4 e 1n2><mC 1n2><nk+1 ]
P3 n3xXng 0n3><n3 1n3 X104 Tt 1n3><nk 1n3><nk+1
B = P4 1n4><n2 1n4><n3 0n4><n4 e 1n4><nk 1n4><nk+1
Pk 1nk><n2 1nk><ng 1nk XNy e Onkxnk 1nk XN t1
Pk+1 _1n;,,,+1 X19 171,;,,,+1 Xnsg 172,;,,¢+1 Xng 7 1nk,+1 XM Onk_H Xnp41 ]
and
Py
= [ D, ]
P D,
D= F Ds
By Dyy
Py | Dy |

From our assumption, the rank(B) for G € Fj,, is k — 1.

But, by adding Pyy1, the rank(B) will increase by 1, that is rank(B) = (k — 1) +1 = k.
Moreover, B is an adjacency matrix of a complete k-partite graphs for G € F11),. It follows
that rank(G) = rank(B) + 2rank(D) = k + 2rank(D). O
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{f17f27f3}'

S P}, then n(G) =n—((r—1) +
{e1,€2,e3} and Fg

as

a; G

{d17 d?a d3a d4}7P5

{Cla C2, C3, 04}7P4

The 6-partition satisfies the following:

This is an illustration of theorems in Section 3.2.
G[P, U P3 U Py U Ps U Fg| is complete 5-partite and Np,(P]) # P2, Np,(P]) # P3, Np,(P]) #

Py, Npy(Py) # Ps, Npy(P)) # Ps VP € Py

Corollary 10. If G € F,., with r-partition {Py, P, Ps, ..
Illustration: Let G € Fg, with 6-partition { Py, P», P3, Py, Ps, Ps} where P, = {ay, as, a3},P,
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2rank(D)).

{bla b27 b37 b4}7P3

OO OO A OO OO
—O—HOOO—OO—HOOO—HO 1O OoOOOO
—HOOOOOHAH O 1O HOOOHOODOOO
A A A A A A A A A A A AT O O OO OO
HreA A A A A A A A A A A A AT A O O OO0 O
A A A AT A A A A A A A A A O O O
A A A A A A A A A A O OO A A OO O
G111111111111000111010
Gy

0111111111111000111001

"

A A A A A A A O O O O H A O O
)
<

m —HrA A rATATA AT OO OO AA—A— A OO
A A A A A AA A O O O O A
o

%111111110000111111000

HreAA A OO0 A A A A A A A = — OO

djac

WA A A OO0 A A A A A A A A A A O
O
DA A T OO0 A A A A A A O O —
+

W111100001111111111000
o]

h OO O rArAdArdArdA A r—"Ar—"Ar—A A A — O O
aWb000011111111111111011
W7000011111111111111000

0000011111111111111110

_
I\l
5SS

— NN FAHNMF = NN FH N
DO 00T UTTTSTTVSTC O LR

—

Q
Q

| S

where U

Y P = = L Y= T ==
—O—HOOO—HOO—HOOO—HO—HOO
OO0 OO —HOOO—HOO
HreA A A A A A A A A A A, O O O
Hre et A A A S e e ] —H—, O O O
A A A A A A A A A A A A A O O O
—HreArrA A A A A A A A A T O OO
HreA A A A A A A A A A A O OO — —
N S A A A A A A, T OO O
HrA A A A A A A O O O O —
HrA A A A A A A O O O O —
HrA A A A A A T OO O O
A A AA A A A O O O O —
—HHAAAOOOO A A A~~~
—HrAAA O OO
HrAA A O OO O v m
—HAAA OO0
OO0 rArArd rA r— rA r~r— r r — — —
OO rrAr r r r v r= = —
OO rArr o r— v — — —

1
—, .M

— NN HF AN = AN FHH N
PO LD VT UITTVTTVTTT O O U=


https://doi.org/10.28919/ejma.2022.2.16

Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.16 14

and L — [Dt o} -
azf1 00 0OOO 1 1 01 010
as {1 01 0 0 01 0 01T 0o00O0
ag |10 0O 1 1 .01 0 0O O 1 1 O

—_
OO
oOoO
et
OO O
[evlen)an)
[en)enlan]
[enenlan]
[evjen)as)

In addition
bl 0

S
PR PR RRRERERROO0 0
e el e e el e e e = = Y e N i
el el el et el = el e e e e e Y en R e R an Y an)
[ el e el e el el el el el al sl o= J e R as Y an}
== = e e e = = = O O O O = = =
== e e e e e e e = O O O O = =
R RRRERER R, OO0O0OR R
PR RPRRERPRRR,OO000OR R

R R O O O O b b b b e e e
R R EREEREOOOO R ==
R REEREREEREOOOO R = =
PR RO OOO = = =
R OOOR R e
R OOO R = = e s e e
== R e g e g N g e g g
OOORRRRHRRHRR R
OOORRRR R
IOOOF—H—H—‘)—H—H—H—H—H—H—H—H—H—H—H—‘

P
r

and

(=
—
1

OOHOOHORHROOOHROREHOO

OCOHOHOOOHOOHROOOHRO R

I

U

[\~
OCOHHOOO—HOROFRRFROOOOO—

o
r

By computation, we get the following, rank(G) = 11, rank(U) = 8, rank(L) = 3, rank(B) =5
and rank(D) = 3. From Lemma 2, rank(G) = 11 = 8 + 3 = rank(U) + rank(L) and from
Theorem 6, rank(G) = 11 = 5 + 2(3) = rank(B) + 2rank(D). Now by Corollary 2, since the
rank(G) = 11 and n = 21, it follows that n(G) = 10.

4. CONCLUSION

In this paper, we studied and investigated some families of r-partite graphs where r > 4,
these are the complete r-partite graphs of order n and the n-vertex r-partite graphs satisfying
(7) and (8). We were able to established that the rank of complete r-partite graphs is r and the
rank of n-vertex r-partite graphs satisfying (7) and (8) is (r — 1) + 2rank(D). We also obtained
the nullity of these r-partite graphs by using its rank. As a special type, the complete r-partite
graphs denoted by K, n,.ns,..n, Where n =nq +ng+ns+ ... +n, and r > 4 was found to have
a nullity of n —r. The n-vertex r-partite graphs satisfying (7) and (8) and its nullity follows as
an extension of family of tripartite graphs introduced in the paper “On the nullity of a family
of tripartite graphs” by Farooq, Malik, Pirzada and Naureen.
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