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CYCLIC CODES AND PRIMITIVE IDEMPOTENTS IN THE FINITE
CYCLIC GROUP ALGEBRAS

AZHAR O. ALMALKI∗ AND AHMED A. KHAMMASH

Abstract. We parallelly discuss the construction of cyclic linear codes as ideals in the finite
cyclic group ring as well as zero-divisors therein. We also determine a complete set of primitive
idempotents in the finite cyclic group ring over a field of characteristic p.

Introduction

Cyclic codes are among the most important types of codes in algebraic coding theory. They
provide a substantial link between coding theory and various algebraic structures, and they
are important for both theoretical and practical reasons; in fact, most existing linear codes
in use are cyclic codes. The first connection between codes and group rings of finite groups
appeared in the work of F.G. MacWilliams 1969 [4] in which cyclic codes were identified with
ideals in the group algebras of cyclic groups (see also [5]), consequently, two sided ideals in a
group algebra are named codes. Since then the algebraic structure of the group ring has been
deeply involved in the study and constructions of codes. In particular properties of (central)
primitive idempotents in the group algebra of finite groups over finite fields are heavily used in
codes construction [6], [7]. On the other hand it is shown in [3] that cyclic codes are exactly
zero-divisor codes in group rings of cyclic groups. Also Reed-Muller codes are extended cyclic
codes and have been shown to be associated with the group ring of the elementary abelian
2-group [5]. In this paper, the zero divisor construction of cyclic codes is investigated in
parallel with the ideal construction in the cyclic group ring. The main aim is to determine
a complete set of primitive orthogonal idempotents of the group algebra of a cyclic group
over a field of characteristic p (Theorem 3.1.1) and investigate the structure of the ideal codes
(projective indecomposable modules) generated by primitive idempotents (Theorem 3.1.5). We
also investigate the cyclic codes generated by those primitive idempotents as zero divisor type
codes in the group ring of the cyclic group (Theorem 3.2.1).

1. Preliminaries

Here we explain the concept of linear cyclic codes and how they are realized as ideals in the
group rings of the cyclic groups as well as zero divisors therein.
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1.1. Linear Codes. Let F be a finite field with q elements and n ∈ N. A code of length n on
F is subset C of Fn for n ∈ N. A code C of Fn called a trivial code if q = 1, a binary code if
q = 2, and if q = 3 is ternary code, etc. It is known that Fn = {(a1, . . . , an)|ai ∈ F} is a vector
space over F such that

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

λ(a1, . . . , an) = (λa1, . . . , λan)

where λ ∈ F. If the code C is subspace of Fn, then it is called linear code (or [n, k]-code
on F where k = dimFC). As such if C is subspace of Fn is an [n, k]-code then |C| = |F|k;
that is, C consists of |F|k = qk vectors (codewords). In particular [n, k]-binary codes has 2k

codewords. The (k × n)-matrix whose rows are the basis vectors of an [n, k]-code C of Fn is
called a generator matrix G(C) of C (since a subspace in priniciple has more than one basis,
a code has more than one generator matrix). A parity check matrix H(C) for a [n, k]-linear
code C is ((n− k)×n)-matrix satisfying G(C)H(C)T = 0 where 0 is (k× (n− k))-zero matrix,
and H(C)T is the transpose of H(C). The distance between two code words in C of Fn is the
number of positions in which they differ. The minimum distance d of C ⊆ Fn is the minimum
number among all codword distances. An [n, k]-code with minimum distance d is referred to as
[n, k, d]-code. The minimum distance of a code C controls the error detection and correction
capability of C; an [n, k, d]-code C ⊆ Fn has detection capability l = d−1, correction capability
t = bd−1

2
c, and (Singleton Bound) d 6 n−k+1. A code achieving this bound is called maximum

distance separable (MDS for short). A cyclic shift is a linear map

π : Fn → Fn

π (a1, . . . , an) = (an, a1, . . . , an−1)

for (a1, . . . , an) ∈ Fn. A cyclic code C is an [n, k]-linear code over Fn which the cyclic shift of
each codeword in C is also in C. Note that this implies that if (a1, . . . , an) ∈ C then all its
circular permutations are in C.

1.2. Cyclic Codes as Ideals in the Group Ring FCn. To explain the connection between
cyclic codes and the cyclic group rings note first that we have a linear isomorphism

ϕ : Fn → F[x]/ < xn − 1 >

ϕ ((a0, a1, . . . , an−1)) =
[
a0 + a1x+ . . .+ an−1x

n−1]
where [g(x)] = g(x)+ < xn − 1 > for all g(x) ∈ F[x]. On the other hand cyclic codes are ideals
in F[x]/ < xn − 1 > according to the following

Lemma 1.2.1. A linear code C is cyclic if and only if ϕ(C) is an ideal F[x]/ < xn − 1 >.

Proof. If a linear code C is cyclic. then (a0, a1, . . . , an−1) ∈ C ⇒ (an−1, a0, a1, . . . , an−2) ∈ C,
this implies [a0 + a1x+ . . .+ an−1x

n−1] ∈ ϕ(C) ⇒ [an−1, a0x+ a1x
2 + . . .+ an−2x

n−1] ∈ ϕ(C)

and so ϕ(C) is closed under multiplication by [x], [x2] , [x3] , . . . which generate F[x]/ < xn−1 >,
therefore ϕ(C) ideal in F[x]/ < xn − 1 >. Conversely, suppose ϕ(C) is an ideal in F[x]/ <

xn − 1 >. This means that ϕ(C) is closed under multiplication by [x], [x2] , [x3] , . . . . But this
is equivalent to the fact that C (the inverse image) is closed under taking shifts, hence C
cyclic. �
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Note that a commutative quotient ring F[x]/ < xn − 1 > is principal ideal ring (PIR for
short). We deduced that from the following Lemma

Lemma 1.2.2. (see [8]): The polynomial ring (algebra) F[x] is a principle ideal domain. �

That means if C be an ideal (cyclic code) in a quotient ring F[x]/ < xn − 1 >; that is, C of
length n, then there is generator polynomial f(x) because F[x]/ < xn − 1 > is PIR, which is
unique monic polynomial of minimum degree in C, and divide xn − 1. If deg(f(x)) = r, then
dimension C is k = n− r; that is,

C =< f(x) >= {q(x)f(x) mod (xn − 1) | q(x) ∈ F[x]} .

A generator matrix of C when a generator polynomial f(x) = c0 + c1x+ . . .+ crx
r where c0 6= 0

and
{
f(x), xf(x), . . . , xk−1f(x)

}
is basis for C is

G(C) =


c0 c1 c2 . . . cr 0 0 · · · 0

0 c0 c1 c2 . . . cr 0 · · · 0

0 0 c0 c1 c2 . . . cr
. . . ...

...
... . . . . . . . . . . . . . . . . . . 0

0 0 . . . 0 c0 c1 c2 . . . cr


Thus, a cyclic code can be generated from singular circulant matrix. If f(x)r(x) ≡ 0 mod

(xn − 1) where r(x) be the polynomial of minimal degree, then r(x) is check polynomial gives
a check matrix H(C) of the code C.

The group algebra of a finite group G over a field F is FG =
{∑

g∈G αgg | αg ∈ F
}
which con-

sists of all formal F-linear combinations of elements of G and satisfying the following (algebra)
operations:

(1)
(∑

g∈G αgg
)

+
(∑

g∈G βgg
)

=
∑

g∈G (αg + βg) g.

(2)
(∑

x∈G αxx
) (∑

y∈G βyy
)

=
∑

x∈G

(∑
y∈G αxβyxy

)
=
∑

x∈G

(∑
g∈G αgβg−1x

)
x.

(3) λ
(∑

g∈G αgg
)

=
∑

g∈G λαgg, for λ ∈ F.

where the elements of G form an F-basis for FG; that is, dimF(FG) = |G|. If G is abelian group,
then FG is commutative F-algebra. A group ring RG is generalization of a group algebra FG
where R is a ring. The following demonstrates the connection between the commutative F-
algebras F[x]/ < xn − 1 > and FCn where Cn =< g | gn = 1 >

Lemma 1.2.3. F[x]/ < xn − 1 >∼= FCn (algebra isomorphism); the group ring of the cyclic
group Cn over the field F.

Proof. The map ψ : F[x] → FCn given by ψ(f(x)) = f(g); for all f(x) ∈ F[x] is clearly an
algebra epimorphism with kerψ =< xn − 1 >. �

Since the quotient ring F[x]/ < xn−1 > is principal ideal ring and as F[x]/ < xn−1 >∼= FCn
(ring isomorphism), then we conclude the following

Proposition 1.2.4. The group algebra FCn is a principal ideal ring. �
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That means every ideal in FCn is principal has the form FCna = {ra | r ∈ FCn} which
generated by element a in FCn. Combining proposition 1.2.4, Lemma 1.2.3 and Lemma 1.2.1

we conclude the following theorem

Theorem 1.2.5. Every cyclic code of length n over a field F is an ideal in the group algebra
FCn. �

Therefore, a cyclic code in FCn has the form FCna where a ∈ FCn, which is denoted by C(a).

2. Codes From Group Rings

F. MacWilliams [4] was the first one to consider cyclic codes as ideals of the group ring FCn.
In 2006, T. Hurley [2] proved a characterization of the group ring RG; where G is a finite
group of order n and R is a ring, as a ring of n × n matrices over R. Then P. Hurley and T.
Hurley in [3] used that characterization to study properties of group ring elements in terms
of the properties of the corresponding matrices in order to construct and analyze systems of
zero-divisors and unit-derived codes which are more general codes from ideals such as cyclic
codes. In this section we describe the Hurley characterization of RG and his algorithm for
constructing zero-divisor type code.

2.1. Hurely Characterization of Group Rings. Suppose that G = {g1 = i, g2, g3, . . . , gn}
is a fixed listing for the elements of a group G. Consider the n× n (coding) matrix of G

M(G) =


g−11 g1 g−11 g2 . . . g−11 gn
g−12 g1 g−12 g2 . . . g−12 gn

...
...

...
...

g−1n g1 g−1n g2 . . . g−1n gn


n×n

Then for each a =
∑n

i=1 αgigi ∈ RG, define the matrix M(RG, a) ∈ Mn(R) as follows:

M(RG, a) =


αg−1

1 g1
αg−1

1 g2
. . . αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

. . . αg−1
2 gn

...
...

...
...

αg−1
n g1

αg−1
n g2

. . . αg−1
n gn


n×n

In [2], T.Hurley proved that the correspondence a L9999K M(RG, a) defines a ring isomorphism.

2.2. Zero Divizors Type Codes. Given a zero-divisor u ∈ RG such that uv = 0; v ∈ (RG)∗,
and let W be an R-submodule of RG with a basis of a group elements S ⊆ G. The zero-
divisor code derived from u is either the left code C = uW = {ux | x ∈ W} or the right
code C = Wu = {xu | x ∈ W}. Thus a code is constructed from a zero divisor in RG, an
R-submodule W and, when RG is non-commutative, a left or right encoding; so we use C[u,S]

to denote the left code C = uW and C[S,u] to denote the right code C = Wu. Clearly in
both cases the code C is of length n = |G| and dimC will depend on the choice of W. A
code C may be derived from different zero divisors and different submodules. We shall use the
right encoding C = Wu as the left encoding is similar; u is called a generator element of the
code C relative to the submodule W . In particular if we take W = RG, then C = RGu is
a left ideal in the group ring RG; this is the special case when rankU = dimWu. Since u is
a zero-divisor with uv = 0; v ∈ (RG)∗, it follows that Cv = Wuv = 0 and we may express
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C = {y ∈ RG | yv = 0}; the (non-zero) element v is called the right check element of C. Since
W is generated by the subset S of G, it follows that C is an [n, k]-code where k = rankSu.

2.3. Cyclic Codes as Zero Divisor Type Codes In FCn. Here we shall take the ring R in
section 2.2 to be a field F of characteristic p > 0 and G = Cn; the cyclic group of order n. The
following theorem shows that all cyclic codes over F (or F-codes) are zero divisor type codes

Theorem 2.3.1. Every cyclic code of length n over a field F is a zero-divisor type code in FCn.

Proof. According to Lemma 1.2.3 and Theorem 1.2.5. Let f(x) be generator polynomial of a
cyclic code C of length n in F[x]/ < xn − 1 >. Thus, f(x) divides xn − 1; that is, there is
nonzero polynomial r(x) in F[x]/ < xn− 1 > such that f(x)r(x) ≡ 0 mod(xn− 1). This means
that f(x) is a zero divisor in F[x]/ < xn − 1 >∼= FCn and C is a zero divisor type code. �

3. Idempotents In FCn

From now on we assume that p | n; hence the group algebra FCn is not semisimple. We
note that idempotents in FCn are zero divisors and, as such, they generate ideal codes in the
group algebra FCn (Theorem 1.2.5) as well as zero-divisor type codes therein (see section 2.2).
If 0 6= e ∈ FCn is a primitive idempotent then P = FCne is a minimal ideal in FCn, hence
defines a cyclic code C(e) in FCn. On the other hand e is a zero-divisor in FCn (as e 6= 0 and
e(e− 1) = 0; (1− e) 6= 0 ), hence generates a zero-divisor type code C[S, e] = FSe with respect
to a subset S of G = Cn. We shall compare the two constructions and determine for which
subset S ⊆ G the two codes C(e) and C[S, e] are identical. First, we shall describe a complete
set of primitive idempotents in FCn.

3.1. Primitive Idempotents in FCn. In this section we give a complete set of primitive
idempotents in FCn. Suppose that n = par; p - r for a, r ∈ N and the field F is taken to be a
splitting field for all subgroups of Cn. It is known (see [1], p.34) that FCn has r multiplicative
characters Φj; j = 0, 1, 2, . . . , r − 1 defined in terms of a primitive r-th roots of unity λ ∈ F as
follows: Φj(x) = λj. Write S0, S1, . . . , Sr−1 for the one dimensional FCn-modules which afford
the characters Φj; j = 0, 1, 2, . . . , r − 1. Every idempotent e in FCn is central because for all
a ∈ FCn we have ea = ae, since FCn commutative algebra. An idempotent e in FCn is primitive
if FCne is indecomposable.

Theorem 3.1.1. If Λ = FG;G = Cn;n = par; p - r, charF = p. If λ ∈ F is a primitive r-th root
of unity and H =< xp

a
>≤ G, then the

ej =
1

r

r−1∑
t=0

(λt)jxtp
a

=
1

r

r−1∑
t=0

λtjxtp
a

; j = 0, 1, ..., r − 1

is a complete set of primitive r central orthogonal idempotents in FCn.
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Note that

e0 =
1

r

(
i+ xp

a

+ x2p
a

+ . . .+ xp
a(r−1))

e1 =
1

r

(
i+ λxp

a

+ λ2x2p
a

+ . . .+ λr−1xp
a(r−1))

e2 =
1

r

(
i+ λ2xp

a

+ λ4x2p
a

+ . . .+ λr−2xp
a(r−1))

...
...

er−1 =
1

r

(
i+ λr−1xp

a

+ λr−2x2p
a

+ . . .+ λxp
a(r−1))

are elements in the group algebra of FH = F < xp
a
>. Since charF = p - r,F < xp

a
>

is semisimple and as such it has r simple (1-dimensional) characters ψj; j = 0, . . . , r − 1

where ψj
(
xp

a)
= λr−j, (ψ0 is the trivial character). Moreover for all j = 0, 1, 2, . . . , r − 1,

xp
a
ej = λr−jej. This means that Fej ∼=F<xpa> ψr−j; j = 0, 1, 2, . . . , r−1. Let Lj = F < xp

a
> ej;

j = 0, 1, . . . , r − 1 be the one dimensional F < xp
a
>-module which affords ψr−j. Write

Pj = FCnej; 0 6 j 6 r − 1; the ideal of FCn generated by ej. Clearly Pj is an FCn-submodule
of the regular module FCnFCn. We shall discuss the primitivity of ej by studying the structure
of Pj.

Proving the primitivity of the elements ej; j = 0, 1, . . . , r−1 in Theorem 3.1.1 usually amounts
to proving that the (Hecke) algebra ejFCnej is local algebra (i.e. has no idempotents other than
0 and ej). However, to reach that conclusion and to avoid long calculation, we shall use the
technique of the induced module and apply the Green’s indecomposability Theorem. The
following lemma proves that Pj is an induced module from the subgroup H. Lemma 3.1.2 (3)

follows directly by applying the Green’s indecomposability Theorem (see [9], Theorem 11.10).

Lemma 3.1.2. (1) xpaej = λr−jej; 0 ≤ j ≤ r − 1, hence Fej ∼=F<xpa> ψr−j.
(2) Pj = FCnej ∼=FCn IndCn

H Lj; in particular dimF Pj = [Cn : H] = pa.
(3) Pj is indecomposable ; ∀j = 0, 1, . . . , r − 1. �

The following Lemma is essential in the proof of Theorem 3.1.1

Lemma 3.1.3. Fix r ∈ N. For all 0 ≤ γ ≤ r − 1; | {(s, t); 0 ≤ s, t ≤ r − 1 | s+ t ≡r γ} |= r.

Example 3.1.4.

r = 3 :

0 1 2

(0, 0) (1, 0) (0, 2)

(1, 2) (0, 1) (2, 0)

(2, 1) (2, 2) (1, 1)

r = 4 :

0 1 2 3

(0, 0) (1, 0) (0, 2) (3, 0)

(2, 2) (0, 1) (2, 0) (0, 3)

(3, 1) (2, 3) (1, 1) (1, 2)

(1, 3) (3, 2) (3, 3) (2, 1)

https://doi.org/10.28919/ejma.2022.2.10
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r = 5 :

0 1 2 3 4

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(1, 4) (1, 0) (1, 1) (1, 2) (1, 3)

(2, 3) (2, 4) (2, 0) (2, 1) (2, 2)

(3, 3) (3, 3) (3, 4) (3, 0) (3, 1)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 0)

PROOF OF THEOREM 3.1.1: It is clear (since λ is a primitive r-th root of unity) that∑
0≤j≤r−1 ej = i. It remains to show that ej; j = 0, 1, . . . , r − 1 are primitive orthogonal

idempotents.

(1) We show that ej; 0 ≤ j ≤ r − 1 are orthogonal idempotents. Consider the product

ejek =
1

r2

(
r−1∑
s=0

λsjxsp
a

)(
r−1∑
t=0

λtkxtp
a

)

=
1

r2

r−1∑
s,t=0

λsjλtkxsp
a

xtp
a

=
1

r2

∑
0≤γ≤r−1

[ ∑
0≤s,t≤r−1:s+t≡rγ

λsj+tk

]
xγp

a

Hence the coefficient of xγpa ; 0 ≤ γ ≤ r − 1, in ejek is

cγj,k =
1

r2

∑
0≤s,t≤r−1:s+t≡rγ

λsj+tk

(I) If j = k, then the coefficient of xγpa in ej2

1

r2

( ∑
0≤s,t≤r−1:s+t≡rγ

λsj+tj

)
=

1

r2

( ∑
0≤s,t≤r−1:s+t=≡rγ

λ(s+t)j

)

=
1

r2
| {(s, t); 0 ≤ s, t ≤ r − 1 : s+ t ≡r γ} | λγj

=
1

r2
rλγj By Lemma 3.1.3

=
1

r
λγj

= Cf. of xγp
a

in ej; for all 0 ≤ γ ≤ r − 1

Hence ej2 = ej; for all 0 ≤ j ≤ r − 1 and so ej is an idempotent.

(II) If j 6= k, then the coefficient of xγpa ; 0 ≤ γ ≤ r − 1, in ejek is

cγj,k =
1

r2

∑
0≤s,t≤r−1:s+t≡rγ

λsj+tk

The summation in cγj,k involves r terms (Lemma 3.1.3) consists of different r-th roots of
unity in F, hence this summation equals 0 . Therefore cγj,k = 0; for all 0 ≤ j 6= k, γ ≤ r−1

and so ejek = 0; for all 0 ≤ j 6= k, γ ≤ r − 1 which means that the idempotents
ej; j = 0, . . . , r− 1 are orthogonal.

https://doi.org/10.28919/ejma.2022.2.10
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(2) Finally, to show that ej is primitive we consider the module Pj = FCnej ∼=FCn IndCn
H Lj.

Since [Cn : H] = pa, it follows from the Green indecomposability theorem (see [9],
Theorem 11.10 ), that Pj = FCnej is indecomposable, hence ej is primitive. �

It follows that the module Pj = FCnej is a direct summand of the regular FCn-module
FCnFCn. As such Pj is a projective indecomposable FCn-module and also an ideal in FCn. We
shall discuss the structure of Pj in the next section. The following determines the structure of
Pj as a cyclic code.

Theorem 3.1.5. If Λ = FCn and ej as in Theorem 3.1.1, then C(ej) = Pj = FCnej =∑⊕
0≤u≤pa−1 Fxuej is an [n, pa, r]-code.

Proof. Since Cn =
⋃̇

0≤u≤pa−1Hx
u, we have Pj = FCnej =

∑⊕
0≤u≤pa−1 Fxuej, and dimF C (ej) =

dimF FCnej = dimF IndCn
H Lj = [Cn : H] = pa. Also the minimum weight of C (ej) is r. �

3.2. Which Subset S ⊆ G Gives C[S, e] ≈ C(e)? Since the index [Cn : H] = pa, then the
cosets iH, xH, . . . , xpa−1H of H partition Cn into pa disjoint sets of cardinality r, hence a
transversal set for the Cn\H has pa elements which contain only one element of each coset of
H.

Theorem 3.2.1. Suppose Λ = FCn, n = par; p - r,charF = p. If ej is the primitive orthogonal
idempotent in Theorem 3.1.1. Let S ⊆ G = Cn be a transversal for the Cn\H;H = < xp

a
>.

Then the ideal code FCnej is a zero-divisor type code and FCnej = C [S, ej].

Proof. Clearly FCnej =
∑

0≤u≤pa−1 Fxuej =
∑

s∈S Fsej where S = {xu}0≤u≤pa−1. �

4. The Structure of the Projective Indecomposables Pj

The group algebra Λ = FCn, n = par; p - r, charF = p is known to have r blocks each block
contains one projective indecomposable FCn-module Pj; 0 ≤ j ≤ r − 1 and hence contains
one simple FCn-module. It follows that Pj is uniserial with a single composition factor. The
following determines the structure of Pj.

Theorem 4.0.1. Let αj =
∑

0≤u≤pa−1 λ
cuxuej ∈ Pj; cu ∈ {0, 1, . . . , r − 1}. Then

(1) xαj = λγαj; γ ∈ {0, 1, . . . , r− 1} if and only if γpa ≡r (r− j); there is a unique value of
such γ. In particular Sλ = Socle of Pj and Pj is the projective cover of Sλ.

(2) For any c ∈ {0, 1, . . . , r − 1}, take the pa-tuple (c + u(r − j))0≤u≤pa−1 = (µu)0≤u≤pa−1.
Then αj =

∑
0≤u≤pa−1 λ

µuxuej ∈ Pj satisfies F.αj ∼=FCn Sλ ≤FCn Pj.

Proof. (1) We have xαj =
∑

0≤u≤pa−1 λ
cuxu+1ej =

[∑
0≤u≤pa−2 λ

cuxu+1ej

]
+ λcpa−1xp

a
ej.

Hence

xαj = λcpa−1−jej +
∑

0≤u≤pa−2

λcuxu+1ej, as xp
a

ej = λr−jej

While λγαj =
∑

0≤u≤pa−1 λ
cu+γxuej. Therefore xαj = λγαj if and only if

λcpa−1−jej +
∑

0≤u≤pa−2

λcuxu+1ej = λc0+γej +
∑

1≤u≤pa−1

λcu+γxuej
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which is equivalent to the equality

λcpa−1−jej +
∑

1≤u≤pa−1

λcu−1xuej = λc0+γej +
∑

1≤u≤pa−1

λcu+γxuej

By comparing coefficients, we have xαj = λγαj ⇔

(1) λc0+γ = λcpa−1−j, (2) λcu+γ = λcu−1 ; ∀1 ≤ u ≤ pa − 1

This is equivalent to the following system of congruent linear equations:

(1) c0 + γ ≡r cpa−1 + (r − j), (2) cu + γ ≡r cu−1;∀1 ≤ u ≤ pa − 1 (∗)

Solving this system (∗) for cpa−1 by recursive substitution we get from equation (1)

cpa−1 + paγ ≡r cpa−1 + (r − j)

which is equivalent to the modular identity paγ ≡r (r − j). Since r, γ are relatively
prime, γ is uniquely determined for each j ∈ {0, 1, . . . , r − 1}.

(2) Fix the (unique) solution γ ∈ {0, 1, . . . , r − 1} for the modular identity paγ ≡r (r − j).
The solution set for system (∗) of linear congruences consists of r of pa-tuples

{(c0, c0 + (r − j), c0 + 2(r − j), . . . , c0 + (pa − 1) (r − j)} ; c0 ∈ {0, 1, 2, . . . , r − 1}

(sum and product inside tuples are taken mod r). For any c = c0 ∈ {0, 1, . . . , r − 1},
the solution
(c, c+(r−j), c+2(r−j), . . . , c+(pa−1)(r−j)) = (c+u(r−j))0≤u≤pa−1 = (µu)0≤u≤pa−1
gives rise to an element αj =

∑
0≤u≤pa−1 λ

µuxuej ∈ Pj which generates Sγ.
�

5. Examples

5.1. Primitive Idempotents in the Group Algebra FC6. We have 6 = 2×3, so we consider
the two (non-semisimple) cases when charF = 2 ∨ 3.

5.1(1) charF = 2: Take the extention field F = Z2[x]/ < x2 + x+ 1 >= {0, 1, λ, λ2 = λ+ 1},
since x2 + x + 1 is irreducible over Z2. It is clear that 1, λ, λ2 are 3-th roots of unity in F
satisfying λ2 +λ+ 1 = 0. FC6 has 3 simple (1-dimensional) representations S0, S1 and S2. The
three primitive idempotents are

e0 = i+ x2 + x4, e1 = i+ λx2 + λ2x4, e2 = i+ λ2x2 + λx4

Hence FC6FC6 = P0⊕P1⊕P2;Pj = FC6ej = Fej ⊕Fxej; j = 0, 1, 2, x2ej = λ3−jej; j = 0, 1, 2.

For γ, j ∈ 0, 1, 2 : 2γ ≡3 (3− j)⇔


γ = 0 ∧ j = 0

γ = 1 ∧ j = 1

γ = 2 ∧ j = 2

, hence

S0 ≤ P0

S1 ≤ P1

S2 ≤ P2

(1) In P0 = FC6e0 = Fe0⊕Fxe0, α0 = e0+xe0 =
∑

g∈C6
g ∈ P0 generates S0, hence P0 =

S0

S0

(2) In P1 = FC6e1 = Fe1 ⊕ Fxe1, α1 = e1 + λ2xe1 ∈ P1 generates S1, hence P1 =
S1

S1

[We get α1 = e1 + λ2xe1 ∈ P1 by taking c = 0 in the proof of Theorem 4.0.1(2) to get
the 2-tuple (0, 0 +3 (3− 1)) = (0, 2). The other two 2-tuples (1, 1 +3 (3− 1)) = (1, 0) and
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(2, 2 +3 (3− 1)) = (2, 1) give two choices: α1 = λe1 + xe1 or α1 = λ2e1 + λxe1 in both cases
xα1 = λα1)

(3) In P2 = FC6e2 = Fe2 ⊕ Fxe2, α2 = e2 + λxe2 ∈ P2 generates S2, hence P2 =
S2

S2

[We may also take α2 = λe2 + λ2xe2 or α2 = λ2e2 + xe2 in both cases xα2 = λ2α2 as above]
For clarity, we explain the product coefficients cγj,k discussed in Theorem 3.1.1 through this
example

cγj,k =

 1
32
| {(s, t); 0 ≤ s, t ≤ 2 : s+ t ≡r γ} | λγj if j = k

1
32

∑
0≤s,t≤2:s+t≡rγ

λsj+tk if j 6= k

For example we determine c11,2 (coef. of x1.2 in e1e2) , c
1
2,2 (coef. of x1.2 in e22 ).

(∗) c11,2 =
1

32

∑
0≤s,t≤2:s+t≡31

λsj+tk =
∑

0≤s,t≤2:s+t≡31

λsj+tk; as
1

32
≡ 1 in F

The pairs (s, t); 0 ≤ s, t ≤ 2 : s+ t≡31 : (0, 1), (1, 0), (2, 2). Substituting in (∗), we have

c11,2 = λ01+12 + λ11+02 + λ21+22 = λ2 + λ1 + λ6 = λ2 + λ1 + 1 = 0

(∗∗) c12,2 =
1

32
| {(s, t); 0 ≤ s, t ≤ 2 : s+ t ≡3 1} | λ1.2

(s, t); 0 ≤ s, t ≤ 2 : s+ t ≡3 1 : (0, 1), (1, 0), (2, 2). Substituting in (∗∗), we have
c12,2 = λ2 = the coefficient of x1.2 = x2 in e22, c02,2 = 1 = the coefficient of i in e22, c22,2 = λ =

the coefficient of x2.2 = x4 in e22. Therefore e22 = i+ λ2x2 + λx4 = e2, . . . etc.

5.1(2) charF = 3: Take F = Z3. It is clear that −1 = 2 is 2-th root of unity in F. FC6 has 2

simple (1-dimensional) representations S0 and S1. The two primitive idempotents are:
e0 = 1

2
(i+ x3) [= 2 (i+ 1x3)] , e1 = 1

2
(i− x3) [= 2 (i+ 2x3)] (Note 1

2
= 2−1 = 2 = −1 in Z3).

(1) In P0 = Z3C6e0 = Z3e0⊕Z3xe0⊕Z3x
2e0. For γ ∈ 0, 1, xα0 = λγα0 ⇔ 3γ ≡2 (2− 0)⇔ γ = 0.

Hence P0 is the projective cover of S0; in fact α0 = e0 + xe0 + x2e0 ∈ P0 generates S0, hence

P0 =

S0

S0

S0

(2) In P1 = Z3C6e1 = Z3e1⊕Z3xe1⊕Z3x
2e1. For γ ∈ 0, 1, xα1 = λγα1 ⇔ 3γ ≡2 (2− 1)⇔ γ = 1.

Hence P1 is the projective cover of S1; in fact α1 = e1 − xe1 + x2e1 ∈ P1 generates S1, hence

P1 =

S1

S1

S1

Note that α1 = e1 +λxe1 +λ2x2e1 ∈ P1 corresponds to the 3-tuple (0, 0 + 1(2− 1), 0 + 2(2− 1))

= (0, 1, 2).
[We mayalso take α1 = −e1 +xe1−x2e1 ∈ P1, this also gives xα1 = −α1 = λα1 hence generates
S1]
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5.2. Primitive idempotents in the group algebra FC10. We have 10 = 2 × 5, so we
consider the two (non-semisimple) cases when charF = 2 ∨ 5.

5.2(1) charF = 2: Take the extention field F = Z2[x]/ < x4 + x3 + x2 + x + 1 > of order 16
(note that x4 + x3 + x2 + 1 ∈ Z2[x] is irreducible polynomial). It is clear that λ is 5-th root of
unity in F satisfying λ4 +λ3 +λ2 +λ+1 = 0. FC10 has 5 simple (1-dimensional) representations
S0, S1, S2, S3 and S4. The primitive idempotents are:

e0 = i+ x2 + x4 + x6 + x8

e1 = i+ λx2 + λ2x4 + λ3x6 + λ4x8 , x2e1 = λ4e1
e2 = i+ λ2x2 + λ4x4 + λx6 + λ3x8 , x2e2 = λ3e2

e3 = i+ λ3x2 + λx4 + λ4x6 + λ2x8 , x2e3 = λ2e3

e4 = i+ λ4x2 + λ3x4 + λ2x6 + λx8 , x2e4 = λe4

Such that
∑

0≤j≤4 ej = i. Hence we have the following decomposition:

FC10 =
⊕∑

0≤j≤4

FC10ej =
⊕∑

0≤j≤4

Pj;Pj = FC10ej =
∑

0≤u≤1

Fxuej = Fej ⊕ Fxej, x2ej = λ5−jej

For γ, j ∈ {0, 1, 2, 3, 4} : 2γ ≡5 (5− j)⇔



j = 0 ∧ γ = 0

j = 1 ∧ γ = 2

j = 2 ∧ γ = 4

j = 3 ∧ γ = 1

j = 4 ∧ γ = 3

, hence

S0 ≤ P0

S2 ≤ P1

S4 ≤ P2

S1 ≤ P3

S3 ≤ P4

(1) α0 = e0 + xe0 ∈ P0 generates S0 and P0 ≈
S0

S0

(2) α1 = e1 + λ3xe1 ∈ P1 generates S2 and P1 ≈
S2

S2

(3) α2 = e2 + λxe2 ∈ P2 generates S4 and P2 ≈
S4

S4

(4) α3 = e3 + λ4xe3 ∈ P3 generates S1 and P3 ≈
S1

S1

(5) α4 = e4 + λ2xe4 ∈ P4 generates S3 and P4 ≈
S3

S3

Therefore the projective indecomposable FC10-module Pj = FC10ej; 0 ≤ j ≤ 4 (of dimension

2) has the following composition series Pj ≈
S2j

S2j

;(2j is taken mod 5).

The coefficient cγ2,4 of xm;m = 0, 2, 4, 6, 8 in e2e4 is 1 + λ+ λ2 + λ3 + λ4 = 0; i.e. e2e4 = 0. We
use the formulae in Theorem 3.1.1 to determine the coefficients c21,3 (coef. of x2.2 in e1e3), c23,3 (

coef. of x2.2 in e3
2)

(∗) c21,3 =
1

52

∑
0≤s,t≤4:s+t≡52

λs.1+t.3 =
∑

0≤s,t≤4:s+t≡52

λs.1+t.3
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0 ≤ s, t ≤ 4 : s+ t≡52 : (0, 2), (2, 0), (1, 1), (3, 4), (4, 3); substituting in (∗), we get

c21,3 =
∑

0≤s,t≤4:s+t≡52

λs.1+t.3 = λ6 + λ2 + λ4 + λ15 + λ13 = λ+ λ2 + λ4 + 1 + λ3 = 0

(∗∗) c23,3 =
1

52
| {(s, t); 0 ≤ s, t ≤ 4 : s+ t ≡5 2} | λ2.3

| (s, t); 0 ≤ s, t ≤ 4 : s+ t ≡5 2 |= 5; (0, 2), (2, 0), (1, 1), (3, 4), (4, 3)

Substituting in (∗∗), we get c23,3 ( coef. of x2.2 = x4 in e3
2) = 1

5
λ2.3 = 1

5
λ = λ = coef. of x4 in

e3. Similarly we determine c03,3, c13,3, c33,3, c43,3 to see that e32 = e3.

5.2(2) charF = 5: Take F = Z5. A cyclic group C10 =< x|x10 = i > has two simple (1-
dimensional) modules S0 : x 7→ 1, and S1 : x 7→ 4 ≡ −1 defined in terms of the 2-th roots of
unity 4(≡ −1), 1 = 42 ∈ Z5. Take the subgroup H =< x5 >= {i, x5} of order 2. FC10 has two
primitive orthogonal idempotents

e0 =
1

2

(
i+ x5

)
= 3(i+ x5), e1 =

1

2

(
i− x5

)
= 3(i− x5)

Hence, FC10FC10 = P1⊕P2; Pj = FC10ej = Fej ⊕Fxej ⊕Fx2ej ⊕Fx3ej ⊕Fx4ej; j = 0, 1, x5ej =

λ2−jej.

For γ, j ∈ {0, 1} : 5γ ≡2 (2− j)⇔

γ = 0 ∧ j = 0

γ = 1 ∧ j = 1
, hence

S0 ≤ P0

S1 ≤ P1

(1) α0 =
∑

0≤u≤4 x
ue0 = e0 + xe0 + x2e0 + x3e0 + x4e0 generates S0

(2) α1 = −e1 + xe1 − x2e1 + x3e1 − x4e1 ∈ P1 = FC10e1 generates S1

In both cases, Pj =

Sj
Sj
Sj
Sj
Sj

; j = 0, 1

5.3. Primitive idempotents in the group algebra FC12. We have 12 = 22 × 3, so we
consider the two (non-semisimple) cases when charF = 2 ∨ 3.

5.3(1) charF = 3: Take the extention field F = Z3[x]/ < x2 + 1 >= {0, 1, 2, λ, 2λ, λ + 1, λ +

2, 2λ + 1, 2λ + 2}, since x2 + 1 is irreducible over Z3. It is clear that λ is 4-th root of unity in
F satisfying λ2 + 1 = 0, hence λ2 = −1 = 2. FC12 has 4 simple (1-dimensional) representations
S0, S1, S2 and S3. Take H =< x3 >= {i, x3, x6, x9} subgroup of C12. We have the following
four primitive orthogonal idempotents in FC12

e0 = i+ x3 + x6 + x9, e1 = i+ λx3 + λ2x6 + λ3x9, e2 = i+ λ2x3 + x6 + λ2x9

e3 = i+ λ3x3 + λ2x6 + λx9

Hence FC12FC12 =
∑⊕

0≤j≤3 Pj;Pj = FC12ej = Fej ⊕ Fxej ⊕ Fx2ej, x3ej = λ4−jej

For γ, j ∈ {0, 1, 2, 3} : 3γ ≡4 (4− j)⇔


γ = 0 ∧ j = 0

γ = 1 ∧ j = 1

γ = 2 ∧ j = 2

γ = 3 ∧ j = 3

, hence

S0 ≤ P0

S1 ≤ P1

S2 ≤ P2

S3 ≤ P3
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(1) α0 = e0 + xe0 + x2e0 ∈ P0 generates S0 and P0 ≈
S0

S0

S0

.

(2) α1 = e1 + λ3xe1 + λ2x2e1 ∈ P1 generates S1 and P1 ≈
S1

S1

S1

.

(3) α2 = e2 + λ2xe2 + x2e2 ∈ P2 generates S2 and P2 ≈
S2

S2

S2

.

(4) α3 = e3 + λxe3 + λ2x2e3 ∈ P3 generates S3 and P3 ≈
S3

S3

S3

.

Hence Pj is the projective cover of Sj and has the following structure: Pj :

Sj
Sj
Sj

.

5.3(2) charF = 2: Take the extention field F = Z2[x]/ < x2 + x + 1 >= 0, 1, λ, λ + 1. FC12

has 3 simple (1-dimensional) representations S0, S1 and S2. The three primitive idempotents
are:
e0 = i+ x4 + x8, e1 = i+ λx4 + λ2x8, e2 = i+ λ2x4 + λx8 (Note: 1

3
≡ 1 in F).

Hence FC12FC12 =
∑⊕

0≤j≤2 Pj;Pj = FC12ej = Fej ⊕ Fxej ⊕ Fx2ej ⊕ Fx3ej, x4ej = λ3−jej.

For γ, j ∈ {0, 1, 2} : 4γ ≡3 (3− j)⇔


γ = 0 ∧ j = 0

γ = 2 ∧ j = 1

γ = 1 ∧ j = 2

, hence

S0 ≤ P0

S2 ≤ P1

S1 ≤ P2

(1) α0 = e0 + xe0 + x2e0 + x3e0 ∈ P0 generates S0 and P0 ≈

S0

S0

S0

S0

(2) α1 = e1 + λxe1 + λ2x2e1 + x3e1 ∈ P1 generates S2 and P1 ≈

S2

S2

S2

S2

(3) α2 = e2 + λ2xe2 + λx2e2 + x3e2 ∈ P2 generates S1 and P2 ≈

S1

S1

S1

S1

Consider the coefficient

cγj,k =

 1
32
| {(s, t); 0 ≤ s, t ≤ 2 : s+ t ≡3 γ} | λγj if j = k

1
32

∑
0≤s,t≤2:s+t≡3γ

λsj+tk if j 6= k
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- c01,2 =
∑

0≤s,t≤2:s+t≡30
λs.1+t2 = 1

32

∑
0≤s,t≤2:s+t≡30

λsj+tk = λ0.1+0.2 +λ2.1+1.2 +λ1.1+2.2 = 1 +λ+

λ2 = 0

- c11,2 =
∑

0≤s,t≤2:s+t≡31
λs.1+t2 = λ0.1+1.2 + λ1.1+0.2 + λ2.1+2.2 = λ2 + λ+ 1 = 0

- c21,2 =
∑

0≤s,t≤2:s+t≡32
λs.1+t2 = λ1.1+1.2 + λ2.1+0.2 + λ0.1+2.2 = 1 + λ2 + λ = 0

It follows that e1e2 = 0. On the other hand
- c12,2 = 1

32
| {(s, t); 0 ≤ s, t ≤ 2 : s+ t ≡3 1} | λ2 = 3.λ2 = λ2

- c02,2 = 1
32
| {(s, t); 0 ≤ s, t ≤ 2 : s+ t ≡3 0} | λ0 = 3 = 1

- c22,2 = 1
32
| {(s, t); 0 ≤ s, t ≤ 2 : s+ t ≡3 2} | λ1 = 3 · λ = λ

Hence e22 = e2.

Conclusion

We have described a formula for a complete set of primitive central orthogonal idempotents
of the cyclic group algebra FCn where charF = p and n = par; p - r, as well as the structure
of the projective indecomposable FCn-modules corresponding to those primitive idempotents.
We also determine the parameters of the cyclic code generated by each primitive idempotent
and a subset of Cn related to its zero-divisor type structure.
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