$k-g-F R A M E$ IN CARTESIAN PRODUCT OF TWO HILBERT SPACES

PRASENJIT GHOSH ${ }^{1, *}$ AND T. K. SAMANTA ${ }^{2}$

Abstract

The concept of $K-g$-frame in Cartesian product of two Hilbert spaces is being studied. We will see that the Cartesian product of two $K-g$-frames is also a K - g-frame. The concept of K - g-frame operator on Cartesian product of two Hilbert spaces is being presented and results of it are being established. Finally, we give a perturbation result on $K-g$-frame in Cartesian product of two Hilbert spaces

1. Introduction

In 1952, Duffin and Schaeffer [3] introduced the notion of frame in Hilbert space. Later on, after some innovative work of Daubechies, Grossman, Meyer [4], the theory of frames began to be studied more widely.

The theory of frame has been generalized rapidly and various generalizations of frame in Hilbert space namely, K-frame [5], G-frame [9], fusion frame [2] etc. have been introduced in recent times. K-frame was introduced by L. Gavruta and it is a natural generalization of the frame in Hilbert space. D. L. Hua et al. [7] studied K - g-frame by combing K-frame and g frame. Frame theory has so many application in data processing, coding theory, signal processing and so on.

In this paper, we present $K-g$-frame in Cartesian product of two Hilbert spaces and establish some of its properties. It is verified that the Cartesian product of two $K-g$-frames is a $K-g$ frame. An interesting topic in frame theory is a perturbation of $K-g$-frame. In this aspects, a perturbation result on $K-g$-frame in Cartesian product of two Hilbert spaces is studied.

Throughout this paper, H and X are considered to be separable Hilbert spaces with associated inner products $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2} \cdot \mathcal{B}(H, X)$ is a collection of all bounded linear operators from H to X. In particular $\mathcal{B}(H)$ denote the space of all bounded linear operators on $H .\left\{H_{i}\right\}_{i \in I}$ and $\left\{K_{i}\right\}_{i \in I}$ are sequences of Hilbert spaces, where I is the subset of integers \mathbb{Z}. Define the space

$$
l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)=\left\{\left\{f_{i}\right\}_{i \in I}: f_{i} \in H_{i}, \sum_{i \in I}\left\|f_{i}\right\|_{1}^{2}<\infty\right\}
$$

[^0]with inner product is given by
$$
\left\langle\left\{f_{i}\right\}_{i \in I},\left\{g_{i}\right\}_{i \in I}\right\rangle=\sum_{i \in I}\left\langle f_{i}, g_{i}\right\rangle_{1} .
$$

Clearly $l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)$ is a Hilbert space with the above inner product [2]. Similarly, we can define the space $l^{2}\left(\left\{K_{i}\right\}_{i \in I}\right)$.

2. Preliminaries

Definition 2.1. [9] A sequence $\left\{\Lambda_{i} \in \mathcal{B}\left(H, H_{i}\right): i \in I\right\}$ is called a generalized frame or g-frame for H with respect to $\left\{H_{i}\right\}_{i \in I}$ if there exist two positive constants A and B such that

$$
\begin{equation*}
A\|f\|_{1}^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2} \leq B\|f\|_{1}^{2} \quad \forall f \in H \tag{1}
\end{equation*}
$$

A and B are called the lower and upper bounds of g-frame, respectively. If the sequence $\left\{\Lambda_{i}\right\}_{i \in I}$ satisfying only right inequality of (1), it is is called a g-Bessel sequence.

Definition 2.2. [9] Let $\left\{\Lambda_{i}\right\}_{i \in I}$ be a g-frame for H. Then the synthesis operator T_{Λ} : $l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right) \rightarrow H$, is defined as

$$
T_{\Lambda}\left(\left\{f_{i}\right\}_{i \in I}\right)=\sum_{i \in I} \Lambda_{i}^{*} f_{i} \quad \forall\left\{f_{i}\right\}_{i \in I} \in l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)
$$

and the analysis operator is given by

$$
T_{\Lambda}^{*}: H \rightarrow l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right), T_{\Lambda}^{*} f=\left\{\Lambda_{i} f\right\}_{i \in I} \forall f \in H .
$$

The g-frame operator $S_{\Lambda}: H \rightarrow H$ is defined as follows:

$$
S_{\Lambda} f=\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} f \forall f \in H
$$

Definition 2.3. [1] Let $K \in \mathcal{B}(H)$. Then a sequence $\left\{\Lambda_{i}\right\}_{i \in I}$ is called a K-g-frame for H with respect to $\left\{H_{i}\right\}_{i \in I}$ if there exist two positive constants A and B such that

$$
A\left\|K^{*} f\right\|_{1}^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2} \leq B\|f\|_{1}^{2} \quad \forall f \in H
$$

Theorem 2.4. [1] Let $K \in \mathcal{B}(H)$. Then the following statements are equivalent:
(I) $\left\{\Lambda_{i}\right\}_{i \in I}$ is a K-g-frame for H with respect to $\left\{H_{i}\right\}_{i \in I}$.
(II) $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-Bessel sequence in H with respect to $\left\{H_{i}\right\}_{i \in I}$ and there exists a g-Bessel sequence $\left\{\Lambda_{i}^{\prime}\right\}_{i \in I}$ in H with respect to $\left\{H_{i}\right\}_{i \in I}$ such that

$$
K f=\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i}^{\prime} f \forall f \in H
$$

Theorem 2.5. [8] The set $\mathcal{S}(H)$ of all self-adjoint operators on H is a partially ordered set with respect to the partial order \leq which is defined as for $T, S \in \mathcal{S}(H)$

$$
T \leq S \Leftrightarrow\langle T f, f\rangle_{1} \leq\langle S f, f\rangle_{1} \forall f \in H
$$

Let H and X be two Hilbert spaces with inner products $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$. Then the space define by $H \oplus X=\{f \oplus g=(f, g): f \in H, g \in X\}$ is a linear space with respect to the addition and scalar multiplication defined by

$$
\begin{gathered}
\left(f_{1}, g_{1}\right)+\left(f_{2}, g_{2}\right)=\left(f_{1}+f_{2}, g_{1}+g_{2}\right), \text { and } \\
\lambda(f, g)=(\lambda f, \lambda g) \forall f, f_{1}, f_{2} \in H, g, g_{1}, g_{2} \in X \text { and } \lambda \in \mathbb{K} .
\end{gathered}
$$

Now, $H \oplus X$ is an inner product space with respect to the inner product given by

$$
\left\langle(f \oplus g),\left(f^{\prime} \oplus g^{\prime}\right)\right\rangle=\left\langle f, f^{\prime}\right\rangle_{1}+\left\langle g, g^{\prime}\right\rangle_{2} \forall f, f^{\prime} \in H \text { and } \forall g, g^{\prime} \in X
$$

The norm on $H \oplus X$ is defined by

$$
\|f \oplus g\|=\|f\|_{1}+\|g\|_{2} \quad \forall f \in H, g \in X
$$

where $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are norms generated by $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$, respectively.
The space $H \oplus X$ is complete with respect to the above inner product. Therefore the space $H \oplus X$ is a Hilbert space.

Note 2.6. [6] Let $U \in \mathcal{B}(H), V \in \mathcal{B}(X)$. Then for all $f \in H, g \in X$, define

$$
\begin{gathered}
U \oplus V \in \mathcal{B}(H \oplus X) \text { by }(U \oplus V)(f \oplus g)=(U f, V g), \text { and } \\
(U \oplus V)^{*}(f \oplus g)=\left(U^{*} f, V^{*} g\right)
\end{gathered}
$$

Furthermore, if U, V and $(U \oplus V)$ are invertible operators, then we define

$$
(U \oplus V)^{-1}(f \oplus g)=\left(U^{-1} f, V^{-1} g\right)
$$

Theorem 2.7. [6] Suppose $U, U^{\prime} \in \mathcal{B}(H)$ and $V, V^{\prime} \in \mathcal{B}(X)$. Then
(I) $\left(U+U^{\prime}\right) \oplus V=U \oplus V+U^{\prime} \oplus V, \lambda U \oplus \lambda V=\lambda(U \oplus V)$ and $U \oplus\left(V+V^{\prime}\right)=$ $U \oplus V+U \oplus V^{\prime}$.
(II) $I_{H} \oplus I_{X}=I_{H \oplus X}$, where I_{H}, I_{X} and $I_{H \oplus X}$ are identity operators on H, X and $H \oplus X$, respectively.
$(I I I)(U \oplus V)\left(U^{\prime} \oplus V^{\prime}\right)=\left(U U^{\prime} \oplus V V^{\prime}\right)$.
$(I V) \quad(U \oplus V)^{*}=U^{*} \oplus V^{*}$.
(V) If U and V are invertible, then $(U \oplus V)$ is invertible and moreover $(U \oplus V)^{-1}=$ $U^{-1} \oplus V^{-1}$.

3. K - g-frame in $H \oplus X$

In this section, we study K - g-frame in $H \oplus X$ and establish some results.

Definition 3.1. Let $K_{1} \in \mathcal{B}(H)$ and $K_{2} \in \mathcal{B}(X)$ be two operators. Then the family $\left\{\Lambda_{i} \oplus \Gamma_{i} \in \mathcal{B}\left(H \oplus X, H_{i} \oplus K_{i}\right)\right\}_{i \in I}$ is said to be a $K_{1} \oplus K_{2}$-g-frame for $H \oplus X$ with respect to $\left\{H_{i} \oplus K_{i}\right\}_{i \in I}$, if there exist constants $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A\left\|\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g)\right\|^{2} \leq \sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g)\right\|^{2} \leq B\|f \oplus g\|^{2} \tag{2}
\end{equation*}
$$

for all $f \oplus g \in H \oplus X$. The constants A and B are called the frame bounds. If $A=B$ then it is called a tight $K_{1} \oplus K_{2}-g$-frame. If the family $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ satisfies only the right inequality of (2) then it is called a $K_{1} \oplus K_{2}$-g-Bessel sequence in $H \oplus X$ with bound B.

Definition 3.2. Define $l^{2}\left(\left\{H_{i} \oplus K_{i}\right\}_{i \in I}\right)$

$$
=\left\{\left\{f_{i} \oplus g_{i}\right\}_{i \in I}: f_{i} \in H_{i}, g_{i} \in K_{i}, \text { and } \sum_{i}\left\|f_{i} \oplus g_{i}\right\|^{2}<\infty\right\}
$$

with inner product

$$
\begin{aligned}
& \left\langle\left\{f_{i} \oplus g_{i}\right\}_{i \in I},\left\{f_{i}^{\prime} \oplus g_{i}^{\prime}\right\}_{i \in I}\right\rangle_{l^{2}} \\
& =\sum_{i \in I}\left\langle\left(f_{i} \oplus g_{i}\right),\left(f_{i}^{\prime} \oplus g_{i}^{\prime}\right)\right\rangle \\
& =\sum_{i \in I}\left[\left\langle f_{i}, f_{i}^{\prime}\right\rangle_{H_{i}}+\left\langle g_{i}, g_{i}^{\prime}\right\rangle_{K_{i}}\right] \\
& =\sum_{i \in I}\left\langle f_{i}, f_{i}^{\prime}\right\rangle_{H_{i}}+\sum_{i \in I}\left\langle g_{i}, g_{i}^{\prime}\right\rangle_{K_{i}} \\
& =\left\langle\left\{f_{i}\right\}_{i \in I},\left\{f_{i}^{\prime}\right\}_{i \in I}\right\rangle_{l^{2}\left(\left\{H_{i}\right\}_{i \in I}\right)}+\left\langle\left\{g_{i}\right\}_{i \in I},\left\{g_{i}^{\prime}\right\}_{i \in I}\right\rangle_{l^{2}\left(\left\{K_{i}\right\}_{i \in I}\right)} .
\end{aligned}
$$

The space $l^{2}\left(\left\{H_{i} \oplus K_{i}\right\}\right)$ is complete with respect to the above inner product. Therefore the space $l^{2}\left(\left\{H_{i} \oplus K_{i}\right\}\right)$ is a Hilbert space.

In the following theorem, we show a sufficient condition for a Cartesian product of $K-g$ frames be also a $K-g$-frame.

Theorem 3.3. If $\left\{\Lambda_{i}\right\}_{i \in I}$ is a $K_{1}-g$-frame for H and $\left\{\Gamma_{i}\right\}_{i \in I}$ is a $K_{2}-g$-frame for X, then $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ is a $K_{1} \oplus K_{2}-g$-frame for $H \oplus X$.

Proof. Since $\left\{\Lambda_{i}\right\}_{i \in I}$ is a $K_{1}-g$-frame for H and $\left\{\Gamma_{i}\right\}_{i \in I}$ is a $K_{2}-g$-frame for X, there exist positive constants (A, B) and (C, D) such that

$$
\begin{align*}
& A\left\|K_{1}^{*} f\right\|_{1}^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2} \leq B\|f\|_{1}^{2} \quad \forall f \in H \tag{3}\\
& C\left\|K_{2}^{*} g\right\|_{2}^{2} \leq \sum_{i \in I}\left\|\Gamma_{i} g\right\|_{2}^{2} \leq D\|g\|_{2}^{2} \forall g \in X .
\end{align*}
$$

Now, for each $f \oplus g \in H \oplus X$, we have

$$
\begin{align*}
\sum_{i \in I} \| & \left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g) \|^{2}=\sum_{i \in I}\left\langle\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g),\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g)\right\rangle \\
& =\sum_{i \in I}\left\langle\left(\Lambda_{i} f \oplus \Gamma_{i} g\right),\left(\Lambda_{i} f \oplus \Gamma_{i} g\right)\right\rangle \\
& =\sum_{i \in I}\left\{\left\langle\Lambda_{i} f, \Lambda_{i} f\right\rangle_{1}+\left\langle\Gamma_{i} g, \Gamma_{i} g\right\rangle_{2}\right\} \\
& =\sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2}+\sum_{i \in I}\left\|\Gamma_{i} g\right\|_{2}^{2} \tag{5}\\
& \leq B\|f\|_{1}^{2}+D\|g\|_{2}^{2}[\text { by }(3) \text { and (4) }] \\
& \leq \max \{B, D\}\left\{\|f\|_{1}^{2}+\|g\|_{2}^{2}\right\}=\max \{B, D\}\|f \oplus g\|^{2} .
\end{align*}
$$

On the other hand, from (5), we have

$$
\begin{aligned}
& \sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g)\right\|^{2}=\sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2}+\sum_{i \in I}\left\|\Gamma_{i} g\right\|_{2}^{2} \\
& \geq A\left\|K_{1}^{*} f\right\|_{1}^{2}+C\left\|K_{2}^{*} g\right\|_{2}^{2}[\text { by }(3) \text { and }(4)] \\
& \geq \min \{A, C\}\left\{\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} g\right\|_{2}^{2}\right\}=\min \{A, C\}\left\|\left(K_{1}^{*} f \oplus K_{2}^{*} g\right)\right\|^{2} \\
& =\min \{A, C\}\left\|\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g)\right\|^{2} .
\end{aligned}
$$

Thus, $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ is a $K_{1} \oplus K_{2}$-g-frame for $H \oplus X$ with bounds $\min \{A, C\}$ and $\max \{B, D\}$.

Note 3.4. Let $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ be a $K_{1} \oplus K_{2}$-g-frame for $H \oplus X$. According to the definition (2.2), the synthesis operator $T_{\Lambda \oplus \Gamma}: l^{2}\left(\left\{H_{i} \oplus K_{i}\right\}_{i \in I}\right) \rightarrow H \oplus X$ is described by

$$
T_{\Lambda \oplus \Gamma}\left(\left\{f_{i} \oplus g_{i}\right\}_{i \in I}\right)=\sum_{i \in I}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(f_{i} \oplus g_{i}\right)
$$

for all $\left\{f_{i} \oplus g_{i}\right\}_{i \in I} \in l^{2}\left(\left\{H_{i} \oplus K_{i}\right\}_{i \in I}\right)$, and the corresponding frame operator $S_{\Lambda \oplus \Gamma}$: $H \oplus X \rightarrow H \oplus X$ is given by

$$
S_{\Lambda \oplus \Gamma}(f \oplus g)=\sum_{i \in I}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g) \forall(f \oplus g) \in H \oplus X
$$

Proposition 3.5. Let $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ be a $K_{1} \oplus K_{2}$-g-frame for $H \oplus X$ with the synthesis operator $T_{\Lambda \oplus \Gamma}$ and the corresponding frame operator $S_{\Lambda \oplus \Gamma}$. Then

$$
\begin{gathered}
S_{\Lambda \oplus \Gamma}=S_{\Lambda} \oplus S_{\Gamma}, S_{\Lambda \oplus \Gamma}^{-1}=S_{\Lambda}^{-1} \oplus S_{\Gamma}^{-1} \text { and } \\
T_{\Lambda \oplus \Gamma}=T_{\Lambda} \oplus T_{\Gamma}, T_{\Lambda \oplus \Gamma}^{*}=T_{\Lambda}^{*} \oplus T_{\Gamma}^{*}
\end{gathered}
$$

Proof. For each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
S_{\Lambda \oplus \Gamma}(f \oplus g) & =\sum_{i \in I}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g) \\
& =\sum_{i \in I}\left(\Lambda_{i}^{*} \Lambda_{i} \oplus \Gamma_{i}^{*} \Gamma_{i}\right)(f \oplus g) \\
& =\left(\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} f\right) \oplus\left(\sum_{i \in I} \Gamma_{i}^{*} \Gamma_{i} g\right) \\
& =S_{\Lambda} f \oplus S_{\Gamma} g=\left(S_{\Lambda} \oplus S_{\Gamma}\right)(f \oplus g)
\end{aligned}
$$

This shows that $S_{\Lambda \oplus \Gamma}=S_{\Lambda} \oplus S_{\Gamma}$. Since S_{Λ} and S_{Γ} are invertible, by (V) of Theorem 2.7, $S_{\Lambda \oplus \Gamma}$ is also invertible and $S_{\Lambda \oplus \Gamma}^{-1}=\left(S_{\Lambda} \oplus S_{\Gamma}\right)^{-1}=S_{\Lambda}^{-1} \oplus S_{\Gamma}^{-1}$.

On the other hand, for all $\left\{f_{i} \oplus g_{i}\right\}_{i \in I} \in l^{2}\left(\left\{H_{i} \oplus K_{i}\right\}_{i \in I}\right)$, we have

$$
\begin{aligned}
T_{\Lambda \oplus \Gamma}\left(\left\{f_{i} \oplus g_{i}\right\}_{i \in I}\right) & =\sum_{i \in I}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(f_{i} \oplus g_{i}\right) \\
& =\sum_{i \in I}\left(\Lambda_{i}^{*} \oplus \Gamma_{i}^{*}\right)\left(f_{i} \oplus g_{i}\right) \\
& =\left(\sum_{i \in I} \Lambda_{i}^{*} f_{i}\right) \oplus\left(\sum_{i \in I} \Gamma_{i}^{*} g_{i}\right) \\
& =\left(T_{\Lambda} \oplus T_{\Gamma}\right)\left(\left\{f_{i} \oplus g_{i}\right\}_{i \in I}\right)
\end{aligned}
$$

Hence, $T_{\Lambda \oplus \Gamma}=T_{\Lambda} \oplus T_{\Gamma}$ and therefore by ($I V$) of Theorem 2.7, $T_{\Lambda \oplus \Gamma}^{*}=T_{\Lambda}^{*} \oplus T_{\Gamma}^{*}$.
Theorem 3.6. Let $\left\{\Lambda_{i}\right\}_{i \in I}$ be a K_{1}-g-frame for H with bounds A, B and $\left\{\Gamma_{i}\right\}_{i \in I}$ be a K_{2}-g-frame for X with bounds C, D having their associated frame operators S_{Λ} and S_{Γ}, respectively. Then

$$
\min (A, C)\left(K_{1} \oplus K_{2}\right)\left(K_{1} \oplus K_{2}\right)^{*} \leq S_{\Lambda \oplus \Gamma} \leq \max (B, D) I_{H \oplus X}
$$

Proof. Since S_{Λ} and S_{Γ} are the frame operators for $\left\{\Lambda_{i}\right\}_{i \in I}$ and $\left\{\Gamma_{i}\right\}_{i \in I}$, respectively,

$$
\begin{gathered}
A\left\|K_{1}^{*} f\right\|_{1}^{2} \leq\left\langle S_{\Lambda} f, f\right\rangle_{1} \leq B\|f\|_{1}^{2} \forall f \in H, \text { and } \\
C\left\|K_{2}^{*} g\right\|_{2}^{2} \leq\left\langle S_{\Gamma} g, g\right\rangle_{2} \leq D\|g\|_{2}^{2} \forall g \in X
\end{gathered}
$$

Adding above two inequalities, we get

$$
\begin{aligned}
& A\left\|K_{1}^{*} f\right\|_{1}^{2}+C\left\|K_{2}^{*} g\right\|_{2}^{2} \leq\left\langle S_{\Lambda} f, f\right\rangle_{1}+\left\langle S_{\Gamma} g, g\right\rangle_{2} \leq B\|f\|_{1}^{2}+D\|g\|_{2}^{2} \\
& \Rightarrow E\left\{\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} g\right\|_{2}^{2}\right\} \leq\left\langle S_{\Lambda} f, f\right\rangle_{1}+\left\langle S_{\Gamma} g, g\right\rangle_{2} \leq F\left\{\|f\|_{1}^{2}+\|g\|_{2}^{2}\right\} \\
& \Rightarrow E\left\|\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g)\right\|^{2} \leq\left\langle S_{\Lambda} f, f\right\rangle_{1}+\left\langle S_{\Gamma} g, g\right\rangle_{2} \leq F\|f \oplus g\|^{2}
\end{aligned}
$$

where $E=\min (A, C)$ and $F=\max (B, D)$. Thus, for each $f \oplus g \in H \oplus X$,

$$
\begin{aligned}
& E\left\langle\left(K_{1} \oplus K_{2}\right)\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g),(f \oplus g)\right\rangle \leq\left\langle\left(S_{\Lambda} f \oplus S_{\Gamma} g\right),(f \oplus g)\right\rangle \\
& \quad \leq F\langle(f \oplus g),(f \oplus g)\rangle \\
& \Rightarrow E\left\langle\left(K_{1} \oplus K_{2}\right)\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g),(f \oplus g)\right\rangle \\
& \quad \leq\left\langle\left(S_{\Lambda} \oplus S_{\Gamma}\right)(f \oplus g),(f \oplus g)\right\rangle \\
& \quad \leq F\left\langle\left(I_{H} \oplus I_{X}\right)(f \oplus g),(f \oplus g)\right\rangle
\end{aligned}
$$

Now, according to the Theorem (2.5), we can write

$$
\min (A, C)\left(K_{1} \oplus K_{2}\right)\left(K_{1} \oplus K_{2}\right)^{*} \leq S_{\Lambda \oplus \Gamma} \leq \max (B, D) I_{H \oplus X}
$$

Theorem 3.7. Let $\left\{\Lambda_{i}\right\}_{i \in I}$ be a g-frame for H with bounds A, B and $\left\{\Gamma_{i}\right\}_{i \in I}$ be a g frame for X with bounds C, D. Suppose $K_{1} \in \mathcal{B}(H)$ and $K_{2} \in \mathcal{B}(X)$. Then $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ is a $K_{1} \oplus K_{2}$-g-frame for $H \oplus X$.

Proof. By theorem 3.3, $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ is a g-frame for $H \oplus X$ with bounds $\min \{A, C\}$ and $\max \{B, D\}$. Now, for each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
& \frac{\min \{A, C\}}{\max \left\{\left\|K_{1}\right\|^{2},\left\|K_{2}\right\|^{2}\right\}}\left\|\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g)\right\|^{2} \\
& =\frac{\min \{A, C\}}{\max \left\{\left\|K_{1}\right\|^{2},\left\|K_{2}\right\|^{2}\right\}}\left\{\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} g\right\|_{2}^{2}\right\} \\
& \leq \frac{\min \{A, C\}}{\max \left\{\left\|K_{1}\right\|^{2},\left\|K_{2}\right\|^{2}\right\}}\left\{\left\|K_{1}\right\|^{2}\|f\|_{1}^{2}+\left\|K_{2}\right\|^{2}\|g\|_{2}^{2}\right\} \\
& \leq \min \{A, C\}\left\{\|f\|_{1}^{2}+\|g\|_{2}^{2}\right\}=\min \{A, C\}\|f \oplus g\|^{2} \\
& \leq \sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g)\right\|^{2} \leq \max \{B, D\}\|f \oplus g\|^{2} .
\end{aligned}
$$

Thus, the family $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ is a $K_{1} \oplus K_{2}$ - g-frame for $H \oplus X$ with bounds $\min \{A, C\} / \max \left\{\left\|K_{1}\right\|^{2},\left\|K_{2}\right\|^{2}\right\}$ and $\max \{B, D\}$.

Theorem 3.8. Let $\left\{\Lambda_{i}\right\}_{i \in I}$ be a K_{1}-g-frame for H with bounds A, B and $\left\{\Gamma_{i}\right\}_{i \in I}$ be a K_{2}-g-frame for X with bounds C, D having their associated frame operators S_{Λ} and S_{Γ}, respectively. Suppose $T_{1} \in \mathcal{B}(H)$ and $T_{2} \in \mathcal{B}(X)$. Then $\left\{\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(T_{1} \oplus T_{2}\right)^{*}\right\}_{i \in I}$ is a $\left(T_{1} \oplus T_{2}\right)\left(K_{1} \oplus K_{2}\right)$-g-frame for $H \oplus X$.

Proof. By theorem 3.3, $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ is a $K_{1} \oplus K_{2}-g$-frame for $H \oplus X$ with bounds $\min \{A, C\}$ and $\max \{B, D\}$. Now, for each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
& \min \{A, C\}\left\|\left[\left(T_{1} \oplus T_{2}\right)\left(K_{1} \oplus K_{2}\right)\right]^{*}(f \oplus g)\right\|^{2} \\
& =\min \{A, C\}\left\|\left(K_{1} \oplus K_{2}\right)^{*}\left(T_{1} \oplus T_{2}\right)^{*}(f \oplus g)\right\|^{2} \\
& =\min \{A, C\}\left\|K_{1}^{*} T_{1}^{*} f \oplus K_{2}^{*} T_{2}^{*} g\right\|^{2} \\
& =\min \{A, C\}\left\{\left\|K_{1}^{*} T_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} T_{2}^{*} g\right\|_{2}^{2}\right\} \\
& \leq A\left\|K_{1}^{*} T_{1}^{*} f\right\|_{1}^{2}+C\left\|K_{2}^{*} T_{2}^{*} g\right\|_{2}^{2} \\
& \leq \sum_{i \in I}\left\|\Lambda_{i} T_{1}^{*} f\right\|_{1}^{2}+\sum_{i \in I}\left\|\Gamma_{i} T_{2}^{*} g\right\|_{2}^{2}=\sum_{i \in I}\left\|\Lambda_{i} T_{1}^{*} f \oplus \Gamma_{i} T_{2}^{*} g\right\|^{2} \\
& =\sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(T_{1} \oplus T_{2}\right)^{*}(f \oplus g)\right\|^{2} .
\end{aligned}
$$

On the other hand, for each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
& \sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(T_{1} \oplus T_{2}\right)^{*}(f \oplus g)\right\|^{2} \\
& =\sum_{i \in I}\left\|\Lambda_{i} T_{1}^{*} f\right\|_{1}^{2}+\sum_{i \in I}\left\|\Gamma_{i} T_{2}^{*} g\right\|_{2}^{2} \\
& \leq B\left\|T_{1}^{*} f\right\|_{1}^{2}+D\left\|T_{2}^{*} g\right\|_{2}^{2} \\
& \leq \max \left\{B\left\|T_{1}\right\|^{2}, D\left\|T_{2}\right\|^{2}\right\}\left\{\|f\|_{1}^{2}+\|g\|_{2}^{2}\right\} \\
& =\max \left\{B\left\|T_{1}\right\|^{2}, D\left\|T_{2}\right\|^{2}\right\}\|f \oplus g\|^{2} .
\end{aligned}
$$

Thus, $\left\{\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(T_{1} \oplus T_{2}\right)^{*}\right\}_{i \in I}$ is a $\left(T_{1} \oplus T_{2}\right)\left(K_{1} \oplus K_{2}\right)$ - g-frame for $H \oplus X$ with bounds $\min \{A, C\}$ and $\max \left\{B\left\|T_{1}\right\|^{2}, D\left\|T_{2}\right\|^{2}\right\}$.

Remark 3.9. Let By Theorem 2.7, for each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
& \sum_{i \in I}\left[\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(T_{1} \oplus T_{2}\right)^{*}\right]^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(T_{1} \oplus T_{2}\right)^{*}(f \oplus g) \\
& =\sum_{i \in I}\left(T_{1} \oplus T_{2}\right)\left(\Lambda_{i}^{*} \oplus \Gamma_{i}^{*}\right)\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(T_{1}^{*} \oplus T_{2}^{*}\right)(f \oplus g) \\
& =\sum_{i \in I}\left(T_{1} \Lambda_{i}^{*} \Lambda_{i} T_{1}^{*} \oplus T_{2} \Gamma_{i}^{*} \Gamma_{i} T_{2}^{*}\right)(f \oplus g) \\
& =\left(\sum_{i \in I} T_{1} \Lambda_{i}^{*} \Lambda_{i} T_{1}^{*} f\right) \oplus\left(\sum_{i \in I} T_{2} \Gamma_{i}^{*} \Gamma_{i} T_{2}^{*} g\right) \\
& =T_{1} S_{\Lambda} T_{1}^{*} f \oplus T_{2} S_{\Gamma} T_{2}^{*} g \\
& =\left(T_{1} \oplus T_{2}\right)\left(S_{\Lambda} \oplus S_{\Gamma}\right)\left(T_{1}^{*} \oplus T_{2}^{*}\right)(f \oplus g) \\
& =\left(T_{1} \oplus T_{2}\right) S_{\Lambda \oplus \Gamma}\left(T_{1} \oplus T_{2}\right)^{*}(f \oplus g)
\end{aligned}
$$

This shows that $\left(T_{1} \oplus T_{2}\right) S_{\Lambda \oplus \Gamma}\left(T_{1} \oplus T_{2}\right)^{*}$ is the corresponding frame operator for $\left\{\left(\Lambda_{i} \oplus \Gamma_{i}\right)\left(T_{1} \oplus T_{2}\right)^{*}\right\}_{i \in I}$.

Theorem 3.10. Suppose $K_{1}, K_{2} \in \mathcal{B}(H)$ and $T_{1}, T_{2} \in \mathcal{B}(X)$. Let $\left\{\Lambda_{i}\right\}_{i \in I}$ be a $K_{1}-g$ frame and $K_{2}-g$-frame for H and $\left\{\Gamma_{i}\right\}_{i \in I}$ be a $T_{1}-g$-frame and T_{2}-g-frame for X. Then $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ is a $\alpha\left(K_{1} \oplus T_{1}\right)+\beta\left(K_{2} \oplus T_{2}\right)$-g-frame and $\left(K_{1} \oplus T_{1}\right)\left(K_{2} \oplus T_{2}\right)-g$ frame for $H \oplus X$.

Proof. Since $\left\{\Lambda_{i}\right\}_{i \in I}$ is a K_{1} - g-frame and K_{2} - g-frame for H and $\left\{\Gamma_{i}\right\}_{i \in I}$ is a T_{1} - g-frame and T_{2} - g-frame for X, there exist positive constants $A_{m}, B_{m}, m=1,2$ and $C_{n}, D_{n}, n=1,2$ such that

$$
\begin{gather*}
A_{m}\left\|K_{m}^{*} f\right\|_{1}^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2} \leq B_{m}\|f\|_{1}^{2} \quad \forall f \in H \tag{6}\\
C_{n}\left\|T_{n}^{*} g\right\|_{2}^{2} \leq \sum_{i \in I}\left\|\Gamma_{i} g\right\|_{2}^{2} \leq D_{n}\|g\|_{2}^{2} \forall g \in X \tag{7}
\end{gather*}
$$

Now, for each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
& \left\|\left[\alpha\left(K_{1} \oplus T_{1}\right)^{*}+\beta\left(K_{2} \oplus T_{2}\right)^{*}\right](f \oplus g)\right\|^{2} \\
& =\left\|\left[\alpha\left(K_{1}^{*} \oplus T_{1}^{*}\right)+\beta\left(K_{2}^{*} \oplus T_{2}^{*}\right)\right](f \oplus g)\right\|^{2} \\
& \leq\left\|\alpha\left(K_{1}^{*} \oplus T_{1}^{*}\right)(f \oplus g)\right\|^{2}+\left\|\beta\left(K_{2}^{*} \oplus T_{2}^{*}\right)(f \oplus g)\right\|^{2} \\
& \leq|\alpha|^{2}\left\{\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|T_{1}^{*} g\right\|_{2}^{2}\right\}+|\beta|^{2}\left\{\left\|K_{2}^{*} f\right\|_{1}^{2}+\left\|T_{2}^{*} g\right\|_{2}^{2}\right\} \\
& \leq \max \left\{|\alpha|^{2},|\beta|^{2}\right\}\left\{\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} f\right\|_{1}^{2}+\left\|T_{1}^{*} g\right\|_{2}^{2}+\left\|T_{2}^{*} g\right\|_{2}^{2}\right\} \\
& \leq \max \left\{|\alpha|^{2},|\beta|^{2}\right\}\left\{\left(\frac{1}{A_{1}}+\frac{1}{A_{2}}\right) \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2}+\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \sum_{i \in I}\left\|\Gamma_{i} g\right\|_{2}^{2}\right\} \\
& \leq \max \left\{|\alpha|^{2},|\beta|^{2}\right\} \max \left\{\left(\frac{1}{A_{1}}+\frac{1}{A_{2}}\right),\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right\} \times \\
& \quad \sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g)\right\|^{2} .
\end{aligned}
$$

On the other hand, from (6) and (7), for each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
& \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2}+\sum_{i \in I}\left\|\Gamma_{i} g\right\|_{2}^{2} \leq\left(B_{1}+B_{2}\right)\|f\|_{1}^{2}+\left(D_{1}+D_{2}\right)\|g\|_{2}^{2} \\
& \Rightarrow \sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g)\right\|^{2} \leq \max \left\{\left(B_{1}+B_{2}\right),\left(D_{1}+D_{2}\right)\right\}\|f \oplus g\|^{2} .
\end{aligned}
$$

Thus, $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ is a $\alpha\left(K_{1} \oplus T_{1}\right)+\beta\left(K_{2} \oplus T_{2}\right)$ - g-frame for $H \oplus X$.

Now, for each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
& \left\|\left[\left(K_{1} \oplus T_{1}\right)\left(K_{2} \oplus T_{2}\right)\right]^{*}(f \oplus g)\right\|^{2} \\
& =\left\|\left(K_{2}^{*} K_{1}^{*} \oplus T_{2}^{*} T_{1}^{*}\right)(f \oplus g)\right\|^{2} \\
& =\left\|K_{2}^{*} K_{1}^{*} f\right\|_{1}^{2}+\left\|T_{2}^{*} T_{1}^{*} g\right\|_{2}^{2} \\
& \leq\left\|K_{2}\right\|^{2}\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|T_{2}\right\|^{2}\left\|T_{1}^{*} g\right\|_{2}^{2} \\
& \leq \max \left\{\left\|K_{2}\right\|^{2},\left\|T_{2}\right\|^{2}\right\}\left\{\frac{1}{A_{1}} \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2}+\frac{1}{C_{1}} \sum_{i \in I}\left\|\Gamma_{i} g\right\|_{2}^{2}\right\} \\
& \leq \max \left\{\left\|K_{2}\right\|^{2},\left\|T_{2}\right\|^{2}\right\} \max \left\{\frac{1}{A_{1}}, \frac{1}{C_{1}}\right\} \sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g)\right\|^{2} .
\end{aligned}
$$

Hence, $\left\{\Lambda_{i} \oplus \Gamma_{i}\right\}_{i \in I}$ is a $\left(K_{1} \oplus T_{1}\right)\left(K_{2} \oplus T_{2}\right)$-g-frame for $H \oplus X$. This completes the proof.

Theorem 3.11. Let $\left\{\Lambda_{i}\right\}_{i \in I}$ be a tight $K_{1}-g$-frame for H with bound A and $\left\{\Gamma_{i}\right\}_{i \in I}$ be a tight K_{2}-g-frame for X with bound B. Then there exists a g-Bessel sequence $\left\{\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right\}_{i \in I}$ in $H \oplus X$ with bound F such that

$$
\left(K_{1} \oplus K_{2}\right)(f \oplus g)=\sum_{i \in I}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right)(f \oplus g),
$$

for all $f \oplus g \in H \oplus X$ and $F \max (A, B) \geq 1$.
Proof. Since $\left\{\Lambda_{i}\right\}_{i \in I}$ is a tight $K_{1}-g$-frame for H and $\left\{\Gamma_{i}\right\}_{i \in I}$ is a tight $K_{2}-g$-frame for X, by Theorem 2.4, there exist g-Bessel sequences $\left\{\Lambda_{i}^{\prime}\right\}_{i \in I}$ and $\left\{\Gamma_{i}^{\prime}\right\}_{i \in I}$ in H and X with bounds C and D, respectively, such that

$$
K_{1} f=\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i}^{\prime} f \forall f \in H, \text { and } K_{2} g=\sum_{i \in I} \Gamma_{i}^{*} \Gamma_{i}^{\prime} g \forall g \in X .
$$

Then for each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
& \left(K_{1} \oplus K_{2}\right)(f \oplus g)=K_{1} f \oplus K_{2} g \\
& =\left(\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i}^{\prime} f\right) \oplus\left(\sum_{i \in I} \Gamma_{i}^{*} \Gamma_{i}^{\prime} g\right) \\
& =\sum_{i \in I}\left(\Lambda_{i}^{*} \Lambda_{i}^{\prime} f \oplus \Gamma_{i}^{*} \Gamma_{i}^{\prime} g\right) \\
& =\sum_{i \in I}\left(\Lambda_{i} \oplus \Gamma_{i}\right)^{*}\left(\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right)(f \oplus g) .
\end{aligned}
$$

By Theorem 3.3, $\left\{\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right\}_{i \in I}$ is a g-Bessel sequence in $H \oplus X$ with bound F, where $F=\max (C, D)$. Now, for each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
& \sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g)\right\|^{2}=\sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2}+\sum_{i \in I}\left\|\Gamma_{i} g\right\|_{2}^{2} \\
& =A\left\|K_{1}^{*} f\right\|_{1}^{2}+B\left\|K_{2}^{*} g\right\|_{2}^{2} \\
& \leq \max (A, B)\left\{\sup _{f_{1} \in H,\left\|f_{1}\right\|=1}\left\|\sum_{i \in I}\left\langle\left(\Lambda_{i}^{\prime}\right)^{*} \Lambda_{i} f, f_{1}\right\rangle_{1}\right\|^{2}\right\}+ \\
& \max (A, B)\left\{\sup _{g_{1} \in X,\left\|g_{1}\right\|=1}\left\|\sum_{i \in I}\left\langle\left(\Gamma_{i}^{\prime}\right)^{*} \Gamma_{i} g, g_{1}\right\rangle_{2}\right\|^{2}\right\} \\
& =\max (A, B)\left\{\sup _{f_{1} \in H,\left\|f_{1}\right\|=1}\left\|\sum_{i \in I}\left\langle\Lambda_{i} f, \Lambda_{i}^{\prime} f_{1}\right\rangle_{1}\right\|^{2}\right\}+ \\
& \max (A, B)\left\{\sup _{g_{1} \in X,\left\|g_{1}\right\|=1}\left\|\sum_{i \in I}\left\langle\Gamma_{i} g, \Gamma_{i}^{\prime} g_{1}\right\rangle_{2}\right\|^{2}\right\} \\
& \leq \max (A, B)\left\{\sup _{f_{1} \in H,\left\|f_{1}\right\|=1} \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2} \sum_{i \in I}\left\|\Lambda_{i}^{\prime} f_{1}\right\|_{1}^{2}\right\}+ \\
& \max (A, B)\left\{\sup _{g_{1} \in X,\left\|g_{1}\right\|=1} \sum_{i \in I}\left\|\Gamma_{i} g\right\|_{2}^{2} \sum_{i \in I}\left\|\Gamma_{i}^{\prime} g_{1}\right\|_{2}^{2}\right\} \\
& \leq \max (A, B)\left\{C \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2}+D \sum_{i \in I}\left\|\Gamma_{i} g\right\|_{2}^{2}\right\} \\
& \leq \max (A, B) \max (C, D) \sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g)\right\|^{2} . \\
& \Rightarrow \max (A, B) \max (C, D) \geq 1 \text {. }
\end{aligned}
$$

Furthermore, for each $f \oplus g \in H \oplus X$, we have

$$
\begin{aligned}
\left\langle\left(K_{1} \oplus\right.\right. & \left.\left.K_{2}\right)^{*}(f \oplus g),\left(f_{1} \oplus g_{1}\right)\right\rangle=\left\langle K_{1}^{*} f \oplus K_{2}^{*} g,\left(f_{1} \oplus g_{1}\right)\right\rangle \\
& =\left\langle K_{1}^{*} f, f_{1}\right\rangle_{1}+\left\langle K_{2}^{*} g, g_{1}\right\rangle_{2}=\left\langle f, K_{1} f_{1}\right\rangle_{1}+\left\langle g, K_{2} g_{1}\right\rangle_{2} \\
& =\left\langle f, \sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i}^{\prime} f_{1}\right\rangle_{1}+\left\langle g, \sum_{i \in I} \Gamma_{i}^{*} \Gamma_{i}^{\prime} g_{1}\right\rangle_{2} \\
& =\left\langle\sum_{i \in I}\left(\Lambda_{i}^{\prime}\right)^{*} \Lambda_{i} f, f_{1}\right\rangle_{1}+\left\langle\sum_{i \in I}\left(\Gamma_{i}^{\prime}\right)^{*} \Gamma_{i} g, g_{1}\right\rangle_{2} \\
& =\left\langle\sum_{i \in I}\left(\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g),\left(f_{1} \oplus g_{1}\right)\right\rangle .
\end{aligned}
$$

Thus, for each $f \oplus g \in H \oplus X$, we have

$$
\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g)=\sum_{i \in I}\left(\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right)^{*}\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g) .
$$

4. Perturbation of K - g-frame in $H \oplus X$

In frame theory, an important concept is stability of frame. In this section, we study the stability of $K_{1} \oplus K_{2}-g$-frame for $H \oplus X$ under some perturbations.

Theorem 4.1. Let $\left\{\Lambda_{i}\right\}_{i \in I}$ be a K_{1}-g-frame for H with bounds A, B and $\left\{\Gamma_{i}\right\}_{i \in I}$ be a K_{2}-g-frame for X with bounds C, D. Consider the family of operators $\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime} \in$ $\mathcal{B}\left(H \oplus X, H_{i} \oplus K_{i}\right)$. If there exists $0<R<\min \{A, C\}$ such that

$$
\begin{equation*}
\sum_{i \in I}\left\|\left(\Lambda_{i} \oplus \Gamma_{i}\right)(f \oplus g)-\left(\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right)(f \oplus g)\right\|^{2} \leq R\left\|\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g)\right\|^{2} \tag{8}
\end{equation*}
$$

for all $f \oplus g \in H \oplus X$. Then the family $\left\{\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right\}_{i \in I}$ is a $K_{1} \oplus K_{2}$-g-frame for $H \oplus X$. Proof. For each $f \oplus g \in H \oplus X$, from (8), we have

$$
\begin{align*}
& \sum_{i \in I}\left\|\left(\Lambda_{i} f \oplus \Gamma_{i} g\right)-\left(\Lambda_{i}^{\prime} f \oplus \Gamma_{i}^{\prime} g\right)\right\|^{2} \leq R\left\|\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g)\right\|^{2} \\
& \Rightarrow \sum_{i \in I}\left\|\left(\Lambda_{i} f-\Lambda_{i}^{\prime} f\right) \oplus\left(\Gamma_{i} g-\Gamma_{i}^{\prime} g\right)\right\|^{2} \leq R\left\|\left(K_{1}^{*} f \oplus K_{2}^{*} g\right)\right\|^{2} \\
& \Rightarrow \sum_{i \in I}\left\|\Lambda_{i} f-\Lambda_{i}^{\prime} f\right\|_{1}^{2}+\sum_{i \in I}\left\|\Gamma_{i} g-\Gamma_{i}^{\prime} g\right\|_{2}^{2} \leq R\left(\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} g\right\|_{2}^{2}\right) . \tag{9}
\end{align*}
$$

Now, by the triangle inequality, we have

$$
\begin{aligned}
\sum_{i \in I}\left\|\Lambda_{i}^{\prime} f\right\|_{1}^{2} & \geq \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2}-\sum_{i \in I}\left\|\Lambda_{i} f-\Lambda_{i}^{\prime} f\right\|_{1}^{2} \\
& \geq A\left\|K_{1}^{*} f\right\|_{1}^{2}-\sum_{i \in I}\left\|\Lambda_{i} f-\Lambda_{i}^{\prime} f\right\|_{1}^{2}, \text { and } \\
\sum_{i \in I}\left\|\Gamma_{i}^{\prime} g\right\|_{2}^{2} & \geq C\left\|K_{2}^{*} g\right\|_{2}^{2}-\sum_{i \in I}\left\|\Gamma_{i} g-\Gamma_{i}^{\prime} g\right\|_{2}^{2}
\end{aligned}
$$

Adding these above two inequalities, we get

$$
\begin{aligned}
& \sum_{i \in I}\left\{\left\|\Lambda_{i}^{\prime} f\right\|_{1}^{2}+\left\|\Gamma_{i}^{\prime} g\right\|_{2}^{2}\right\} \\
& \geq A\left\|K_{1}^{*} f\right\|_{1}^{2}+C\left\|K_{2}^{*} g\right\|_{2}^{2}-\left\{\sum_{i \in I}\left\|\Lambda_{i} f-\Lambda_{i}^{\prime} f\right\|_{1}^{2}+\sum_{i \in I}\left\|\Gamma_{i} g-\Gamma_{i}^{\prime} g\right\|_{2}^{2}\right\} \\
& \geq A\left\|K_{1}^{*} f\right\|_{1}^{2}+C\left\|K_{2}^{*} g\right\|_{2}^{2}-R\left(\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} g\right\|_{2}^{2}\right)[\text { by (9) } \\
& \geq \min (A, C)\left(\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} g\right\|_{2}^{2}\right)-R\left(\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} g\right\|_{2}^{2}\right) \\
& =\{\min (A, C)-R\}\left(\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} g\right\|_{2}^{2}\right) \\
& =\{\min (A, C)-R\}\left\|\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g)\right\|^{2} \\
& \Rightarrow\{\min (A, C)-R\}\left\|\left(K_{1} \oplus K_{2}\right)^{*}(f \oplus g)\right\|^{2} \\
& \quad \leq \sum_{i \in I}\left\|\left(\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right)(f \oplus g)\right\|^{2}
\end{aligned}
$$

for all $f \oplus g \in H \oplus X$. On the other hand,

$$
\begin{aligned}
& \sum_{i \in I}\left\|\Lambda_{i}^{\prime} f\right\|_{1}^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|_{1}^{2}+\sum_{i \in I}\left\|\Lambda_{i} f-\Lambda_{i}^{\prime} f\right\|_{1}^{2} \\
& \leq B\|f\|_{1}^{2}-\sum_{i \in I}\left\|\Lambda_{i} f+\Lambda_{i}^{\prime} f\right\|_{1}^{2}, \text { and } \\
& \sum_{i \in I}\left\|\Gamma_{i}^{\prime} g\right\|_{2}^{2} \leq D\|g\|_{2}^{2}+\sum_{i \in I}\left\|\Gamma_{i} g-\Gamma_{i}^{\prime} g\right\|_{2}^{2}
\end{aligned}
$$

Again adding the above two inequalities, and using (9), we get

$$
\begin{aligned}
& \sum_{i \in I}\left\|\left(\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right)(f \oplus g)\right\|^{2} \\
& \leq B\|f\|_{1}^{2}+D\|g\|_{2}^{2}+R\left(\left\|K_{1}^{*} f\right\|_{1}^{2}+\left\|K_{2}^{*} g\right\|_{2}^{2}\right) \\
& \leq B\|f\|_{1}^{2}+D\|g\|_{2}^{2}+R\left(\left\|K_{1}\right\|^{2}\|f\|_{1}^{2}+\left\|K_{2}\right\|^{2}\|g\|_{2}^{2}\right) \\
& \leq\left\{\max (B, D)+R \max \left(\left\|K_{1}\right\|^{2},\left\|K_{2}\right\|^{2}\right)\right\}\left(\|f\|_{1}^{2}+\|g\|_{2}^{2}\right) \\
& =\left\{\max (B, D)+R \max \left(\left\|K_{1}\right\|^{2},\left\|K_{2}\right\|^{2}\right)\right\}\|f \oplus g\|^{2},
\end{aligned}
$$

for all $f \oplus g \in H \oplus X$. Thus, $\left\{\Lambda_{i}^{\prime} \oplus \Gamma_{i}^{\prime}\right\}_{i \in I}$ is a $K_{1} \oplus K_{2}$ - g-frame for $H \oplus X$ with bounds $\{\min (A, C)-R\}$ and $\left\{\max (B, D)+R \max \left(\left\|K_{1}\right\|^{2},\left\|K_{2}\right\|^{2}\right)\right\}$. This completes the proof.

References

[1] M.S. Asgari, H. Rahimi, Generalized frames for operators in Hilbert spaces, Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 17 (2014) 1450013. https://doi.org/10.1142/s0219025714500131.
[2] P. Casazza, G. Kutyniok, Frames of subspaces, Contemp. Math., AMS, 345 (2004) 87-114.
[3] R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.2307/1990760.
[4] I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. J. Math. Phys. 27 (1986) 1271. https://doi.org/10.1063/1.527388.
[5] L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012) 139-144. https://doi.org/ 10.1016/j.acha.2011.07.006.
[6] P. Ghosh, T.K. Samanta, Construction of fusion frame in Cartesian product of two Hilbert spaces, Gulf J. Math. 11 (2021) 53-64.
[7] D.L. Hua, Y.D. Huang, $K-g$-frames and stability of $K-g$-frames in Hilbert spaces, J. Korean Math. Soc. 53 (2016) 1331-1345.
[8] P.K. Jain, O.P. Ahuja, Functional analysis, New Age International Publisher, New Delhi, 1995.
[9] W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl. 322 (2006) 437-452. https://doi.org/10. 1016/j.jmaa.2005.09.039.

[^0]: ${ }^{1}$ Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
 ${ }^{2}$ Department of Mathematics, Uluberia College, Uluberia, Howrah, 711315, West Bengal, INDIA
 *Corresponding author
 E-mail addresses: prasenjitpuremath@mail.com, mumpu_tapas5@yahoo.co.in. Key words and phrases. frame; g-frame; K-frame; K - g-frame; frame operator.
 Received 21/04/2022.

