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MIXINGALE ESTIMATION FUNCTION FOR MIXED FRACTIONAL
SPDES WITH RANDOM EFFECT AND RANDOM SAMPLING

JAYA P. N. BISHWAL

Abstract. We study the mixingale estimation function estimator of the parameters in the
fractional stochastic partial differential equation when the process is observed at the arrival
times of a Poisson process with the presence of random effect. We use a two stage estimation
procedure. We first estimate the intensity of the Poisson process. Then we plug-in this estimate
in the estimation function to estimate the drift parameter. We obtain the consistency and the
asymptotic normality of the mixingale estimation function estimator.

1. Introduction

Parameter estimation in fractional stochastic partial differential equations (SPDEs) is a very
young and exciting area of research in view of its applications in finance, physics, biology and
oceanography only to mention a few. Loges [43] initiated the study of parameter estimation in
infinite dimensional stochastic differential equations. When the length of the observation time
becomes large, he obtained consistency and asymptotic normality of the maximum likelihood
estimator (MLE) of a real valued drift parameter in a Hilbert space valued SDE. Koski and Lo-
ges [42] extended the work of Loges [43] to minimum contrast estimators. Koski and Loges [41]
applied the work to a stochastic heat flow problem. Mohapl [48] studied maximum likelihood
and least squares estimators for discrete observations of an elliptic SPDE where the depen-
dent structure of the observations is completely different and simple from the parabolic case.
Cialenko et al. [21] studied drift estimation for discretely sampled SPDEs extending Bishwal
and Bose [19]. Martingale estimation function for discretely observed diffusions was studied in
Bibby and Srensen [2]. Bishwal [8] studied a new estimating function for discretely sampled
diffusions by removing the stochastic integral in Girsanov likelihood. Bishwal [11] studied max-
imum likelihood estimation in anticipative stochastic differential equations. With random drift
parameter, Bishwal [6] studied rates of convergence of the posterior distributions and the Bayes
estimators in the Ornstein-Uhlenbeck process. Bishwal [9] studied likelihood asymptotics and
Bayesian asymptotics for drift estimation of finite and infinite dimensional stochastic differen-
tial equations. For parameter estimation in partially observed stochastic differential equations,
see Bishwal [17]. Bernstein-von Mises theorem and spectral Bayesian asymptotics for parabolic
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stochastic partial differential equations was studied in Bishwal [19]. Bernstein-von Mises theo-
rem and small noise Bayesian asymptotics for parabolic stochastic partial differential equations
was studied in Bishwal [15]. Cheng et al. [20] studied BVT and Bayesian estimation for a
large class of prior distributions and loss functions (of at most polynomial growth) for diag-
onalizable bilinear SPDEs driven by a multiplicative noise. HJM type forward interest rate
models viewed as an SPDE along corresponding estimation and hypothesis testing problem is
studied in Bishwal [14], see also Bishwal [16]. Chong [22] established a limit theorem for inte-
grated volatility estimation in SPDE by conducting a martingale approximation by truncation
and blocking techniques to apply results by Jacod [38]. Bishwal [16] studied estimation and
hypothesis testing on nonlinear SPDEs from both continuous and discrete observations.

Based on continuous observations, usually there can be two asymptotic settings in SPDE:
1) T → ∞ 2) N → ∞ where T is the length of the observations and N is the number of
Fourier coefficients in the expansion of the solution to the SPDE. In a Bayesian approach,
using the first setting, Bishwal [5] proved the Bernstein-von Mises theorem and asymptotic
properties of regular Bayes estimator of the drift parameter in a Hilbert space valued SDE
when the corresponding ergodic diffusion process is observed continuously over a time interval
[0, T ]. The asymptotics are studied as T → ∞ under the condition of absolute continuity
of measures generated by the process. Results are illustrated for the example of an SPDE.
Bishwal [19](2001) proved the Bernstein-von Mises theorem and spectral asymptotics of Bayes
estimators for parabolic SPDEs when the number of Fourier coefficients becomes large. In this
case, the measures generated by the process for different parameters are singular.

Ditlevsen and De Gaetano [31] and Donnet and Samson [32] studied estimation of parameters
of specific model of mixed effects of Brownian motion with drift. Picchini et al. [53] studied
parameter estimation of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctu-
ating signal. Picchini et al. [51] studied estimation in stochastic differential mixed-effect models.
Picchini and Ditlevsen [52] studied estimation of high dimensional stochastic differential mixed-
effect models. Delattre et al. [24–26] studied maximum likelihood estimation for random effects
for i.i.d. sample paths for fixed T while M →∞. Comte et al. [23] studied nonparametric esti-
mation for stochastic differential equations with random effect. Maitra and Bhattacharya [45]
and Maitra and Bhattacharya [46] studied maximum likelihood estimation for random effects
for non-i.i.d. sample paths for fixed T while M → ∞. Maitra and Bhattacharya [44] studied
Bayesian asymptotics in SDEs with random effect. Nonparametric adaptive estimation of a
mixed effect in the drift coefficient of an O-U process has been studied in Dion [29]. Dion
and Genon-Catalot [30] studied bidimensional random effect estimation in mixed SDE model.
Whitaker et al. [59] studied Bayesian inference for mixed effect models of SDE. Picchini and
Forman [54] studied Bayesian inference for stochastic differential equation mixed effects models
and applied to tumor xenography. Recently Ruse et al. [55] studied inference for biomedical
data using diffusion models with covariates and mixed effects.

Delattre et al. [27] studied parametric inference for discrete observations of diffusion processes
with mixed effects using estimators defined by estimating equation approach. The estimators
of population parameters are asymptotically equivalent to the maximum likelihood estimators
based on direct observations of M i.i.d. Gamma random variables. Delattre et al. [28] studied
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approximate maximum likelihood estimation for stochastic differential equations with simulta-
neous random effects in the drift and the diffusion coefficients by means of a joint parametric
distribution. They considered M paths and n observations per path. For linear random effects
and a specific joint distribution for these random effects, we have proved that the model pa-
rameters in the drift and in the diffusion can be estimated consistently and with a rate

√
M

under the condition M/n→ 0. For the parameters of the diffusion coefficient, the constraint is
weaker (M/n2 → 0).

In this paper we study the asymptotic properties of the quasi maximum likelihood estimator
when we have observations of finite-dimensional projections at Poisson arrival time points. The
asymptotic setting is the large number of observations at random time points which are the
arrivals of a Poisson process and large number of Fourier coefficients.

The rest of the paper is organized as follows : Section 2 contains model, assumptions and
preliminaries. In Section 3 we prove the main results of the paper. Section 4 demonstrates the
results through several examples of fSPDE. Finally we give some concluding remarks.

2. Mixingales and Mixed Fractional SPDEs

Recall that a fractional Brownian motion (fBM) has the covariance

C̃H(s, t) =
1

2

[
s2H + t2H − |s− t|2H

]
, s, t > 0.

For H > 0.5 the process has long range dependence or long memory and the process is self-
similar. For H 6= 0.5, the process is neither a Markov process nor a semimartingale. For
H = 0.5, the process reduces to standard Brownian motion.

Let us fix θ0, the unknown true value of the parameter θ. Let (Ω,F , P ) be a complete
probability space and W (t, x) be a process on this space with values in the Schwarz space of
distributions D′(G) where x ∈ G ⊂ Rd such that for φ, ψ ∈ C∞0 (G), ‖φ‖−1

L2(G) 〈W (t, ·), φ(·)〉 is a
one dimensional Wiener process and

E(〈W (s, ·), φ(·)〉〈W (t, ·), ψ(·)〉) = (s ∧ t)(φ, ψ)L2(G). (2.1)

This process is usually referred to as the cylindrical Brownian motion (CBM).
Consider the stochastic evolution equation

du(t, x) + (A0 + θA1)u(t, x)dt = dWH(t, x), t ∈ [0, T ], x ∈ G, u(0, x) = 0 (2.2)

where G is a smooth bounded domain in Rd, A0 and A1 are linear operators on a smooth
bounded domain G in Rd with orders m0 and m1 respectively with m1 ≥ m− d/2 where 2m =

max(m0,m1), {Wt(x)} is a cylindrical fractional Brownian motion based on the observations
of the solution u(t, x), t ∈ [0, T ], x ∈ G and θ ∈ Θ is a random variable independent of WH

whose distribution will be specified later. Let Aθ := A0 + θA1.

We assume that there exists a complete orthonormal system {hj}∞j=1 in L2(G)) such that for
every j = 1, 2, . . . , the system hj ∈ Wm,2

0 (G) ∩ C∞(G) and

Λθhj = αj(θ)hj, and Lθhj = µj(θ)hj for all θ ∈ Θ (2.3)
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where Lθ is a closed self adjoint extension of Aθ, Λθ := (k(θ)I−Lθ)1/2m, k(θ) is a constant and
the spectrum of the operator Λθ consists of eigenvalues {αj(θ)}∞j=1 of finite multiplicities and
µj(θ) = −α2m

j + k(θ).

The fractional cylindrical Brownian motion W (t, x) can be expanded in the series

WH(t, x) =
∞∑
j=1

WH
j (t)hj (2.4)

where {Wj(t), t ≥ 0}∞j=1 are independent one dimensional fractional Brownian motions. The
latter series converges P -a.s. in H−a for a > d/2. Indeed

‖WH(t, x)‖2
−a =

∞∑
j=1

W 2
j (t)‖hj‖2

−a =
∞∑
j=1

(WH
j )2(t)α−2a

j . (2.5)

and the later series converges P -a.s.
Let

ψN :=
N∑
j=1

α2
j

µj
. (2.6)

Here θ ∈ Θ ⊆ R is the unknown parameter to be estimated on the basis of the observations
of the random field uθ(t, x), t ≥ 0, x ∈ [0, 1].

Consider the Fourier expansion of the process

u(t, x) =
∞∑
j=1

uj(t)φj(x) (2.7)

corresponding to some orthogonal basis {φj(x)}∞j=1. Bagchi and Kumar (2001) used this rep-
resentation for infinite factor model. Note that uθj(t), j ≥ 1 are independent one dimensional
Ornstein-Uhlenbeck processes

duθj(t) = µj(θj)u
θ
j(t)dt+ α−aj dWH

j (t) (2.8)

uθj(0) = uθ0j,

Recall that µj(θj) = k(θj)−α2m
j . Thus the jth Fourier coefficient satisfies the linear SDE of the

Ornstein-Uhlenbeck type

duθj(t) = (k(θj)− α2m
j )uθj(t)dt+ α−aj dWH

j (t) (2.9)

Note that for a fixed t, the processes are {u1(t), u2(t), u3(t), . . .} independent. This is like a
continuous version of cross section time series, i.e, a joint regression auto-regression model
of order 1. The random field u(t, x) is observed at discrete times t and discrete positions x.
Equivalently, the Fourier coefficients uθj(t) are observed at discrete time points.

Now we focus on the fundamental semimartingale behind the fSPDE model. Define

κH := 2HΓ(3/2−H)Γ(H + 1/2), kH(t, s) := κ−1
H (s(t− s))

1
2
−H ,

λH :=
2HΓ(3− 2H)Γ(H + 1

2
)

Γ(3/2−H)
, vt ≡ vHt := λ−1

H t2−2H , MH
t :=

∫ t

0

kH(t, s)dWH
s .

From Norros et al. [49] it is well known thatMH
k,t is a Gaussian martingale, called the funda-

mental martingale whose variance function 〈MH
k 〉t is vHt . Moreover, the natural filtration of

https://doi.org/10.28919/ejma.2022.2.12


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.12 5

the martingaleMH coincides with the natural filtration of the fBm WH since

WH
k,t :=

∫ t

0

K(t, s)dMH
k,s

holds for H ∈ (1/2, 1) where

KH(t, s) := H(2H − 1)

∫ t

s

rH−
1
2 (r − s)H−

3
2dr, 0 ≤ s ≤ t

and for H = 1/2, the convention K1/2 ≡ 1 is used.

Define

Qk,t :=
d

dvt

∫ t

0

kH(t, s)uk,sds.

Define the process Zk = (Zk,t, t ∈ [0, T ], k ≥ 1) by

Zk,t :=

∫ t

0

kH(t, s)duk,s.

It is easy to see that

Qk,t =
λH

2(2− 2H)

{
t2H−1Zk,t +

∫ t

0

r2H−1dZk,s

}
.

The following facts are known from Kleptsyna and Le Breton [40]:

(i) Zk is the fundamental semimartingale associated with the process uk.
(ii) Zk is a (Ft) -semimartingale with the decomposition

Zk,t = θk

∫ t

0

Qk,sdvs +MH
k,t.

(iii) uk admits the representation

uk,t =

∫ t

0

KH(t, s)dZk,s.

(iv) The natural filtration (Zt) of Zk and (Ut) of uk coincide.

We have

Qk,t =
d

dvt

∫ t

0

kH(t, s)uk,sds

= κ−1
H

d

dvt

∫ t

0

s1/2−H(t− s)1/2−Huk,sds

= κ−1
H λHt

2H−1 d

dt

∫ t

0

s1/2−H(t− s)1/2−Huk,sds

= κ−1
H λHt

2H−1

∫ t

0

d

dt
s1/2−H(t− s)1/2−Huk,sds

= κ−1
H λHt

2H−1

∫ t

0

s1/2−H(t− s)−1/2−Huk,sds.

The discretized version of

Zk,t = θk

∫ t

0

Qk,sdvs +MH
k,t
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is given by
∆Zk,ti = θkQk,ti∆vti + ∆MH

k,ti
, k ≥ 1, t ≥ 0

which is a regression model of Z on Q.
The process Qk depends continuously on uk and therefore, the discrete observations of uk does

not allow one to obtain the discrete observations of Q. The process Qk can be approximated
by

Q̃k,n = κ−1
H λHn

2H−1

n−1∑
j=0

j1/2−H(n− j)−1/2−Huk,j. (2.10)

It is easy to show that Q̃n → Qt almost surely as n→∞, see Tudor and Viens [58].
Define a new partition 0 ≤ r1 < r2 < r3 < · · · < rmk = tk, k = 1, 2, · · · , n.
Define

Q̃i(tk) = κ−1
H ηHt

2H−1
k

mk∑
j=1

r
1/2−H
j (rmk − rj)−1/2−Hui(rj)(rj − rj−1), (2.11)

k = 1, 2, · · · , n. It is easy to show that Q̃i(tk) → Qi(t) almost surely as mk → ∞ for each
k = 1, 2, · · · , n and i ≥ 1, see Tudor and Viens [58].

We use this approximate observation in the calculation of our estimators. Thus our observa-
tions are

ui(t) ≈
∫ t

0

KH(t, s)dZ̃i(s) where Z̃i(t) = θ

∫ t

0

Q̃i(s)dvs +MH
i,t (2.12)

observed at t1, t2, . . . , tn.
Note that for equally spaced data

∆vti := vti − vti−1
= λ−1

H

(
T

n

)2−2H

[i2−2H − (i− 1)2−2H ]. (2.13)

For H = 0.5,

vti − vti−1
= λ−1

H

(
T

n

)2−2H

[i2−2H − (i− 1)2−2H ] =
T

n
, i = 1, 2, . . . , n (2.14)

the standard equispaced partition. In this paper we do not need to assume T/n→ 0 unlike the
finite dimensional diffusion models as we take advantage of the increasing spatial dimension
K →∞ in this paper.

The discrete time points could be deterministic (equally spaced/homoscedastic or unequally
spaced
/heteroscadastic) or random. We consider random time points. For x ∈ [0, 1], for fixed j, we
observe the process {uj(t), t ≥ 0} at times {t0, t1, t2, ....}. We assume that the sampling instants
{ti, i = 0, 1, 2...} are generated by a Poisson process on [0,∞), i.e., t0 = 0, ti = ti−1 + τi, i =

1, 2, ... where τi are i.i.d. positive random variables with a common exponential distribution
F (x) = 1 − exp(−λx). Note that intensity parameter λ > 0 is the average sampling rate
which is needs to be estimated. It is also assumed that the sampling process ti, i = 0, 1, 2, ...

is independent of the observation process {uj(t), t ≥ 0, j ≥ 1}. We note that the probability
density function of tk+i − tk is independent of k and is given by the gamma density

fi(t) = λ(λt)i−1 exp(−λt)It/(i− 1)!, i = 0, 1, 2, .... (2.15)

where It = 1 if t ≥ 0 and It = 0 if t < 0.

https://doi.org/10.28919/ejma.2022.2.12
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For a fixed 1 ≤ j ≤ N , we denote uj(ti) by uj,ti , i = 1, 2, . . . , n. We observe the first N
Fourier coefficient at the random time points ti, i = 1, 2, . . . , n. Thus the data set is given by
uj,ti , j = 1, 2, . . . , N, i = 1, 2, . . . , n. Thus the total number of observations of the random field
u on the grid is nN . For instance, in the case of an application to term structure data, this
is quite natural, since we can expect many observations over a time of a number of different
maturities. Our asymptotic set up is n→∞ and N →∞.

Define
ρ := ρ(λ, θ) =

λ

λ− κ(θ) + α2m
j

, j = 1, 2, . . . , N. (2.16)

Now we consider mixed fSPDE where the parameters are independent random variables.
FSPDE with mixed effect are useful for modeling neuronal data. Consider the parabolic

mixed FSPDE

duθ(t, x) = θju
θ(t, x) +

∂2

∂x2
uθ(t, x)dt+ dWH(t, x), t ≥ 0, x ∈ [0, 1] (2.17)

u(0, x) = u0(x) ∈ L2([0, 1]) (2.18)

uθ(t, 0) = uθ(t, 1), t ∈ [0, T ], (2.19)

Consider the Fourier expansion of the process

u(t, x) =
∞∑
i=1

ui(t)φi(x) (2.20)

corresponding to some orthogonal basis {φi(x)}∞i=1. Note that uθi (t), i ≥ 1 are independent one
dimensional fractional Ornstein-Uhlenbeck processes

duji (t) = µi(θj)u
j
i (t)dt+ α−ai dW j,H

i (t) (2.21)

uji (0) = uθ0i,

where µi(θj) := k(θj)− α2m
i . Thus for 0 ≤ t ≤ T , we have

duji (t) = (k(θj)− α2m
i )uji (t)dt+ α−ai dW j,H

i (t), j = 1, 2, . . . ,M, i = 1, 2, . . . , N. (2.22)

Consider the more general set up where the particles could possible be interacting. We study
asymptotics as both N and M tend to infinity while T is fixed. The random field u(t, x) is
observed at discrete times t and discrete positions x. Equivalently, the Fourier coefficients
uji (t) are observed at discrete time points tk = k T

n
, k = 1, 2, . . . , n and we study asymptotics as

n → ∞. Thus we study triple asymptotics n → ∞, N → ∞ and M → ∞. Euler scheme is
given by

uji (tk)− u
j
i (tk−1) = (k(θj)− α2m

i )uji (tk−1)(tk − tk−1) + α−ai W j,H
i (tk − tk−1),

j = 1, 2, . . . ,M, i = 1, 2, . . . , N, k = 1, 2, . . . , n. (2.23)

Here θj has the mixture normal distribution with density g(x, θ) =
∑R

r=1 πrN ′(x,$r) with
$l = (µl, σl) where R is the number of components in the mixture, πr is the proportions
of mixtures with

∑R
l=1 πr = 1. We want to estimate the components of mixtures as well as

the parameters and proportions. The convergence rate of estimators differ when deterministic
components are present in the random effect.

Genon-Catalot and Laredo [36] studied estimation of the parameters of the distribution of
the random effect from M i.i.d. diffusion processes {Xj(t), 0 ≤ t ≤ T, j = 1, 2. . . . ,M} when
M and T (M) tend to infinity. Thus each sample path Xj is associated with a random effect

https://doi.org/10.28919/ejma.2022.2.12
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θj. They consider a two-stage procedure. For each j, an estimator of θj from the trajectories
of Xj(t), 0 ≤ t ≤ T, j = 1, 2, . . . ,M . Then use a plug-in technique to estimate the parameters
of the distribution of θj (the population parameters). Thus (θ,X) is a two dimensional strong
Markov process and hence a diffusion process. This is a state-space model.

For the finite dimensional fractional Ornstein-Uhlenbeck process, Berry-Esseen inequalities
of minimum contrast estimators based on continuous and discrete observations was studied in
Bishwal [13]. Large deviations in hypothesis testing for fractional Ornstein-Uhlenbeck models
was studied in Bishwal [10].

In our case for the f-O-U process with one multiplicative random effect

duj(t) = −θjuj(t)dt+ dWH
j (t), uj(0) = ηj, j = 1, 2, . . . ,M (2.24)

where θj ∈ (0,∞). We assume that θj has Gamma distribution with parameters β = (µ, δ) ∈
(0, ∞)2 with the density

f(β, x) =
δµ

Γ(µ)
xµ−1e−δx1x>0. (2.25)

We estimate the distribution of the random effect from M i.i.d. trajectories.
Consider the log-likelihood function associated with the observations of (θ1, θ2, . . . , θM)

lM(β) = Mµ log δ −M log Γ(µ) + (µ− 1)
M∑
j=1

log θj − δ
M∑
j=1

θj (2.26)

and define
βM = Argmax

θ
lM(β) (2.27)

which is the the MLE based on direct observations (θ1, θ2, . . . , θM).
As M →∞, we have βM is consistent and

√
M(βM − β)→D N2(0, I−1(β)) (2.28)

where

I(β) =

(
ψ′(µ) −δ−1

−δ−1 µδ−2

)
where

ψ(µ) :=
Γ′(µ)

Γ(µ)
= −γ +

∫ 1

0

1− tµ−1

1− t
dt (2.29)

is the di-gamma function where γ = −Γ′(1) is the Euler constant.
As the random variables θj’s are not directly observed, a natural strategy consists in plugging

lM(β) the estimators of θj’s. For the plug-in we must define estimators of θj. One can use the
MLE which is given by

θ̂j = −
∫ T

0
Qj(t)dZj(t)∫ T

0
Q2
j(t)dvt

(2.30)

and the MCE is which is given by

θ̃j = − T/2∫ T
0
Q2
j(t)dvt

. (2.31)

Truncation based estimator is given by

θ̂
(k)
j = θ̂j1{Vj,T /T>k/

√
T} (2.32)

https://doi.org/10.28919/ejma.2022.2.12
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where

Vj,T =

∫ T

0

Q2
j(t)dvt (2.33)

where k is a numerical constant calibrated in practice. This estimator may be negative and
null. Therefore we define a specific estimator of Lj = log θj and set, for k a constant

L̂
(k)
j = (log θ̂j)I{θ̂j≥k/

√
T , Vj,T /T>k/

√
T} = (log θ̂

(k)
j )I{θ̂j≥k/

√
T , Vj,T /T>k/

√
T}.

The MLE and the truncated estimator are asymptotically equivalent:
√
T (θ̂j − θ̂(k)

j ) = oP (1). (2.34)

Based on these estimators one can proceed to the estimation of density. Set

VM(β) = Mµ log δ−M log Γ(µ) + (µ− 1)
M∑
j=1

log θ̂
(k)
j 1{θ̂j≥k/

√
T , Vj,T /T>k/

√
T}− δ

M∑
j=1

θ̂
(k)
j (2.35)

and define

β̃M = Argmax
β

VM(β). (2.36)

Theorem 2.8 Assume that µ > 8. a) The estimator β̃M is consistent as M →∞ and T →∞.
b)
√
M(β̃M −βM) = oP (1) when M →∞ and T →∞ such that M

T
→ 0 where βM is the MLE

of β based on the observations (θ1, θ2, . . . , θM).
This shows the asymptotic equivalence of the plug-in estimator and the MLE.

3. Random Effect and Random Sampling

For the finite dimensional SDE with fBM noise, Maitra and Bhattacharya [47] considered
discretization if the likelihood. They obtained strong consistency and asymptotic normality of
the resulting estimator under increasing domain infill asymptotics, i.e., when the time domain
in increases, the number of discrete time points in the domain is increased faster than T ,
attempting to fill up the domain. (T → ∞, n → ∞, n/T → ∞, n/T 2 → ∞.) They also
obtained posterior asymptotic normality using regularilty conditions of Schervish [56]. We use
random temporal discretization. Bishwal [12] studied conditional least squares estimation in
finite dimensional diffusion models based on Poisson sampling. Usually optimal discretization
is achieved by random time interval, see Hofmann et al. [37]. We observe the process at the
arrival times of a Poisson process. We study the parameter estimation in two steps: The rate
λ of the Poisson process can be estimated given the jump times ti, therefore it is done at a first
step. Since we observe total number of jumps n of the Poisson process over the T intervals of
length one, the MLE of λ is given by

λ̂n :=
n

T
.

Theorem 3.1 We have

a) λ̂n → λ a.s. as n→∞.

b)
√
n(λ̂n − λ)→D N (0, eλ(1− e−λ)) as n→∞.

https://doi.org/10.28919/ejma.2022.2.12
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Proof. Let Ji be the number of jumps in the interval (i − 1, i]. Then Ji, i = 1, 2, . . . , n

are i.i.d. Poisson distributed with parameter λ. Since Φ is continuous, we have I{0}(Ji) =

I{0}(Qti), a.s. i = 1, 2, . . . , n. Note that

1

nN

N∑
k=1

n∑
i=1

I{0}(Qk,ti)→a.s. E(I{0}J1) = P (J1 = 0) = e−λ as n→∞.

LLN and CLT and delta method applied to the sequence I{0}(Qti), i = 1, 2, . . . , n give the
results.

The CLT result above allows us to construct confidence interval for the jump rate λ. A
100(1− α)% confidence interval for λ is given by[

n

T
− ε1−α

2

√
1

n
− 1

T
,
n

T
+ ε1−α

2

√
1

n
− 1

T

]
where ε1−α

2
is the (1− α

2
)-quantile of the standard normal distribution.

We have a time series representation of the model. It is well known that the discretized
version of the O-U process is an first order autoregressive process (AR(1)). Hence we have

Qk,ti+1
= e−µk(θk)∆tiQk,ti + εk,i

where

εk,i ∼MN
(

0,
1− e−2µ(θk)∆ti

ν(θ)
σ2
i

)
, i ≥ 1, k ≥ 1

conditionally on θk andMN denotes mixed normal distribution.
First we are interested in the estimation of the random variable θ. Note that it is not a

statistical parameter in the usual sense since θ is not a parameter but a random variable. Several
work these days deal with estimation of random variables. One of the most popular example
is the estimation of stochastic integrated volatility in semimartingale models based on high
frequency observations of the sample path, see Bishwal [17]. We approach the problem through
estimation function method, whose ideas resembles GMM method. See also Bishwal [11] where
estimation was based on N i.i.d. trajectories of [0, T ].

Define ρk := λ
λ+θk

. Mixingale estimation function (MEF) estimator, which is also the quasi
maximum likelihood estimator (QMLE) is the solution of the estimating equation: G∗n,N(θ) = 0

where

G∗n,N(θ) =
K∑
k=1

n∑
i=1

α2a
k λ(ρ(λ, θk))

2

ρ(λ, 2θk)
Qk,ti−1

[
(Qk,ti−1

θkρ(λ, θk))
2 + λ

]−1
[Qk,ti − ρ(λ, θk)Qk,ti−1

].

We call the solution of the estimating equation the quasi maximum likelihood estimator (QMLE).
There is no explicit solution for this equation.

The optimal estimating function for estimation of the unknown parameter θ is given by

Gn,N(θ) =
N∑
k=1

n∑
i=1

α2a
k Qk,ti−1

[Qk,ti − ρk(λ, θk)Qk,ti−1
].

The mixingale estimation function (MEF) estimator of ρ is the solution of Gn,N(θ) = 0 and
is given by

https://doi.org/10.28919/ejma.2022.2.12


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.12 11

ρ̂N,n :=

∑N
k=1

∑n
i=1 Qk,ti−1

Qk,ti∑N
k=1

∑n
i=1Q

2
k,ti−1

. (3.4)

We obtain the strong consistency and asymptotic normality of the estimator.

Theorem 3.2
a) ρ̂N,n →P ρ as n→,∞ and N →∞,

such that N
n
→ 0.

b)
√
nΨN(ρ̂N,n − ρ)→DMN (0, λ−i(1− e−ρ)) as n→∞ and N →∞

such that N√
n
→ 0 whereMN denotes mixed normal distribution.

Proof: By using the fact that every stationary mixing process is ergodic, it is easy to show that
if Qk(t) is a stationary ergodic O-U process and ti is a process with nonnegative i.i.d. increments
which is independent of Qk(t), then {Qk,ti , i ≥ 1, k ≥ 1} is a stationary ergodic Markov process.
Hence {Qj,ti , i ≥ 1} is a stationary ergodic process. Thus the extra randomness of the sampling
instants preserves the stationarity and ergodicity of the process in order for the law of large
numbers to be applicable.

Observe that Qθ
j(t) := vj is a stationary ergodic sequence and vj ∼ N (0, σ2) where σ2 is the

variance of Q1,t0 . Thus by SLLN for zero mean square integrable mixingales (Theorem 2.5 in
Bishwal [18], Peligrad and Utev ( [50], Theorem B) and arguments in Bibinger and Trabs ( [3],
Proposition 7.6), we have

N∑
k=1

n∑
i=1

Qk,ti−1
Qk,ti →a.s. E(Q1,t1Qk,t0) = ρE(Q2

1,t0
) (3.5)

and
1

nΨN

N∑
k=1

n∑
i=1

Q2
k,ti−1

→a.s. E(Q2
1,t0

). (3.6)

Further Qk,i(t) := Si is a stationary ergodic Markov chain and Si ∼ N (0, σ2) where σ2 is the
variance of Qk,0. SLLN for martingales proves the result.

Thus ∑n
i=1Qk,ti−1

Qk,ti∑n
i=1Q

2
k,ti−1

→P ρ. (3.7)

Further, √
nΨN(ρ̂n − ρ) =

(nΨN)−1/2
∑N

k=1

∑n
i=1 Qk,ti−1

(Qk,ti − θQk,ti−1
)

(nΨN)−1
∑N

k=1

∑n
i=1 Q

2
k,ti−1

. (3.8)

Since
E(Qk,t2Qk,t1|Qk,t1) = θQ2

k,t1
(3.9)

it follows by Theorem 2.7 and Theorem 2.2 in Bishwal [18] which is a generalization of Peligrad
and Utev ( [50], Theorem B), along with the arguments in Bibinger and Trabs [4], that

(nΨN)−1/2

N∑
k=1

n∑
i=1

Qk,ti−1
(Qk,ti − θQk,ti−1

)
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converges in distribution to normal distribution with mean zero and variance equal to

E[(Qk,t1Qk,t2)− E(Qk,t1Qk,t2|Qk,t1)]
2 = (1− e2(θ−λiδ)){2(λi − θ)(λi + 1)}−1. (3.10)

Applying delta method the result follows.

In the next step, we use the estimator of λ to estimate θ.
Note that

1

ρ̂n,N
=

∑N
k=1

∑n
i=1Q

2
j,ti−1∑N

k=1

∑n
i=1Qj,ti−1

Qj,ti

. (3.11)

Thus

1 +
α2m

1 − κ(θ)

λ
=

∑N
k=1

∑n
i=1Q

2
k,ti−1∑N

k=1

∑n
i=1 Qk,ti−1

Qk,ti

. (3.12)

Hence

α2m
1 − κ(θ)

λ
=

∑N
k=1

∑n
i=1Q

2
k,ti−1∑N

k=1

∑n
i=1Qk,ti−1

Qk,ti

− 1

= −
∑N

k=1

∑n
i=1 Qk,ti−1

[Qk,ti −Qk,ti−1
]∑N

k=1

∑n
i=1Qk,ti−1

Qj,ti

(3.13)

Now replace λ by its estimator MLE λ̂n = n
T
.

α2m
1 − κ(θ) = −

∑N
k=1

∑n
i=1Qj,ti−1

[Qk,ti −Qj,ti−1
]

T
n

∑N
k=1

∑n
i=1 Qk,ti−1

Qk,ti

(3.14)

Thus

θ̂N,n = κ−1

(
α2m

1 +

∑N
k=1

∑n
i=1 Qk,ti−1

[Qk,ti −Qk,ti−1
]

T
n

∑N
k=1

∑n
i=1Qk,ti−1

Qk,ti

)
. (3.15)

Since the function κ−1(·) is a continuous function, by application of delta method, the following
result is a consequence of Theorem 3.2.

Since the function κ−1(·) is a continuous function, applying delta method the following result
follows.

Theorem 3.3
a) θ̂N,n →P θ as n→∞ and N →∞

such that N
n
→ 0.

b)
√
nΨN(θ̂N,n − θ)→DMN (0, (κ′(θ))−2λ2(1− e−2λ−1(κ(θ)−α2m

1 )))

as n→∞ and N →∞ such that N√
n
→ 0 and MN denotes mixed normal distribution.

In the second stage, we substitute λ by its estimator λ̂n.

As a consequence of (2.8) and Theorem 2.8, in the case of mixed FSPDE, based on the obser-
vations of the N Fourier coefficients and the M MEF estimators of the random parameters, we
have the following results :

https://doi.org/10.28919/ejma.2022.2.12
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In the case of continuous sampling with fixed T , we have

Theorem 3.4 As M →∞ and N →∞ such that M
N
→ 0, we have

β̂M,N →P β

and √
MΨN(β̂M,N − β)→D N2(0, I−1(β))

as M →∞ and N →∞ such that M√
N
→ 0.

In the case of discrete sampling, we have

Theorem 3.5 As M →∞, N →∞ and n→∞ such that M
N
→ 0, N

n
→ 0, we have

β̂M,N,n →P β

and √
MΨNn(β̂M,N,n − β)→D N2(0, I−1(β))

as M →∞, N →∞ and n→∞ such that M√
N
→ 0 and N√

n
→ 0.

4. Examples

1) Consider the stochastic heat equation

duθ(t, x) = θ
∂2

∂x2
uθ(t, x)dt+ dWH(t, x) (4.1)

for 0 ≤ t ≤ T and x ∈ (0, 1) and θ > 0 with periodic boundary conditions.
Here 2m = m1 = 2 and µj = −θπ2j2, γ > 1/2 and ψN = N3. Hence
√
nN3(θ̂n,N − θ)→DMN (0, (κ′(θ))−2λ2(1− e−2λ−1(κ(θ)−α2m

1 ))) as n→∞ and N →∞.

For the fixed n and fixed parameter θ case, Es-Sebaiy et al. [33] obtained Berry-Esseen bound
of the order O(N−3/2) using the Stein-Malliavin theory for the MLE there by improving the
bound O(N−1) of Kim and Park [39].

2) As another example of the evolution equation consider the linear parabolic equation

duθ(t, x) = θuθ(t, x) +
∂2

∂x2
uθ(t, x)dt+ dWH(t, x), t ≥ 0, x ∈ [0, 1] (4.2)

u(0, x) = u0(x) ∈ L2([0, 1]) (4.3)

uθ(t, 0) = uθ(t, 1), t ∈ [0, T ], (4.4)

If d = 2, then we have√
n logN(θ̂n,N − θ)→DMN (0, (κ′(θ))−2λ2(1− e−2λ−1(κ(θ)−α2m

1 ))) as n→∞ and N →∞.

If d > 2, then we have
√
nN (d−2)/d(θ̂n,N − θ)→DMN (0, (κ′(θ))−2λ2(1− e−2λ−1(κ(θ)−α2m

1 ))) as n→∞ and N →∞.

https://doi.org/10.28919/ejma.2022.2.12
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Concluding Remarks: This problem has some connection to diffusion in a random envi-
ronment, see e.g., Follmer [34] and Follmer and Schweizer [35] and estimation in stochastic
volatility models, see Bishwal [17]. As is very well known, randomizing the environment slows
down the random walk, see Solomon [57].

References

[1] A. Bagchi, K.S. Kumar, An infinite factor model for the interest rate derivatives, in: M. Kohlmann, S.
Tang (Eds.), Mathematical Finance, Birkhäuser Basel, Basel, 2001: pp. 59–68. https://doi.org/10.
1007/978-3-0348-8291-0_5.

[2] B.M. Bibby, M. Sørensen, M. Sorensen, Martingale estimation functions for discretely observed diffusion
processes, Bernoulli. 1 (1995) 17-39. https://doi.org/10.2307/3318679.

[3] M. Bibinger, M. Trabs, Volatility estimation for stochastic PDEs using high-frequency observations, Stoch.
Proc. Appl. 130 (2020) 3005–3052. https://doi.org/10.1016/j.spa.2019.09.002.

[4] M. Bibinger, M. Trabs, On central limit theorems for power variations of the solution to the stochastic
heat equation, in: A. Steland, E. Rafajłowicz, O. Okhrin (Eds.), Stochastic Models, Statistics and Their
Applications, Springer International Publishing, Cham, 2019: pp. 69–84. https://doi.org/10.1007/
978-3-030-28665-1_5.

[5] J.P.N. Bishwal, Bayes and sequential estimation in Hilbert space valued stochastic differential equations,
J. Korean Stat. Soc. 28 (1999) 93-106.

[6] J.P.N. Bishwal, Rates of convergence of the posterior distributions and the Bayes estimations in the
Ornstein-Uhlenbeck process, Rand. Oper. Stoch. Equations. 8 (2000) 51-70. https://doi.org/10.1515/
rose.2000.8.1.51.

[7] J.P.N. Bishwal, The Bernstein-von Mises theorem and spectral asymptotics of Bayes estimators for para-
bolic SPDEs, J. Aust. Math. Soc. 72 (2002) 287–298. https://doi.org/10.1017/S1446788700003906.

[8] J.P.N. Bishwal, A new estimating function for discretely sampled diffusions, Rand. Oper. Stoch. Equ. 15
(2007) 65-88. https://doi.org/10.1515/rose.2007.005.

[9] J.P.N. Bishwal, Parameter estimation in stochastic differential equations, Lecture Notes in Mathematics,
1923, Springer-Verlag, (2008).

[10] J.P.N. Bishwal, Large deviations in testing fractional Ornstein–Uhlenbeck models, Stat. Probab. Lett. 78
(2008) 953–962. https://doi.org/10.1016/j.spl.2007.09.055.

[11] J. Bishwal, Maximum likelihood estimation in Skorohod stochastic differential equations, Proc. Amer.
Math. Soc. 138 (2009) 1471–1478. https://doi.org/10.1090/s0002-9939-09-10113-2.

[12] J.P.N. Bishwal, Conditional least squares estimation in diffusion processes based on Poisson sampling, J.
Appl. Probab. Stat. 5 (2010) 169-180.

[13] J.P.N. Bishwal, Minimum contrast estimation in fractional Ornstein-Uhlenbeck process: continu-
ous and discrete sampling, Fract. Calc. Appl. Anal. 14 (2011) 375-410. https://doi.org/10.2478/
s13540-011-0024-6.

[14] J.P.N. Bishwal, Hypothesis testing for fractional stochastic partial differential equations with applications
to neurophysiology and finance, Asian Res. J. Math. 4 (2017) 1-24.

[15] J.P.N. Bishwal, Bernstein-von Mises theorem and small noise Bayesian asymptotics for parabolic stochastic
partial differential equations, Theory Stoch. Proc. 23 (2018) 6-17.

[16] J.P.N. Bishwal, Statistics of SPDEs: From linear to nonlinear, Eur. J. Stat. 1 (2021) 1. https://doi.org/
10.28924/ada/stat.1.1.

[17] J.P.N. Bishwal, Parameter estimation in stochastic volatility models, Springer Nature, Cham (in press)
ISBN:978-3-031-03860-0. (2022).

[18] J.P.N. Bishwal, Mixingale estimation function for SPDEs with random sampling, Eur. J. Stat. 2 (2022) 3.
https://doi.org/10.28924/ada/stat.2.3.

https://doi.org/10.28919/ejma.2022.2.12
https://doi.org/10.1007/978-3-0348-8291-0_5
https://doi.org/10.1007/978-3-0348-8291-0_5
https://doi.org/10.2307/3318679
https://doi.org/10.1016/j.spa.2019.09.002
https://doi.org/10.1007/978-3-030-28665-1_5
https://doi.org/10.1007/978-3-030-28665-1_5
https://doi.org/10.1515/rose.2000.8.1.51
https://doi.org/10.1515/rose.2000.8.1.51
https://doi.org/10.1017/S1446788700003906
https://doi.org/10.1515/rose.2007.005
https://doi.org/10.1016/j.spl.2007.09.055
https://doi.org/10.1090/s0002-9939-09-10113-2
https://doi.org/10.2478/s13540-011-0024-6
https://doi.org/10.2478/s13540-011-0024-6
https://doi.org/10.28924/ada/stat.1.1
https://doi.org/10.28924/ada/stat.1.1
https://doi.org/10.28924/ada/stat.2.3


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.12 15

[19] J.P.N. Bishwal, A. Bose, Rates of convergence of approximate maximum likelihood estimators in the
Ornstein-Uhlenbeck process, Computers Math. Appl. 42 (2001) 23–38. https://doi.org/10.1016/
s0898-1221(01)00127-4.

[20] Z. Cheng, I. Cialenco, R. Gong, Bayesian estimations for diagonalizable bilinear SPDEs, Stoch. Proc. Appl.
130 (2020) 845–877. https://doi.org/10.1016/j.spa.2019.03.020.

[21] I. Cialenco, F. Delgado-Vences, H.-J. Kim, Drift estimation for discretely sampled SPDEs, Stoch. PDE:
Anal. Comp. 8 (2020) 895–920. https://doi.org/10.1007/s40072-019-00164-4.

[22] C. Chong, High-frequency analysis of parabolic stochastic PDEs, Ann. Statist. 48 (2020) 1143-1167. https:
//doi.org/10.1214/19-aos1841.

[23] F. Comte, V. Genon-Catalot, A. Samson, Nonparametric estimation for stochastic differential equations
with random effects, Stoch. Proc. Appl. 123 (2013) 2522–2551. https://doi.org/10.1016/j.spa.2013.
04.009.

[24] M. Delattre, v. Genon-Catalot, A. Samson, Maximum likelihood estimation for stochastic differential
equations with random effects, Scandinavian J. Stat. 40 (2012) 322–343. https://doi.org/10.1111/j.
1467-9469.2012.00813.x.

[25] M. Delattre, V. Genon-Catalot, A. Samson, Estimation of population parameters in stochastic differential
equations with random effects in the diffusion coefficient, ESAIM: PS. 19 (2015) 671–688. https://doi.
org/10.1051/ps/2015006.

[26] M. Delattre, V. Genon-Catalot, A. Samson, Mixtures of stochastic differential equations with random
effects: Application to data clustering, J. Stat. Plan. Inference. 173 (2016) 109–124. https://doi.org/
10.1016/j.jspi.2015.12.003.

[27] M. Delattre, V. Genon-Catalot, C. Larédo, Parametric inference for discrete observations of diffusion
processes with mixed effects, Stoch. Proc. Appl. 128 (2018) 1929–1957. https://doi.org/10.1016/j.
spa.2017.08.016.

[28] M. Delattre, V. Genon-Catalot, C. Larédo, Approximate maximum likelihood estimation for stochastic
differential equations with random effects in the drift and the diffusion, Metrika. 81 (2018) 953–983. https:
//doi.org/10.1007/s00184-018-0666-z.

[29] C. Dion, Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck model, Metrika. 79 (2016)
919–951. https://doi.org/10.1007/s00184-016-0583-y.

[30] C. Dion, V. Genon-Catalot, Bidimensional random effect estimation in mixed stochastic differential model,
Stat. Inference Stoch. Proc. 19 (2015) 131–158. https://doi.org/10.1007/s11203-015-9122-0.

[31] S. Ditlevsen, A. De Gaetano, Mixed effects in stochastic differential equation models, REVSTAT-Stat. J.
3 (2005) 137-153. https://doi.org/10.57805/REVSTAT.V3I2.22.

[32] S. Donnet, A. Samson, Parametric inference for mixed models defined by stochastic differential equations,
ESAIM: PS. 12 (2008) 196–218. https://doi.org/10.1051/ps:2007045.

[33] K. Es-Sebaiy, M. Al-Foraih, F. Alazemi, Wasserstein bounds in the CLT of the MLE for the drift coeffi-
cient of a stochastic partial differential equation, Fractal Fract. 5 (2021) 187. https://doi.org/10.3390/
fractalfract5040187.

[34] H. Follmer, W. Cheung, M.A.H. Dempster, Stock price fluctuation as a diffusion in a random environment,
Phil. Trans. R. Soc. London: Phys. Sci. Eng. 347 (1684) 471-483.

[35] H. Föllmer, M. Schweizer, A microeconomic approach to diffusion models for stock prices, Math. Finance.
3 (1993) 1–23. https://doi.org/10.1111/j.1467-9965.1993.tb00035.x.

[36] V. Genon-Catalot, C. Larédo, Estimation for stochastic differential equations with mixed effects, Statistics.
50 (2016) 1014–1035. https://doi.org/10.1080/02331888.2016.1141910.

[37] N. Hofmann, T. Müller-Gronbach, K. Ritter, The optimal discretization of stochastic differential equations,
J. Complexi. 17 (2001) 117–153. https://doi.org/10.1006/jcom.2000.0570.

[38] J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law. In: Azéma,
J., Yor, M., Emery, M. (eds) Séminaire de Probabilités XXXI. Lecture Notes in Mathematics, vol 1655.
Springer, Berlin, Heidelberg. (1997). https://doi.org/10.1007/BFb0119308

https://doi.org/10.28919/ejma.2022.2.12
https://doi.org/10.1016/s0898-1221(01)00127-4
https://doi.org/10.1016/s0898-1221(01)00127-4
https://doi.org/10.1016/j.spa.2019.03.020
https://doi.org/10.1007/s40072-019-00164-4
https://doi.org/10.1214/19-aos1841
https://doi.org/10.1214/19-aos1841
https://doi.org/10.1016/j.spa.2013.04.009
https://doi.org/10.1016/j.spa.2013.04.009
https://doi.org/10.1111/j.1467-9469.2012.00813.x
https://doi.org/10.1111/j.1467-9469.2012.00813.x
https://doi.org/10.1051/ps/2015006
https://doi.org/10.1051/ps/2015006
https://doi.org/10.1016/j.jspi.2015.12.003
https://doi.org/10.1016/j.jspi.2015.12.003
https://doi.org/10.1016/j.spa.2017.08.016
https://doi.org/10.1016/j.spa.2017.08.016
https://doi.org/10.1007/s00184-018-0666-z
https://doi.org/10.1007/s00184-018-0666-z
https://doi.org/10.1007/s00184-016-0583-y
https://doi.org/10.1007/s11203-015-9122-0
https://doi.org/10.57805/REVSTAT.V3I2.22
https://doi.org/10.1051/ps:2007045
https://doi.org/10.3390/fractalfract5040187
https://doi.org/10.3390/fractalfract5040187
https://doi.org/10.1111/j.1467-9965.1993.tb00035.x
https://doi.org/10.1080/02331888.2016.1141910
https://doi.org/10.1006/jcom.2000.0570


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.12 16

[39] Y.T. Kim, H.S. Park, Convergence rate of maximum likelihood estimator of parameter in stochastic partial
differential equation, J. Korean Stat. Soc. 44 (2015) 312–320. https://doi.org/10.1016/j.jkss.2015.
01.001.

[40] M.L. Kleptsyna, A. Le Breton, A. statistical analysis of the fractional Ornstein–Uhlenbeck type process,
Stat. Inference Stoch. Proc. 5 (2002) 229–248. https://doi.org/10.1023/a:1021220818545.

[41] T. Koski, W. Loges, Asymptotic statistical inference for a stochastic heat flow problem, Stat. Probab. Lett.
3 (1985) 185–189. https://doi.org/10.1016/0167-7152(85)90015-x.

[42] T. Koski, W. Loges, On minimum-contrast estimation for hilbert space-valued stochastic differential equa-
tions, Stochastics. 16 (1986) 217–225. https://doi.org/10.1080/17442508608833374.

[43] W. Loges, Girsanov’s theorem in Hilbert space and an application to the statistics of Hilbert space- val-
ued stochastic differential equations, Stoch. Proc. Appl. 17 (1984) 243–263. https://doi.org/10.1016/
0304-4149(84)90004-8.

[44] T. Maitra, S. Bhattacharya, On Bayesian asymptotics in stochastic differential equations with random
effects, Stat. Probab. Lett. 103 (2015) 148–159. https://doi.org/10.1016/j.spl.2015.04.009.

[45] T. Maitra, S. Bhattacharya, On asymptotics related to classical inference in stochastic differential equations
with random effects, Stat. Probab. Lett. 110 (2016) 278–288. https://doi.org/10.1016/j.spl.2015.10.
001.

[46] T. Maitra, S. Bhattacharya, On asymptotic inference in stochastic differential equations with time-varying
covariates, Can. J. Stat. 46 (2018) 635–655. https://doi.org/10.1002/cjs.11471.

[47] T. Maitra, T. Bhattacharya, Increasing domain infill asymptotics for stochastic differential equations driven
by fractional Brownian motion, ArXiv:2005.09577v1, (2020). https://doi.org/10.48550/arXiv.2005.
09577.

[48] J. Mohapl, On estimation in the planar ornstein-unlenbeck process, Commun. Stat. Stoch. Models. 13
(1997) 435–455. https://doi.org/10.1080/15326349708807435.

[49] I. Norros, E. Valkeila, J. Virtamo, An elementary approach to a girsanov formula and other analytical
results on fractional Brownian motions, Bernoulli. 5 (1999) 571. https://doi.org/10.2307/3318691.

[50] M. Peligrad, S. Utev, Central limit theorem for linear processes, Ann. Probab. 25 (1997) 443-456. https:
//doi.org/10.1214/aop/1024404295.

[51] U. Picchini, A. De Gaetano, S. Ditlevsen, Stochastic differential mixed-effect models, Scandinavian J. Stat.
37 (2010) 67-90.

[52] U. Picchini, S. Ditlevsen, Practical estimation of high dimensional stochastic differential mixed-effects
models, Comput. Stat. Data Anal. 55 (2011) 1426–1444. https://doi.org/10.1016/j.csda.2010.10.
003.

[53] U. Picchini, S. Ditlevsen, A. De Gaetano, P. Lansky, Parameters of the diffusion leaky integrate-and-fire
neuronal model for a slowly fluctuating signal, Neural Comput. 20 (2008) 2696–2714. https://doi.org/
10.1162/neco.2008.11-07-653.

[54] U. Picchini, J.L. Forman, Bayesian inference for stochastic differential equation mixed effects models of a
tumour xenography study, J. R. Stat. Soc. C. 68 (2019) 887–913. https://doi.org/10.1111/rssc.12347.

[55] M.G. Ruse, A. Samson, S. Ditlevsen, Inference for biomedical data by using diffusion models with covariates
and mixed effects, J. R. Stat. Soc. C. 69 (2019) 167–193. https://doi.org/10.1111/rssc.12386.

[56] M.J. Schervish, Theory of Statistics, Springer-Verlag, New York, (1995).
[57] F. Solomon, Random walks in a random environment, Ann. Probab. 3 (1975) 1-31.
[58] C.A. Tudor, F.G. Viens, Statistical aspects of the fractional stochastic calculus, Ann. Statist. 35 (2007)

1183-1212. https://doi.org/10.1214/009053606000001541.
[59] G.A. Whitaker, A. Golightly, R.J. Boys, C. Sherlock, Bayesian inference for diffusion-driven mixed-effects

models, Bayesian Anal. 12 (2017) 435-463. https://doi.org/10.1214/16-ba1009.

https://doi.org/10.28919/ejma.2022.2.12
https://doi.org/10.1016/j.jkss.2015.01.001
https://doi.org/10.1016/j.jkss.2015.01.001
https://doi.org/10.1023/a:1021220818545
https://doi.org/10.1016/0167-7152(85)90015-x
https://doi.org/10.1080/17442508608833374
https://doi.org/10.1016/0304-4149(84)90004-8
https://doi.org/10.1016/0304-4149(84)90004-8
https://doi.org/10.1016/j.spl.2015.04.009
https://doi.org/10.1016/j.spl.2015.10.001
https://doi.org/10.1016/j.spl.2015.10.001
https://doi.org/10.1002/cjs.11471
https://doi.org/10.48550/arXiv.2005.09577
https://doi.org/10.48550/arXiv.2005.09577
https://doi.org/10.1080/15326349708807435
https://doi.org/10.2307/3318691
https://doi.org/10.1214/aop/1024404295
https://doi.org/10.1214/aop/1024404295
https://doi.org/10.1016/j.csda.2010.10.003
https://doi.org/10.1016/j.csda.2010.10.003
https://doi.org/10.1162/neco.2008.11-07-653
https://doi.org/10.1162/neco.2008.11-07-653
https://doi.org/10.1111/rssc.12347
https://doi.org/10.1111/rssc.12386
https://doi.org/10.1214/009053606000001541
https://doi.org/10.1214/16-ba1009

	References

