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RETARDED STOCHASTIC FRACTIONAL NEUTRAL FUNCTIONAL
DIFFERENTIAL EQUATIONS DRIVEN BY ROSENBLATT PROCESS

WITH UNBOUNDED DELAY

LAHMOUDI AHMED AND LAKHEL EL HASSAN∗

Abstract. Hermite processes are self-similar processes with stationary increments, the Her-
mite process of order 1 is fractional Brownian motion and the Hermite process of order 2 is the
Rosenblatt process. In this paper, we consider a class of fractional neutral stochastic functional
differential equations with infinite delay driven by Rosenblatt process with index H ∈ ( 1

2 , 1)

which is a special case of a self-similar process with long-range dependence. More precisely, we
prove the existence of mild solutions by using stochastic analysis and a fixed-point strategy.
Finally, an illustrative example is provided to demonstrate the effectiveness of the theoretical
result.

1. Introduction

In recent years the stochastic functional differential equations driven by a fractional Brownian
motion have been used to model many of the physical phenomena arising in various areas
of science and engineering, such as finance, economics, biology, physics, medicine and so on
(see [3–5,9,11,12] and references therein). On the other hand, the very large utilization of the
fractional Brownian motion in practice are due to its self-similarity, stationarity of increments
and long-range dependence; one prefers in general fBm before other processes because it is
Gaussian and the calculus for it is easier; but in concrete situations when the gaussianity is
not plausible for the model, one can use for example the Rosenblatt process. Although defined
during the 60s and 70s [20, 23] due to their appearance in the Non-Central Limit Theorem,
the systematic analysis of Rosenblatt processes has only been developed during the last ten
years, motivated by their nice properties (self-similarity, stationarity of the increments, long-
range dependence). Since they are non-Gaussian and self-similar with stationary increments,
the Rosenblatt processes can also be an input in models where self-similarity is observed in
empirical data which appears to be non-Gaussian. There exists a consistent literature that
focuses on different theoretical aspects of the Rosenblatt processes. Let us recall some of these
works. For example, the rate of convergence to the Rosenblatt process in the Non Central
Limit Theorem has been given by Leonenko and Ahn [14]. Tudor [24] studied the analysis of
the Rosenblatt process. The distribution of the Rosenblatt process has been given in [15].
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Our results are inspired by the one in [10, 21] where the existence and uniqueness of mild
solutions for stochastic neutral functional differential equations driven by Rosenblatt process
with delay is studied, as well as some results on the asymptotic behavior.

The main purpose of this paper is to prove the existence of mild solutions for fractional
neutral functional stochastic differential equations driven by Rosenblatt process of the form:

(1.1)



d[J1−α
t (x(t)− q(t, xt)− ϕ(0) + q(0, ϕ))] = [Ax(t) + f(t, xt)]dt

+G(t)dZH(t), t ∈ [0, T ],

x(t) = ϕ(t) ∈ L2(Ω,Bh), for a.e. t ∈ (−∞, 0],

where 1
2
< α < 1, J1−α is the (1− α)−order Riemann-Liouville fractional integral operator, A

is the infinitesimal generator of an analytic semigroup of bounded linear operators, (S(t))t≥0, in
a Hilbert space X and ZH is a Rosenblatt process with H > 1

2
on a real and separable Hilbert

space Y . The history xt : (−∞, 0]→ X, xt(θ) = x(t+θ), belongs to an abstract phase space Bh
defined axiomatically, and f, q : [0, T ] × Bh → X, and G : [0, T ] → L0

2(Y,X), are appropriate
functions to be specified later, where L0

2(Y,X) denotes the space of all Q-Hilbert-Schmidt
operators from Y into X (see section 2 below).

Fractional differential equations arise in various engineering and scientific disciplines as the
mathematical modeling of phenomena in fields such as physics, finance, electrical engineering,
telecommunication networks, and so on. There has been a significant development in fractional
differential equations. Some authors have considered fractional stochastic equations driven
by Wiener processes (we refer to Ahmed [1], Dieye et al. [7], Cui and Yan [6], Lakhel and
McKibben [13]). For more details, one can see the monographs of Kilbas et al. [8], and Zhou [26],
and the references therein.

To the best of the authors’ knowledge, there is no work on the existence of solutions for
fractional neutral stochastic differential equations driven by Rosenblatt process with infinite
delay. In order to fill this gap, we will make the first attempt to study this problem in this
paper. We prove the existence of mild solutions for this kind of equation with the coefficients
satisfying several non-Lipschitz conditions, which include the classical Lipschitz condition as a
special case.

The outline of this paper is as follows: In the next section, some necessary notations and
concepts are provided. In Section 3, we derive the existence result for mild solutions for frac-
tional neutral stochastic differential systems. Finally, in Section 4, we provide an example to
illustrate the applicability of the general theory.

2. Preliminaries

In this section, we collect some definitions and lemmas on Wiener integrals with respect to an
infinite dimensional Rosenblatt process and we recall some basic results about analytical semi-
groups and fractional powers of their infinitesimal generators, which will be used throughout
the whole of this paper. For details of this section, we refer the reader to [18,24] and references
therein.

Let (Ω,F ,P) be a complete probability space. Selfsimilar processes are invariant in distri-
bution under suitable scaling. They are of considerable interest in practice since aspects of
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the selfsimilarity appear in different phenomena like telecommunications, turbulence, hydrol-
ogy or economics. A self-similar processes can be defined as limits that appear in the so-called
Non-Central Limit Theorem (see [23]). We briefly recall the Rosenblatt process as well as the
Wiener integral with respect to it. Let us recall the notion of Hermite rank. Denote by Hj(x)

the Hermite polynomial of degree j given by Hj = (−1)je
x2

2
dj

dxj
e
−x2
2 and let g be a function on

R such that E[g(ζ0)] = 0 and E[g(ζ0)2] < ∞. Assume that g has the following expansion in
Hermite polynomials

g(x) =
∑
j≥0

cjHj(x),

where cj = 1
j!
E(g(ζ0Hj(ζ0))). The Hermite rank of g is defined by

k = min{j|cj 6= 0}.

Since E[g(ζ0)] = 0, we have k ≥ 1. Consider (ζn)n∈Z a stationary Gaussian sequence with mean
zero and variance 1 which exhibits long range dependence in the sense that the correlation
function satisfies

r(n) = E(ζ0ζn) = n
2H−2
k L(n),

with H ∈ (1
2
, 1) and L is a slowly varying function at infinity. Then the following family of

stochastic processes
1

nH

[nt]∑
j=1

g(ζj)

converges as n −→ ∞, in the sense of finite dimensional distributions, to the selfsimilar sto-
chastic process with stationary increments

(2.1) Zk
H(t) = c(H, k)

∫
Rk

(∫ t

0

k∏
j=1

(s− yj)
−( 1

2
+ 1−H

k
)

+ ds

)
dB(y1)...dB(yk),

where x+ = max(x, 0). The above integral is a Wiener-Itô multiple integral of order k with
respect to the standard Brownian motion (B(y))y∈R and the constant c(H, k) is a normalizing
constant that ensures E(Zk

H(1))2 = 1.

The process (Zk
H(t))t≥0 is called the Hermite process. When k = 1 the process given by (2.1)

is nothing else that the fractional Brownian motion (fBm) with Hurst parameterH ∈ (1
2
, 1). For

k = 2 the process is not Gaussian. If k = 2 then the process (2.1) is known as the Rosenblatt
process. It was introduced by Rosenblatt in [20] and was given its name by Taqqu in [22].
The fractional Brownian motion is of course the most studied process in the class of Hermite
processes due to its significant importance in modelling. A stochastic calculus with respect to
it has been intensively developed in the last decade. The Rosenblatt process is, after fBm, the
most well known Hermite process. We also recall the following properties of the Rorenblatt
process:

• The process Zk
H is H-selfsimilar in the sense that for any c > 0,

(2.2) (Zk
H(ct)) =(d) (cHZk

H(t)),

where ” =(d) ” means equivalence of all finite dimensional distributions. It has stationary
increments and all moments are finite.
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• From the stationarity of increments and the self-similarity, it follows that, for any p ≥ 1

E|ZH(t)− ZH(s)|p ≤ |E(ZH(1))|p|t− s|pH .

As a consequence the Rosenblatt process has Hölder continuous paths of order γ with
0 < γ < H.

Self-similarity and long-range dependence make this process a useful driving noise in models
arising in physics, telecommunication networks, finance and other fields.

Consider a time interval [0, T ] with arbitrary fixed horizon T and let {ZH(t), t ∈ [0, T ]} the
one-dimensional Rosenblatt process with parameter H ∈ (1/2, 1). By Tudor [24], it is well
known that ZH has the following integral representation:

(2.3) ZH(t) = d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du

]
dB(y1)dB(y2),

where B = {B(t) : t ∈ [0, T ]} is a Wiener process, H ′ = H+1
2

and KH(t, s) is the kernel given
by

KH(t, s) = cHs
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2du,

for t > s, where cH =
√

H(2H−1)

β(2−2H,H− 1
2

)
and β(, ) denotes the Beta function. We put KH(t, s) = 0

if t ≤ s and d(H) = 1
H+1

√
H

2(2H−1)
is a normalizing constant.

The covariance of the Rosenblatt process {ZH(t), t ∈ [0, T ]} satisfies, for every s, t ≥ 0,

RH(s, t) := E(ZH(t)ZH(s)) =
1

2
(t2H + s2H − |t− s|2H).

The basic observation is the fact that the covariance structure of the Rosenblatt process
is similar to the one of the fractional Brownian motion and this allows the use of the same
classes of deterministic integrands as in the fractional Brownian motion case whose properties
are known.

Now, we introduce Wiener integrals with respect to the Rosenblatt process. We refer to [24]
for additional details on the Rosenblatt process .
By formula (2.3) we can write

ZH(t) =

∫ t

0

∫ t

0

I(1[0,t])(y1, y2)dB(y1)dB(y2),

where by I we denote the mapping on the set of functions f : [0, T ] −→ R to the set of functions
f : [0, T ]2 −→ R

I(f)(y1, y2) = d(H)

∫ T

y1∨y2
f(u)

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du.

Let us denote by E the class of elementary functions on R of the form

f(.) =
n∑
j=1

aj1(tj ,tj+1](.), 0 ≤ tj < tj+1 ≤ T, aj ∈ R, i = 1, ..., n.

https://doi.org/10.28919/ejma.2022.2.8


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.8 5

For f ∈ E as above, it is natural to define its Wiener integral with respect to the Rosenblatt
process ZH by

(2.4)
∫ T

0

f(s)dZH(s) :=
n∑
j=1

aj [ZH(tj+1)− ZH(tj)] =

∫ T

0

∫ T

0

I(f)(y1, y2)dB(y1)dB(y2).

Let H be the set of functions f such that

H =

{
f : [0, T ] −→ R : ‖f‖H :=

∫ T

0

∫ T

0

(I(f)(y1, y2))2 dy1dy2 <∞
}
.

It hold that (see Maejima and Tudor [16])

‖f‖H = H(2H − 1)

∫ T

0

∫ T

0

f(u)f(v)|u− v|2H−2dudv,

and, the mapping

(2.5) f −→
∫ T

0

f(u)dZH(u)

provides an isometry from E to L2(Ω). On the other hand, it has been proved in [19] that
the set of elementary functions E is dense in H. As a consequence the mapping (2.5) can be
extended to an isometry from H to L2(Ω). We call this extension as the Wiener integral of
f ∈ H with respect to ZH .

Let us consider the operator K∗H from E to L2([0, T ]) defined by

(K∗Hϕ)(y1, y2) =

∫ T

y1∨y2
ϕ(r)

∂K

∂r
(r, y1, y2)dr,

where K(., ., .) is the kernel of Rosenblatt process in representation (2.3)

K(r, y1, y2) = 1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du.

We refer to [24] for the proof of the fact that K∗H is an isometry between H and L2([0, T ]). It
follows from [24] that H contains not only functions but its elements could be also distributions.
In order to obtain a space of functions contained inH, we consider the linear space |H| generated
by the measurable functions ψ such that

‖ψ‖2
|H| := αH

∫ T

0

∫ T

0

|ψ(s)||ψ(t)||s− t|2H−2dsdt <∞,

where αH = H(2H − 1). The space |H| is a Banach space with the norm ‖ψ‖|H| and we have
the following inclusions (see [24]).

Lemma 2.1.

L2([0, T ]) ⊆ L1/H([0, T ]) ⊆ |H| ⊆ H,

and for any ψ ∈ L2([0, T ]), we have

‖ψ‖2
|H| ≤ 2HT 2H−1

∫ T

0

|ψ(s)|2ds.

https://doi.org/10.28919/ejma.2022.2.8
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Let X and Y be two real, separable Hilbert spaces and let L(Y,X) be the space of bounded
linear operator from Y to X. For the sake of convenience, we shall use the same notation to
denote the norms in X, Y and L(Y,X). Let Q ∈ L(Y, Y ) be an operator defined by Qen = λnen

with finite trace trQ =
∑∞

n=1 λn <∞. where λn ≥ 0 (n = 1, 2...) are non-negative real numbers
and {en} (n = 1, 2...) is a complete orthonormal basis in Y . We define the infinite dimensional
Q−Rosenblatt process on Y as

(2.6) ZH(t) = ZQ(t) =
∞∑
n=1

√
λnenzn(t),

where (zn)n≥0 is a family of real independent Rosenblatt process.
Note that the series (2.6) is convergent in L2(Ω) for every t ∈ [0, T ], since

E|ZQ(t)|2 =
∞∑
n=1

λnE(zn(t))2 = t2H
∞∑
n=1

λn <∞.

Note also that ZQ has covariance function in the sense that

E〈ZQ(t), x〉〈ZQ(s), y〉 = R(s, t)〈Q(x), y〉 for all x, y ∈ Y and t, s ∈ [0, T ].

In order to define Wiener integrals with respect to the Q-Rosenblatt process, we introduce
the space L0

2 := L0
2(Y,X) of all Q-Hilbert-Schmidt operators ψ : Y → X. We recall that

ψ ∈ L(Y,X) is called a Q-Hilbert-Schmidt operator, if

‖ψ‖2
L02

:=
∞∑
n=1

‖
√
λnψen‖2 <∞,

and that the space L0
2 equipped with the inner product 〈ϕ, ψ〉L02 =

∑∞
n=1〈ϕen, ψen〉 is a separable

Hilbert space.
Now, let φ(s); s ∈ [0, T ] be a function with values in L0

2(Y,X), such that
∑∞

n=1 ‖K∗φQ
1
2 en‖2

L02
<

∞. The Wiener integral of φ with respect to ZQ is defined by
(2.7)∫ t

0

φ(s)dZQ(s) =
∞∑
n=1

∫ t

0

√
λnφ(s)endzn(s) =

∞∑
n=1

∫ t

0

∫ t

0

√
λnK

∗
H(φen)(y1, y2)dB(y1)dB(y2).

Now, we end this subsection by stating the following result which is fundamental to prove our
result.

Lemma 2.2. If ψ : [0, T ]→ L0
2(Y,X) satisfies

∫ T
0
‖ψ(s)‖2

L02
ds <∞ then the above sum in (2.7)

is well defined as a X-valued random variable and we have

E‖
∫ t

0

ψ(s)dZH(s)‖2 ≤ 2Ht2H−1

∫ t

0

‖ψ(s)‖2
L02
ds.

Proof. By Lemma 2.1, we have

E‖
∫ t

0

ψ(s)dZH(s)‖2 =
∞∑
n=1

E‖
∫ t

0

∫ t

0

√
λnK

∗
H(ψen)(y1, y2)dBn(y1)dBn(y2)‖2

≤
∞∑
n=1

2Ht2H−1

∫ t

0

λn‖ψ(s)en‖2ds

= 2Ht2H−1

∫ t

0

‖ψ(s)‖2
L02
ds.

https://doi.org/10.28919/ejma.2022.2.8
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�

It is known that the study of theory of differential equation with infinite delay depends on
a choice of the abstract phase space. We assume that the phase space Bh is a linear space of
functions mapping (−∞, 0] into X, endowed with a norm ‖.‖Bh . We shall introduce some basic
definitions, notations and lemma used in this paper. First, we present the abstract phase space
Bh. Assume that h : (−∞, 0] −→ [0,+∞) is a continuous function with l =

∫ 0

−∞ h(s)ds < +∞.
We define the abstract phase space Bh by

Bh = {ψ : (−∞, 0] −→ X for any τ > 0, (E‖ψ‖2)
1
2 is bounded and measurable

function on [−τ, 0] and
∫ 0

−∞ h(t) supt≤s≤0(E‖ψ(s)‖2)
1
2dt < +∞}.

If we equip this space with the norm

‖ψ‖Bh :=

∫ 0

−∞
h(t) sup

t≤s≤0
(E‖ψ(s)‖2)

1
2dt,

then it is clear that (Bh, ‖.‖Bh) is a Banach space.
Next, We consider the space BT , given by

BT = {x : x ∈ C((−∞, T ], X), with x0 = ϕ ∈ Bh},

where C((−∞, T ], X) denotes the space of all continuousX−valued stochastic processes {x(t), t ∈
(−∞, T ]}. The function ‖.‖BT to be a semi-norm in BT , it is defined by

‖x‖BT = ‖x0‖Bh + sup
0≤t≤T

(E‖x(t)‖2)
1
2 .

The following lemma is a common property of phase spaces.

Lemma 2.3. [17] Suppose x ∈ BT , then for all t ∈ [0, T ] , xt ∈ Bh and

l(E‖x(t)‖2)
1
2 ≤ ‖xt‖Bh ≤ l sup

0≤s≤t
(E‖x(s)‖2)

1
2 + ‖x0‖Bh ,

where l =
∫ 0

−∞ h(s)ds <∞.

Let us give the following well-known definitions related to fractional order differentiation and
integration.

Definition 2.4. The Riemann-Liouville fractional integral of order α > 0 of a function f :

R+ −→ X is defined by

Jαt f(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−αds,

where Γ(.) is the Gamma function.

Definition 2.5. The Riemann-Liouville fractional derivative of order α ∈ (0, 1) of a function
f : R+ −→ X is defined by

Dα
t f(t) =

d

dt
J1−α
t f(t).

Definition 2.6. The Caputo fractional derivative of order α ∈ (0, 1) of f : R+ −→ X is defined
by

CDα
t f(t) = Dα

t (f(t)− f(0)).

https://doi.org/10.28919/ejma.2022.2.8
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For more details on fractional calculus, one can see [8].
We suppose 0 ∈ ρ(A), the resolvent set of A, and the semigroup, (S(t))t≥0, is uniformly

bounded; that is, there exists M ≥ 1 such that ‖S(t)‖ ≤ M for every t ≥ 0. It is possible
to define the fractional power (−A)α for 0 < α ≤ 1, as a closed linear operator on its domain
D(−A)α. Furthermore, the subspace D(−A)α is dense in X, and the expression

‖h‖α = ‖(−A)αh‖

defines a norm in D(−A)α. If Xα represents the space D(−A)α endowed with the norm ‖.‖α,
then the following properties hold (see [18], p. 74).

Lemma 2.7. Suppose that A,Xα, and (−A)α are as described above.

(i) For 0 < α ≤ 1, Xα is a Banach space.
(ii) If 0 < β ≤ α, then the injection Xα ↪→ Xβ is continuous.
(iii) For every 0 < α ≤ 1, there exists Mα > 0 such that

‖(−A)αS(t)‖ ≤Mαt
−αe−λt, t > 0, λ > 0.

3. Existence Result

Before starting and proving the main result, we present the definition of mild solutions for
fractional neutral stochastic functional differential equation (1.1).

Definition 3.1. An X-valued process {x(t) : t ∈ (−∞, T ]} is a mild solution of (1.1) if

(1) x(t) = ϕ(t) on (−∞, 0] satisfying ‖ϕ‖2
Bh <∞,

(2) x(t) is continuous on [0, T ] almost surely and for each s ∈ [0, t) and α ∈ (0, 1) the
function (t − s)α−1ASα(t − s)q(s, xs) is integrable, such that the following stochastic
integral equation is verified:

(3.1)

x(t) = Tα(t)(ϕ(0)− q(0, ϕ)) + q(t, xt)

+
∫ t

0
(t− s)α−1ASα(t− s)q(s, xs)ds+

∫ t
0
(t− s)α−1Sα(t− s)f(s, xs)ds

+
∫ t

0
(t− s)α−1Sα(t− s)G(s)dZH(s), P− a.s.

where

Tα(t)x =

∫ ∞
0

ηα(θ)S(tαθ)xdθ, t ≥ 0, x ∈ X.

Sα(t)x = α

∫ ∞
0

θηα(θ)S(tαθ)xdθ, t ≥ 0, x ∈ X,

where

ηα(θ) =
1

α
θ−1− 1

αωα(θ−
1
α ) ≥ 0,

ωα(θ) =
1

π

∞∑
n=1

(−1)n−1θ−αn−1 Γ(nα + 1)

n!
sin(nαπ), θ ∈]0,∞[,

ηα is a probability density function defined on (0,∞).

https://doi.org/10.28919/ejma.2022.2.8
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Remark 3.2. (see [25])

(3.2)
∫ ∞

0

θηα(θ)dθ =
1

Γ(1 + α)
.

The following properties of Tα and Sα appeared in [25] are useful in what follows.

Lemma 3.3. Under the previous assumptions on S(t), t ≥ 0 and A, the operators Tα(t) and
Sα(t) have the following properties:

(i) For any x ∈ X, ‖Tα(t)x‖ ≤M‖x‖, ‖Sα(t)x‖ ≤ M
Γ(α)
‖x‖.

(ii) {Tα(t), t ≥ 0} and {Sα(t), t ≥ 0} are strongly continuous.
(iii) For any t > 0, Tα(t) and Sα(t) are also compact operators if S(t) is compact.
(iv) For any x ∈ X, β ∈ (0, 1) and δ ∈ (0, 1], we have

ASα(t)x = A1−βSαA
βx, and ‖AδSα(t)‖ ≤ αMδ

tαδ
Γ(2− δ)

Γ(1 + α(1− δ))
, t ∈ (0, T ].

The proof of the main result makes use of the following fixed point theorem.

Lemma 3.4. (Sadovskii’s fixed point theorem) Let Φ be a condensing operator on a Banach
space X, that is, Φ is continuous and takes bounded sets into bounded sets, and µ(Φ(B)) ≤ µ(B)

for every bounded set B of X with µ(B) > 0. If Φ(N) ⊂ N for a convex, closed set of X, then
Φ has a fixed point in X (where µ(.) denotes Kuratowski’s measure of noncompactness).

In this paper, we impose the following conditions on the data of the problem:

(H.1) The analytic semigroup, (S(t))t≥0, generated by A is compact for t > 0, and there exists
M ≥ 1 such that

sup
t≥0
‖S(t)‖ ≤M, and c1 = ‖(−A)−β‖.

(H.2) The map f : [0, T ]× Bh → X satisfies the following conditions:
(i) The function t 7−→ f(t, x) is measurable for each x ∈ Bh, the function x 7−→ f(t, x)

is continuous for almost all t ∈ [0, T ],
(ii) there exists a nonnegative function p ∈ L1([0, T ],R+), and a continuous nonde-

creasing function ϑ : R+ −→ (0,+∞) such that for δ > 1
2α−1

, (α ∈ (1
2
, 1)),∫ T

0

(ϑ(s))δds <∞, lim inf
k−→+∞

ϑ(k)

k
= γ <∞,

and

E‖f(t, x)‖2 ≤ p(t)ϑ(‖x‖2
Bh), for all x ∈ Bh and for a.e. t ∈ [0, T ].

(H.3) The function q : [0, T ]× Bh −→ X is continuous. For β ∈ (0, 1), satisfied with αβ > 1
2
,

the function q is Xβ-valued and there exists positive constant Mq, such that

E‖(−A)βq(t, x)− (−A)βq(t, y)‖2 ≤Mq‖x− y‖2
Bh , for all x ∈ Bh and for a.e. t ∈ [0, T ],

E‖(−A)βq(t, x)‖2 ≤Mq[‖x‖2
Bh + 1], for all x ∈ Bh and for a.e. t ∈ [0, T ],
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(H.4) There exists a constant p > 1
2α−1

such that the function G : [0,∞)→ L0
2(Y,X) satisfies∫ T

0

‖G(s)‖2p

L02
ds <∞, ∀T > 0.

The main result of this chapter is the following.

Theorem 3.5. Suppose that (H.1) − (H.4) hold. Then, there exists a mild solution to the
system (1.1) on (−∞, T ] provided that

(3.3) 20l2{Mq[c
2
1 +

T 2αβα2M2
1−βΓ2(β+1)

(2αβ−1)Γ2(αβ+1)
] + γM2T

Γ2(α)

∫ T
0

(T − s)2α−2p(s)ds} < 1.

Proof. Transform the problem (1.1) into a fixed-point problem. To do this,
define operator Ψ on BT by

Ψ(x)(t) =



ϕ(t), if t ∈ (−∞, 0],

Tα(t)(ϕ(0)− q(0, ϕ)) + q(t, xt) +
∫ t

0
(t− s)α−1ASα(t− s)q(s, xs)ds

+
∫ t

0
(t− s)α−1Sα(t− s)G(s)dZH(s), if t ∈ [0, T ].

It is clear that to prove the existence of mild solutions to equation (1.1) is equivalent to find
a fixed point for the operator Ψ.

Let y : (−∞, T ] −→ X be the function defined by

y(t) =

{
ϕ(t), if t ∈ (−∞, 0],

S(t)ϕ(0), if t ∈ [0, T ],

then, y0 = ϕ. For each function z ∈ BT , set

x(t) = z(t) + y(t).

It is obvious that x satisfies the stochastic control system (3.1) if and only if z satisfies z0 = 0

and

(3.4)
z(t) = q(t, zt + yt)− Tα(t)q(0, ϕ) +

∫ t
0
(t− s)α−1ASα(t− s)q(s, zs + ys)ds

+
∫ t

0
(t− s)α−1Sα(t− s)G(s)dZH(s).

Set

B0
T = {z ∈ BT : z0 = 0};

for any z ∈ B0
T , we have

‖z‖B0T = ‖z0‖Bh + sup
t∈[0,T ]

(E‖z(t)‖2)
1
2 = sup

t∈[0,T ]

(E‖z(t)‖2)
1
2 .

Then, (B0
T , ‖.‖B0T ) is a Banach space. Define the operator Π : B0

T −→ B0
T by
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(3.5) (Πz)(t) =



0 if t ∈ (−∞, 0],

q(t, zt + yt)− Tα(t)q(0, ϕ)) +
∫ t

0
(t− s)α−1ASα(t− s)q(s, zs + ys)ds

+
∫ t

0
(t− s)α−1Sα(t− s)f(s, zs + ys)ds

+
∫ t

0
(t− s)α−1Sα(t− s)G(s)dZH(s), if t ∈ [0, T ].

Set

Bk = {z ∈ B0
T : ‖z‖2

B0T
≤ k}, for some k ≥ 0,

then Bk ⊆ B0
T is a bounded closed convex set, and for z ∈ Bk, we have

(3.6)

‖zt + yt‖2
Bh ≤ 2(‖zt‖2

Bh + ‖yt‖2
Bh)

≤ 4(l2 sup0≤s≤t E‖z(s)‖2 + ‖z0‖2
Bh

+l2 sup0≤s≤t E‖y(s)‖2 + ‖y0‖2
Bh)

≤ 4l2(k +M2E‖ϕ(0)‖2) + 4‖y‖2
Bh

:= q′.

It is clear that the operator Ψ has a fixed point if and only if Π has one. So, we show that Π

has a fixed point. To this end, we decompose Π as Π = Π1 + Π2, where Π1 and Π2 are defined
on B0

T , respectively by

(3.7) (Π1z)(t) =



0 if t ∈ (−∞, 0],

q(t, zt + yt)− Tα(t)q(0, ϕ)) +
∫ t

0
(t− s)α−1ASα(t− s)q(s, zs + ys)ds

+
∫ t

0
(t− s)α−1Sα(t− s)G(s)dZH(s), if t ∈ [0, T ],

and

(3.8) (Π2z)(t) =


0 if t ∈ (−∞, 0],

∫ t
0
(t− s)α−1Sα(t− s)f(s, zs + ys)ds, if t ∈ [0, T ].

For convenience, the proof will be given in several steps.
Step 1. We claim that there exists a positive number k, such that Π1(x)+Π2(x) ∈ Bk whenever
x ∈ Bk. If it is not true, then for each positive number k, there is a function zk(.) ∈ Bk, but
Π1(zk) + Π2(zk) /∈ Bk, that is E‖Π1(zk)(t) + Π2(zk)(t)‖2 > k for some t ∈ [0, T ]. On the other
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hand, we have

(3.9)

k < E‖Π1(zk)(t) + Π2(zk)(t)‖2 ≤ 5{E‖Tα(t)q(0, ϕ)‖2 + E‖q(t, zkt + yt)‖2

+E‖
∫ t

0
(t− s)α−1ASα(t− s)q(s, zks + ys)ds‖2

+E‖
∫ t

0
(t− s)α−1Sα(t− s)f(s, zks + ys)ds‖2

+E‖
∫ t

0
(t− s)α−1Sα(t− s)G(s)dZH(s)‖2}

≤ 5
∑5

i=1 Ii.

By (H.3), (i) of Lemma 3.3, we have

(3.10)

I1 ≤ E‖Tα(t)q(0, ϕ)‖2

≤M2‖(−A)−β‖2‖(−A)βq(0, ϕ)‖2

≤M2c2
1Mq[‖ϕ‖2

Bh + 1].

By (H.3), (3.6), we have

(3.11)

I2 ≤ ‖(−A)−β‖2E‖(−A)βq(t, zkt + yt)‖2

≤ c2
1Mq[‖zkt + yt‖2

Bh + 1]

≤ c2
1Mq[4l

2(k +M2E‖ϕ(0)‖2) + 4‖y‖2
Bh + 1].

By (iv) of Lemma 3.3, (H.3) and Hölder’s inequality, we have

(3.12)

I3 ≤ E‖
∫ t

0
(t− s)α−1ASα(t− s)q(s, zks + ys)ds‖2

≤ E‖(
∫ t

0
(t− s)α−1(−A)1−βSα(t− s)(−A)βq(s, zks + ys)ds‖2

≤ E(
∫ t

0
(t− s)α−1‖(−A)1−βSα(t− s)(−A)βq(s, zks + ys)‖ds)2

≤ α2M2
1−βΓ2(β+1)

Γ2(αβ+1)
E(
∫ t

0
(t− s)α−1‖(t− s)αβ−α(−A)βq(s, zks + ys)‖ds)2

≤ α2M2
1−βΓ2(β+1)

Γ2(αβ+1)

∫ t
0
(t− s)2αβ−2ds

∫ t
0
E‖(−A)βq(s, zks + ys)‖2ds

≤ T 2αβ−1α2M2
1−βΓ2(β+1)

(2αβ−1)Γ2(αβ+1)

∫ t
0
Mq(4l

2(k +M2E‖ϕ(0)‖2) + 4‖y‖2
Bh + 1)ds

≤ T 2αβα2M2
1−βΓ2(β+1)

(2αβ−1)Γ2(αβ+1)
Mq[4l

2(k +M2E‖ϕ(0)‖2) + 4‖y‖2
Bh + 1].

From (H.2) and Hölder’s inequality, we have
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(3.13)

I4 ≤ E‖
∫ t

0
(t− s)α−1Sα(t− s)f(s, zks + ys)ds‖2

≤ M2T
Γ2(α)

E
∫ t

0
‖(t− s)α−1f(s, zks + ys)‖2ds

≤ M2T
Γ2(α)

∫ T
0

(T − s)2α−2E‖f(s, zks + ys)‖2ds

≤ M2T
Γ2(α)

∫ T
0

(T − s)2α−2p(s)ϑ(‖zks + ys‖2
Bh)ds

≤ M2T
Γ2(α)

ϑ(4l2(k +M2E‖ϕ(0)‖2) + 4‖y‖2
Bh)
∫ T

0
(T − s)2α−2p(s)ds

From (ii) of (H.2) and Hölder’s inequality, it follows that for δ > 1
2α−1

,

∫ T
0

(T − s)2α−2p(s)ds ≤
(∫ T

0
(T − s)

(2α−2)δ
δ−1 ds

) δ−1
δ
(∫ T

0
(p(s))δds

) 1
δ

≤ T
(2α−1)δ−1

δ

(∫ T
0

(p(s))δds
) 1
δ

<∞.

On the other hand, for p > 1
2α−1

, we have

(3.14)

∫ T
0

(T − s)(2α−2)‖G(s)‖2
L02
ds ≤

(∫ T
0

(T − s)
(2α−2)p
p−1 ds

) p−1
p
(∫ T

0
‖G(s)‖2p

L02
ds
) 1
p

≤ T
(2α−1)p−1

p

(∫ T
0
‖G(s)‖2p

L02
ds
) 1
p

<∞.

By Lemma 2.2, Lemma 3.3 and (3.14), we have for p > 1
2α−1

,

(3.15)

I5 ≤ E‖
∫ t

0
(t− s)α−1Sα(t− s)G(s)dZH(s)‖2

≤ 2M2T 2H−1

Γ2(α)

∫ T
0

(T − s)(2α−2)‖G(s)‖2
L02
ds

≤ 2M2T 2H−1

Γ2(α)
T

(2α−1)p−1
p

(∫ T
0
‖G(s)‖2p

L02
ds
) 1
p
.

By (3.9), (3.10), (3.11), (3.12), (3.13) and (3.15), we have

k < E‖Π1(zk)(t) + Π2(zk)(t)‖2 ≤ K + 20Mql
2k[c2

1 +
T 2αβα2M2

1−βΓ2(β+1)

(2αβ−1)Γ2(αβ+1)
]

+5 M2T
Γ2(α)

ϑ(4l2(k +M2E‖ϕ(0)‖2) + 4‖y‖2
Bh)
∫ T

0
(T − s)2α−2p(s)ds

https://doi.org/10.28919/ejma.2022.2.8


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.8 14

where
K = 5c2

1Mq{M2[‖ϕ‖2Bh + 1] + [4l2M2E‖ϕ(0)‖2 + 4‖y‖2Bh + 1]}

+5
T 2αβα2M2

1−βΓ2(β+1)

(2αβ−1)Γ2(αβ+1)
Mq[4l

2M2E‖ϕ(0)‖2 + 4‖y‖2Bh + 1]

+10M2T 2H−1

Γ2(α)
T

(2α−1)p−1
p

(∫ T
0 ‖G(s)‖2pL02ds

) 1
p
.

Noting that K is independent of k, dividing both sides by k and taking the lower limit as
k −→∞, yields

q′ = 4l2(k +ME‖ϕ(0)‖2) + 4‖y‖Bh −→∞ as k −→∞,

lim inf
k−→∞

ϑ(q′)

k
= lim inf

k−→∞

ϑ(q′)

q′
.
q′

k
= 4l2γ,

Thus, we have

1 ≤ 20l2{Mq[c
2
1 +

T 2αβα2M2
1−βΓ2(β+1)

(2αβ−1)Γ2(αβ+1)
] + γM2T

Γ2(α)

∫ T
0

(T − s)2α−2p(s)ds}.

This contradicts (3.3). Hence for some positive k,

(Π1 + Π2)(Bk) ⊆ Bk.

Step 2. We will show that Π1+Π2 has a fixed point in Bk. We divide this proof into four claims.

Claim 1. Π1 is a contraction.
Let t ∈ [0, T ] and z1, z2 ∈ B0

T

E‖(Π1z
1)(t)− (Π1z

2)(t)‖2 ≤ 2E‖q(t, z1
t + yt)− q(t, z2

t + yt)‖2

+2E‖
∫ t

0
(t− s)α−1ASα(t− s)(q(s, z1

s + ys)− q(s, z2
s + ys))ds‖2

≤ 2Mq‖(−A)−β‖2‖z1
s − z2

s‖2
Bh

+2
∫ t

0
(t− s)α−1(−A)1−βSα(t− s)(−A)β(q(s, z1

s + ys)− q(s, z2
s + ys))ds‖2

≤ 2Mq‖(−A)−β‖2‖z1
s − z2

s‖2
Bh

+
2α2M2

1−βΓ2(β+1)

Γ2(αβ+1)

∫ t
0
(t− s)2αβ−2ds

∫ t
0
Mq‖z1

s − z2
s‖2
Bhds

≤ 2Mq

{
‖(−A)−β‖2 +

2α2M2
1−βΓ2(β+1)

Γ2(αβ+1)
T 2αβ

2αβ−1

}
(2l2 sup0≤s≤T

E‖z1(s)− z2(s)‖2 + 2(‖z1
0‖2
Bh + ‖z2

0‖2
Bh)

≤ κ sup0≤s≤T E‖z1(s)− z2(s)‖2) ( since z1
0 = z2

0 = 0)

Taking supremum over t, yields

‖(Π1z
1)(t)− (Π1z

2)(t)‖B0T ≤ κ‖z1 − z2‖B0T ,
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where

κ = 4Mql
2

{
c2

1 +
2α2M2

1−βΓ2(β + 1)

Γ2(αβ + 1)

T 2αβ

2αβ − 1

}
.

By (3.3), we have κ < 1. Thus Π1 is a contraction on B0
T .

Next, we will show that Π2 is compact operator. Let k satisfy Π2(Bk) ⊂ Bk.
Claim 2. Π2 maps bounded sets into bounded sets in Bk. For each t ∈ [0, T ], z ∈ Bk, from
(3.6), it follows that

‖zt + yt‖2
Bh ≤ 4l2(k +M2E‖ϕ(0)‖2) + 4‖y‖2

Bh := q′.

By the similar argument as above, we get

E‖Π2z(t)‖2 ≤ E‖
∫ t

0
(t− s)α−1Sα(t− s)f(s, zs + ys)ds‖2

≤ M2T
Γ2(α)

ϑ(q′)
∫ T

0
(T − s)2α−2p(s)ds

:= ∆,

which implies that for each z ∈ Bk, ‖Π2z‖2
B0T
≤ ∆.

Claim 2. Π2 maps Bk into equicontinuous family. Let z ∈ Bk and |h| be sufficiently small, we
have

E‖ (Π2z)(t+ h)− (Π2z)(t)‖2 ≤ E‖
∫ t+h

0
(t+ h− s)α−1Sα(t+ h− s)f(s, zs + ys)ds

−
∫ t

0
(t− s)α−1Sα(t− s)f(s, zs + ys)ds‖2

≤ 3E‖
∫ t

0
((t+ h− s)α−1 − (t− s)α−1)Sα(t+ h− s)f(s, zs + ys)ds‖2

+3E‖
∫ t+h
t

(t+ h− s)α−1Sα(t+ h− s)f(s, zs + ys)ds‖2

+3E‖
∫ t

0
(t− s)α−1 (Sα(t+ h− s)− Sα(t− s)) f(s, zs + ys)ds‖2.

From (iii) of Lemma 3.3, we have Sα(t) is compact for any t > 0. Let 0 < ε < t < T , and δ > 0

such that ‖Sα(τ1) − Sα(τ2)‖ ≤ ε for every τ1, τ2 ∈ [0, T ] with |τ1 − τ2| ≤ δ. Applying Lemma
3.3 together with Hölder inequality, it follows that

(3.16)

E‖(Π2z)(t+ h)− (Π2z)(t)‖2

≤ 3M2Tϑ(q′)
Γ2(α)

∫ t
0

((t+ h− s)α−1 − (t− s)α−1)
2
p(s)ds

+3M2Tϑ(q′)
Γ2(α)

∫ t+h
t

(t+ h− s)2(α−1)p(s)ds

+3M2T
2α−1

ε
∫ t

0
(t− s)2(α−1)p(s)ds.

From (ii) of (H.2) and Hölder’s inequality, it follows that for δ > 1
2α−1

,
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∫ t
0
(t− s)2α−2p(s)ds ≤

(∫ t
0
(t− s)

(2α−2)δ
δ−1 ds

) δ−1
δ
(∫ T

0
(p(s))δds

) 1
δ

≤ T
(2α−1)δ−1

δ

(∫ T
0

(p(s))δds
) 1
δ

<∞.

Similarly, we have ∫ t

0

(t+ h− s)2(α−1)p(s)ds <∞.

By the dominated convergence theorem, we have∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)2
p(s)ds −→ 0, as h −→ 0.

Therefore, for sufficiently small positive number ε, we have from (3.16) that

E‖(Π2z)(t+ h)− (Π2z)(t)‖2 −→ 0 as h −→ 0.

Thus, Π2 maps Bk into an equicontinuous family of functions.
Claim 3. (Π2Bk)(t) is precompact set in X.
Let 0 < t ≤ T be fixed, and 0 < ε < t. For δ > 0 and z ∈ Bk, we define

(Πδ
2,εz)(t) = α

∫ t−ε
0

∫∞
δ
θ(t− s)α−1ηα(θ)S((t− s)αθ)f(s, zs + ys)dθds

= S(εαδ)α
∫ t−ε

0

∫∞
δ
θ(t− s)α−1ηα(θ)S((t− s)αθ − εαδ)f(s, zs + ys)dθds.

From the compactness of S(t) (t > 0), we obtain that the set V δ
ε (t) = {(Πδ

2,εz)(t) : z ∈ Bk} is
relative compact in X for every ε, 0 < ε < t and δ > 0. Moreover, for every z ∈ Bk, we have
(3.17)

E‖Π2z)(t) −Πδ
2,εz)(t)‖2 ≤ 2α2E‖

∫ t
0

∫ δ
0
θ(t− s)α−1ηα(θ)S((t− s)αθ)f(s, zs + ys)dθds‖2

+2α2E‖
∫ t
t−ε

∫∞
δ
θ(t− s)α−1ηα(θ)S((t− s)αθ)f(s, zs + ys)dθds‖2

= 2 (J1 + J2) .

A similar argument as before, can be used to show that

(3.18)

J1 ≤ α2M2TE
∫ t

0
‖
∫ δ

0
θ(t− s)α−1ηα(θ)f(s, zs + ys)dθ‖2ds

≤ α2M2T‖
∫ δ

0
θηα(θ)dθ‖2

∫ t
0
(t− s)2α−2E‖f(s, zs + ys)‖2ds

≤ α2M2Tϑ(q′)‖
∫ δ

0
θηα(θ)dθ‖2

∫ t
0
(t− s)2α−2p(s)ds.
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For J2, by (3.2), we have

(3.19)

J2 ≤ α2M2Tϑ(q′)‖
∫∞

0
θηα(θ)dθ‖2

∫ t
t−ε(t− s)

2α−2p(s)ds

≤ α2M2Tϑ(q′)
Γ2(1+α)

∫ t
t−ε(t− s)

2α−2p(s)ds

≤ α2M2Tϑ(q′)
Γ2(1+α)

(∫ t
t−ε(t− s)

(2α−2)δ
δ−1 ds

) δ−1
δ
(∫ t

t−ε(p(s))
δds
) 1
δ

≤ α2M2Tϑ(q′)
Γ2(1+α)

ε
(2α−1)δ−1

δ

(∫ t
t−ε(p(s))

δds
) 1
δ
,

where δ > 1
2α−1

.
Substitute (3.18) and (3.19) into (3.17) to obtain

E‖Π2z)(t)− Πδ
2,εz)(t)‖2 −→ 0, as ε −→ 0+, δ −→ 0+.

Therefore, there are precompact sets arbitrarily close to the set V (t) = {(Π2z)(t) : z ∈ Bk},
hence the set V (t) is also precompact in X.

Thus, by Arzela-Ascoli theorem Π2 is a compact operator.
Then, Π = Π1 + Π2 is a condensing operator in Bk. By Lemma 3.4, there exists a fixed point

z(.) for Π on Bk. If we define x(t) = z(t) + y(t), −∞ < t ≤ T , it is easy to see that x(.) is a
mild solution of (1.1). This completes the proof.

�

4. Example

To illustrate the above abstract result, we consider the following fractional neutral stochastic
partial differential equation with infinite delays driven by a fractional Brownian motion of the
form

(4.1)



dJ1−α
t [v(t, ξ)− q(t, v(t− r, ξ))− ϕ(0, ξ) + q(0, v(−r, ξ))] = [ ∂

2

∂2ξ
v(t, ξ) + +f(t, t− r, ξ)]dt

+G(t)dZ
H(t)
dt , 0 ≤ t ≤ T, r > 0, 0 ≤ ξ ≤ 1

v(t, 0) = v(t, 1) = 0, 0 ≤ t ≤ T,

v(s, ξ) = ϕ(s, ξ), ;−∞ < s ≤ 0 0 ≤ ξ ≤ 1,

where ZH(t) is cylindrical fractional Brownian motion with Hurst parameter H ∈ (1
2 , 1), defined on a

complete probability space (Ω,F ,P). g, f,G are appropriate functions and ϕ : (−∞, 0] × [0, 1] −→ R
is a given measurable and satisfies ‖ϕ‖2Bh <∞.

We rewrite (4.1) into abstract form of (1.1). We take X = Y = U = L2([0, 1]). Define the operator
A : D(A) ⊂ X −→ X given by A = ∂2

∂2ξ
with

D(A) = {y ∈ X : y′ is absolutely continuous, y′′ ∈ X, y(0) = y(1) = 0},

then we get

Ax =

∞∑
n=1

n2 < x, en >X en, x ∈ D(A),

https://doi.org/10.28919/ejma.2022.2.8
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where en :=
√

2
π sinnx, n = 1, 2, .... is an orthogonal set of eigenvector of −A.

The bounded linear operator (−A)
2
3 is given by

(−A)
2
3x =

∞∑
n=1

n
4
3 < x, en >X en,

with domain

D((−A)
2
3 ) = {x ∈ X,

∞∑
n=1

n
4
3 < x, en >X en ∈ X}.

It is known that A generates a compact analytic semigroup {S(t)}t≥0 in X, and is given by (see [18])

S(t)x =

∞∑
n=1

e−n
2t < x, en > en,

for x ∈ X and t ≥ 0. Since the semigroup {S(t)}t≥0 is analytic, there exists a constant M > 0 such
that ‖S(t)‖2 ≤M for every t ≥ 0. In other words, the condition (H.1) holds.

If we choose α ∈ (3
4 , 1),

Sα(t)x =

∫ ∞
0

αθηα(θ)S(θtα)dθ, x ∈ X.

In order to define the operator Q : Y := L2([0, 1],R) −→ Y , we choose a sequence {λn}n∈N ⊂ R+,
set Qen = λnen, and assume that

tr(Q) =
∞∑
n=1

√
λn <∞.

Define the fractional Brownian motion in Y by

ZH(t) =
∞∑
n=1

√
λnβ

H(t)en,

where H ∈ (1
2 , 1) and {βHn }n∈N is a sequence of one-dimensional fractional Brownian motions mutually

independent. Let us assume the function G : [0,+∞)→ L0
2(L2([0, 1]), L2([0, 1])) satisfies∫ T

0
‖G(s)‖2pL02ds <∞, for some p >

1

2α− 1
.

We choose the phase function h(s) = e2s, s < 0, then l =
∫ 0
−∞ h(s)ds = 1

2 < ∞, and the abstract
phase space Bh is Banach space with the norm

‖ϕ‖Bh =

∫ 0

−∞
h(s) sup

θ∈[s,0]
(E‖ϕ(θ)‖2)

1
2ds.

To rewrite the initial-boundary value problem (4.1) in the abstract form (1.1), we assume the
following:

For (t, ϕ) ∈ [0, T ] × Bh, where ϕ(θ)(ξ) = ϕ(θ, ξ), (θ, ξ) ∈ (−∞, 0] × [0, 1], we put v(t)(ξ) = v(t, ξ).
Define q : [0, T ]× Bh −→ X, f : [0, T ]× Bh −→ X by

(−A)
2
3 q(t, ϕ)(ξ) =

∫ 0

−∞
e−4θϕ(θ)(ξ)dθ,

f(t, ϕ)(ξ) =

∫ 0

−∞
µ1(t, ξ, θ)f1(ϕ(θ)(ξ))dθ,

where

https://doi.org/10.28919/ejma.2022.2.8
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(i) the function µ1(t, ξ, θ) ≥ 0 is continuous in [0, T ]× [0, 1]× (−∞, 0),∫ 0

−∞
µ1(t, ξ, θ)dθ = p1(t, ξ) <∞, and

(∫ 1

0
p2

1(t, ξ)

)
1

2
= p(t) <∞;

(ii) the function f1(.) is continuous, 0 ≤ f1(v(θ, ξ)) ≤ ϑ(‖v(θ, .)‖L2) for (θ, ξ) ∈ (−∞, 0) × (0, 1),
where ϑ(.) : [0,∞) −→ (0,∞) is continuous and nondecreasing.

By the similar method as in Balasubramaniyam and Ntouyas [2], we can show that all the assump-
tions of Theorem 3.5 are satisfied. Therefore, there exists a mild solution for the system (4.1).

5. Conclusion

In this paper, we have studied the existence of mild solutions for a class of fractional neutral sto-
chastic functional differential equations with infinite delay driven by Rosenblatt process in a separable
Hilbert space. The results are obtained by using the stochastic analysis theory and Sadovskii’s fixed
point theorem. Also, an example is provided to illustrate the applicability of the obtained result. Upon
making some appropriate assumptions , by employing the ideas and techniques same as in this paper,
one can establish the existence results with impulses and nonlocal conditions. Our future work will be
concerned on the transportation inequalities, with respect to the uniform distance, for the law of the
mild solution of fractional neutral differential systems driven by Rosenblatt process.
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