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CONTROL DESIGN FOR BILATERAL TELEOPERATION SYSTEM WITH
ACTUATOR DEAD-ZONE AND TIME-VARYING DELAYS

AWATEF K. ALI1 AND MAGDI S. MAHMOUD2,∗

Abstract. This paper investigates the control design of a bilateral teleoperation system with
input dead-zone, dynamic uncertainties, external disturbances and time-varying delay. Our
objective is to achieve a robust bilateral teleoperation with guaranteed position asymptotic
convergence. This is accomplished using an efficient backstepping approach combined with
nonsingular fast terminal sliding mode control (NFTSMC) where the uncertain dynamics of the
system are identified using radial basis function neural network (RBFNN). The upper-bounds
of the external disturbances together with the RBFNN approximation errors are estimated
and compensated online using adaptation algorithms. Computer simulations are provided to
demonstrate the viability of the proposed control law.

1. Introduction

The applications of teleoperation are ever growing and expanding in many areas, such as in-
dustries, hazardous environments, medical, space exploration, undersea exploration and robotic
construction [1], [2], [3], [4]. By and large, teleoperation is mainly categorized into:

• Unilateral and
• Bilateral.

The former sends only the force signal via communication channel to the slave plant, while
the later transmits force information from the master to slave and from the slave to the master.
A bilateral teleoperation system comprises of the human operator, master, slave, environment
and the communication channel [5], [6]. The presence of time-delay in the communication
channel deteriorate the stability and subsequently the performance of the system [7], [8]. In
addition, the existence of modeling uncertainties, unknown loads, and external disturbances
further degrade the performance of the system.

In this regards, the control problem of bilateral teleoperation has essentially drawn an enor-
mous interest over the past years and several control methods were designed for both theoretical
and practical applications. A guaranteed performance control of a telerobotic has been achieved

1Electronics Department, National Institute of Telecommunications, Nasr City, Cairo-
Egypt

2Control and Instrumentation Engineering Department, KFUPM, P. O. 5067, Dhahran 31261,
Saudi Arabia

∗Corresponding author
E-mail addresses: 3watef@gmail.com, msmahmoud@kfupm.edu.sa.
Key words and phrases. bilateral teleoperation; dead-zone; radial basis function neural network (RBFNN);

nonsingular fast terminal sliding mode control (NTSMC); backstepping.
Received 30/01/2022.

1

https://doi.org/10.28919/ejma.2022.2.7
http://ejma.euap.org


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.7 2

at both dynamic and kinematic levels [9]. A NTSMC for a force sensor-less bilateral teleoper-
ation system has been developed in [10]. In [11], the trajectory tracking accuracy of bilateral
teleoperation has been enhance by integrating support vector machine with variable gain con-
trol. An adaptive control of telerobotic system with dynamic uncertainties was utilized in [12].
An output feedback control of bilateral teleoperation system with state constraints has been
proposed in [13]. A tele-operated control of bilateral hydraulic system is achieved using SMC
with sliding mode perturbation observer [14]. A force sensor-less control of bilateral dissimilar
master-slave system has been presented in [15]. Despite the fact that the foregoing methods
can ensure both transient and steady state performances, the impact of time delays were not
considered. The effects of constant time delays in teleoperation systems has been dealt with
using nonlinear disturbance observer based control [16], [17], a bilateral impedance control [18],
event-triggered adaptive bilateral control [19], output feedback synchronization control [20],
fault-tolerant control [21], adaptive neural network control [22], an integral SMC optimized
with particle swamp optimization [23], an adaptive NTSMC [24]. However, due to the un-
certainties associated with teleoperation system, the time delays cannot be constant. Several
control architectures were introduced to handle tracking problems in bilateral teleoperation
system with time-varying delays, such as robust adaptive type-2 fuzzy control [25], adaptive
type-2 fuzzy neural-network control [26], linear matrix inequalities control [27], internet-based
control [28], neural-network based control [29], composite adaptive control [30], adaptive finite
time control [31], task space control [32], adaptive fuzzy backstepping control [33], robust adap-
tive control [34], RBFNN-based SMC [35], dynamic gain control [36], adaptive fault tolerant
control [37].

Non-smooth nonlinearities (i.e. backlash, dead zone, hysteresis & saturation) appear in
the actuator of many systems such as power systems, robotic systems, chemical processes
and so on. These nonlinearities severely deteriorate system performance, give rise to poor
transient response, and system instability [38]. To deal with the actuator nonlinearities, many
investigators have suggested diverse control techniques. In [39], a force feedback control with
sliding mode observer has been studied for a bilateral teleoperation with unknown Prandtl-
Ishlinskii hysteresis. In [40], synchronization control problem of bilateral teleoperation plant
with Backlash-Like hysteresis has been presented. In [41], a position tracking controller for
teleoperation system with input deadzone was proposed. The control schemes tackling actuator
saturation in teleoperation systems are presented in [42], [43], [44], [45], [46], [47], [48], [49].

It is worth noting that the control of teleoperation system with actuator dead-zone is reported
for the first time in [41] and has not been considered afterward. However, the authors considered
the effect of the dead-zone in the slave side only. In addition, the inevitable time delay in the
communication channel was not addressed. Therefore, a good control formulation to handle
the aforesaid issues concurrently is challenging.

In this paper, we build on the published work [24]- [41] and extend them further to develop
an improved control scheme for a bilateral teleoperation system with dynamic uncertainties,
external disturbances, time-varying delay and input dead-zone. The contributions of the paper
are summarized by the following points:

• We provide a new control design method to effectively handle both the time-varying
delay and the dead-zone nonlinearities in the master-slave actuators.
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• A backstepping method is combined with nonsingular fast terminal sliding mode con-
trol (BNFTSMC) for upgraded transparency and guaranteed stability of the bilateral
teleoperation system.
• A radial basis function neural network (RBFNN) is employed to identify the uncertain
dynamics of the system. The upper-bounds of the RBFNN approximation errors and
the external disturbances are updated online.
• No prior information about the system dynamics and external disturbances is needed.
The closed-loop system has been shown to converge to a small neighborhood of the
origin using Lyapunov stability analysis.

This work is structured as: Section 2 describes the nonlinear model and some properties of
the teleoperation system. Section 3 presents the control design. Section 4 gives the results and
discussions. Section 5 provides the conclusions.

2. Problem Presentation

This section presents the nonlinear dynamic model and some properties of the teleoperation
systems. The Euler-Lagrange equations describing the dynamics of the teleoperation plant
are [30]
Pm (qm) q̈m +Qm (qm, q̇m) q̇m +Gm (qm) + ∆m

= Dm (τm) + τh (1)

Ps (qs) q̈s +Qs (qs, q̇s) q̇s +Gs (qs) + ∆s = Ds (τs) + τe (2)
where Pi ∈ Rn×n, Qi ∈ Rn, Gi ∈ Rn, i = m, s stand for the inertia matrix, Coriolis’s and

centrifugal terms vector, and the gravity vector respectively; Di (τi) ∈ Rn, i = m, s are the
deadzone outputs; τi ∈ Rn, i = m, s are the control inputs; τh, τe ∈ Rn are the human and the
environmental contact forces; ∆i ∈ Rn, i = m, s represent the external disturbances and the
modelling error. The equations of motion of the master and slave systems satisfy the following
properties [33]:

Property 1: The matrix
[
Ṗi (qi)− 2Qi (qi, q̇i)

]
> 0 is skew symmetric.

Property 2: Pi (qi) = P T
i (qi) > 0, b1I ≤ Pi (qi) ≤ b2I, i = m, s, with b1 and b2 are scalars.

Property 3: The model can be transformed to a linear parameterized model as
Pi (qi) q̈i +Qi (qi, q̇i) q̇i +Gi (qi) = Ri (qi, q̇i, q̈i)ϑi (3)
where Ri (qi, q̇i, q̈i) represent the regressor matrices, and ϑi denote the vectors of parameters.
Assumption 1: The external disturbances and the RBFNN approximation errors (εi) are

bounded by
∆i + εi ≤ αi0 + αi1 |ei|+ αi2 |ėi| (i = m, s) (4)
where αi0, αi1 and αi2 are unknown constants.
The deadzone model is expressed as [50]

Di (τi) =


[τi − πri(t)] , τi ≥ πri(t),

0, −πli(t) < τi < πri(t)

[τi + πli(t)] , τi ≤ −πli(t), i = m, s

where πri(t) and πli(t) are the unknown time-varying deadzone parameters. The τi can be
written as

https://doi.org/10.28919/ejma.2022.2.7
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Di = τi + Πi < i = m, s (5)

Where Πi =


−πri(t) τi ≥ πri(t)

−τi −πli(t) < τi < πri(t)

πli(t) τi ≤ −πli(t), i = m, s

Figure 1. Proposed bilateral teleoperation control scheme

3. CONTROL OF THE NONLINEAR TELEOPERATION SYSTEM

In this section, the BNFTSMC-RBFNN is designed for both the master and the slave sub-
systems. The schematic diagram of the overall control system is shown in Fig. 1.

3.1. RBFNN definition. Due to the prominent properties of RBFNN algorithms in function
approximations, the RBFNN is widely used in nonlinear control and systems modelling. The
RBFNN can approximate any continuous function Θ : Rj −→ R over a compact domain
Υ ∈ Rj given by

Θ(x) = W TΨ(x) + ε ∀x ⊂ Υ ∈ Rj (6)
where x ⊂ Υ ∈ Rj is the input vector, W ∈ Rd×1 is the RBFNN weight vector, ε > 0 is the

bounded RBFNN approximation error, Ψ = [Ψ1,Ψ2, . . . ,Ψd]
T ∈ Rd×1 is a Gaussian function

vector defined as
Ψi = exp−(x−ci)

T (x−ci)
v2

(7)
where ci ∈ Υ and v > 0 denote the center and the width of the Gaussian function respectively.

3.2. Slave control design. The reference slave signals qsr(t), q̇sr(t), q̈sr(t) can be obtained by
passing the delayed master position qm

(
t− d(t

))
through the filter Ef (s) = 1/ (1 + τfs)

2 [35].
The tracking error can be defined as

es = qsr − qs
ės = q̇sr − q̇s

ëss = q̈sr + P−1s [Qsq̇s +Gs +Ds − Πs − τs − τe]
(8)

Define the NFTSMC manifold as [51]
ξs = ės + Λses + λsβs (es) (9)
with βs (es) and its first time-derivative β̇s (es) defined as

βs (esi) =

{
sig (esi)

σsi , ξ̄si = 0 or
(
ξ̄si 6= 0, |esi| > ε

)
ρsiesi + ηsisig (esi)

ωsi , ξ̄si 6= 0, |esi| ≤ ε

https://doi.org/10.28919/ejma.2022.2.7
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β̇s (esi) =


σsi |esi||σsi−1 ėsi, ξ̄si = 0 or

(
ξ̄si 6= 0, |esi| > εi

)
ρsiėsi + ηsiωsi |esi|ωsi−1 ėsi, ξ̄si 6= 0, |esi| ≤ ε

i = 1, 2 . . . , n

(10)

where ξ̄si = ėsi + Λsiesi + λsiβsi (esi) , 0 < σsi < 1, 1 < ωsi < 2, ε > 0, and ρsi and ηsi meet the
following conditions

ρsi = [(ωsi − σsi) / (ωsi − 1)] εσsi−1

ηsi = [(σsi − 1) / (ωsi − 1)] εσsi−ωsi

Define the Lyapunov function Vs1 as
Vs1 = 1

2
eTs es (11)

The time-derivative of Vs1 can be computed as
V̇s1 = eTs [q̇sr − q̇s] (12)
The virtual controller is thus
q̇s = −ξs + q̇sr + Cses (13)
Substituting the controller (13) into (12) yields
V̇s1 = −eTs Cses + eTs ξs (14)
Then, consider the Lyapunov function
Vs2 = 1

2
eTs es + 1

2
ξTs Psξs (15)

The derivative of Vs2 can be obtained as
V̇s2 = −eTs Cses + eTs ξs + 1

2
ξTs Ṗsξs + ξ̇Ts Psξs

= −eTs Cses + eTs ξs + 1
2
ξTs Ṗsξs

+ξTs [Qsq̇s +Gs + ∆s + ζs − Πs − τs − τe]
= −eTs Cses + 1

2
ξTs

[
Ṗs − 2Qs

]
ξs + ξTs [es +Qsξs

+Qsq̇s +Gs + ∆s + ζs − Πs − τs − τe]
= −eTs Cses + ξTs [es + Θs + ∆s − τs − τe]

(16)

where ζs = Ps (q̈sr + Λsės + λsβ (ės)) ,Θs = Qsξs + Qsq̇s + Gs + ζs − Πs. By employing the
RBFNN to approximate Θs, one has Θs = W T

s Ψs + εs. The slave equivalent control input can
be designed as
τseqv = es + Ŵ T

s Ψs − τe (17)
The slave switching controller is given by
τsr = Ksξs + (α̂s0 + α̂s1 |es|+ α̂s2 |ės|) sign (ξs) (18)
where α̂si are the estimates of α̂sii = 0, 1, 2. The total slave control law can be designed as

follows
τs = τseqv + τsr

= es + Ŵ T
s Ψs − τe +Ksξs + (α̂s0 + α̂s1 |es|+ α̂s2 |ės|) sign (ξs)

(19)

The parameters are updated by the following adaptive laws
˙̂
W s = γsΨsξ

T
s − µγsŴs (20)

˙̂αs0 = %s0·|ξs|−µ%s0α̂s0 (21)
˙̂αs1 = %s1 · |es| · |ξs| − µ%s1α̂s1 (22)
˙̂αs2 = %s2·|ės|·|ξs|−µ%s2α̂s2 (23)
where γs > 0, µ > 0, %si > 0 ( i = 0, 1, 2 ) are constants.
Theorem 1: Consider the slave system (1) and the surface (9), if the control law is set as

(19) with adaptive laws (20)-(23), the closed-loop slave plant is bounded.
Proof 1: Consider the following candidate Lyapunov function

https://doi.org/10.28919/ejma.2022.2.7
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Vs = Vs2+ 1
2
W̃ T
s γ
−1
s W̃s+

α̃2
s0

2%s0
+

α̃2
s1

2%s1
+

α̃2
s2

2%s2
(24)

where W̃s = Ws − Ŵs, α̃si = αsi − α̂sii = (0, 1, 2). The time-derivative of Vs gives
V̇s = −eTs Cses + ξTs

[
es +W T

s Ψs + εs + ∆s − τs − τe
]

− ˙̂
W sγ

−1
s W̃s −

˙̂αs0α̃2
s0

%s0
−

˙̂αs1α̃2
s1

%s1
−

˙̂αs2α̃2
s2

%s2

(25)

Substituting the control law (19) into (25) yields
V̇s = −eTs Cses − ξTs Ksξs + W̃ T

s Ψsξs
+
[
ξTs (εs + ∆s)− (α̂s0 + α̂s1 |es|+ α̂s2 |ės|) |ξs|

]
− ˙̂
W sγ

−1
s W̃s −

˙̂αs0α̃2
s0

%s0
−

˙̂αs1α̃2
s1

%s1
−

˙̂αs2α̃2
s2

%s2

(26)

Using α̂si = αsi − α̃si, (i = 0, 1, 2), we get
V̇s = −eTs Cses − ξTs Ksξs

+
[
ξTs (εs +Ds)− (αs0 + αs1 |es|+ αs2 |ės|) |ξs|

]
+W̃ T

s

[
Ψsξ

T
s − γ−1s

˙̂
W s

]
+ α̃s0

[
|ξs| −

˙̂αs0

%s1

]
+α̃s1

[
|es| |ξs| − α̇s1

%s1

]
+ α̃s2

[
|ės| |ξs| − α̇s2

%s2

] (27)

From Assumption 1 and (20)-(23), we have
V̇s ≤ − ‖ Cs ‖ ‖ eTs ‖ − ‖ Ks ‖ ‖ ξs ‖ +µ ‖ W̃s ‖ ‖ Ŵs ‖

+µα̃s0α̂s0 + µα̃s1α̂s1 + µα̃s2α̂s2
(28)

By using the following inequalities
‖ W̃s ‖ ‖ Ŵs ‖ ≤ ‖Ws ‖2

2
− ‖W̃s ‖2

2

α̃siα̂si ≤ α2
si
2
− α̃2

si
2
, (i = 0, 1, 2)

Equation (28) can be expressed as
V̇s ≤ −bs1Vs+bs2 (29)
where bs1 = min (2 ‖ C ‖, 2 ‖ Ks ‖, µαs0, µαs1, µαs2) , bs2 = ‖Ws ‖2

2
+

α2
s0

2
+

α2
si
2

α2
s2

2
. Integrating

the equation above yields
Vs ≤ bs2

bs1
+
(
Vs(0)− bs2

bs1

)
e−bs1t (30)

When t −→ ∞, Vs ≤ bs2
bs1

. Therefore, all the error signals in the closed loop system are
uniformly bounded in the compact set given by

Φs =
{
es, ξs, W̃s, α̃si, (i = 0, 1, 2) : Vs ≤ bs2

bs1

}
(31)

3.3. Master control design. A good reference impedance model is designed in the master
side to generate the reference trajectory qmr expressed as
Pr (qmr) q̈mr +Qr (qmr, q̇mr) q̇mr +Gr (qmr)

= τh − τe(t− d(t))
(32)

where Pr, Qr andGr are positive definite diagonal matrices of the impedance model, τ(t−d(t))

is the delayed environmental torque transmitted from the slave plant to the master via the
communication channel. A controller τm is developed to have qm −→ qmr. Therefore, the
tracking error between qm and qmr is

em = qmr − qm
ėm = q̇mr − q̇m
ëm = q̈mr + P−1m [Qmq̇m +Gm +Dm − Πm

−τm − τh]

(33)

The NFTSMC manifold is defined as [51]
ξm = ėm + Λmem + λmβm (em) (34)
withβm (em) and its first time-derivative β̇m (em) defined as

https://doi.org/10.28919/ejma.2022.2.7
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βm (emi) =


sig (emi)

σmi , ξmi = 0 or

ξmi 6= 0, |emi| > ε

ρmi emi + ηmisig (emi)
ωmi ,

ξmi 6= 0, |emi| ≤ ε

β̇m (emi) =



σmi |emi|σmi−1 ˙emi, ξmi = 0 or

(ξmi 6= 0, |emi| > ε)

ρmi ėmi + ηmiωmi|emi| ωmi−1 ėmi,

ξmi 6= 0, |emi| ≤ ε

i = 1, 2, . . . ., n

(35)

where ξ̄mi = ėmi + Λmiemi + λmiβmi (emi) , 0 < σmi < 1, 1 < ωmi < 2, ε > 0, and ρmi and ηmi

meet the following conditions

ρmi = [(ωmi − σmi) / (ωmi − 1)] εσsi−1

ηmi = [(σmi − 1) / (ωmi − 1)] εσmi−ωmi

Define the Lyapunov function Vm1 as
Vm1 = 1

2
eTmem (36)

The derivative of Vm1 with respect to time can be computed as
V̇m1 = eTm [q̇mr − q̇m] (37)
The virtual control input is expressed as
q̇m = −ξm + q̇mr + Cmem (38)
where Cm = CT

m > 0 is a constant diagonal matrix. Inserting the controller (38) into (37)
gives
V̇m1 = −eTmCmem + eTmξm (39)
Then, consider the Lyapunov function
Vm2 = 1

2
eTmem + 1

2
ξTmPmξm (40)

The time derivative of Vm2 can be derived as
V̇m2 = −eTmCmem + eTmξm + 1

2
ξTmṖmξm + ξ̇TmPmξm

= −eTmCmem + eTmξm + ξTmṖmξm

+ξTm [Qmq̇m +Gm + ∆m + ζm − Πm − τm − τh]
= −eTmCmem + 1

2
ξTm

[
Ṗm − 2Qm

]
ξm

+ξTm [em +Qmξm +Qmq̇m +Gm

+∆m + ζm − Πm − τm − τh]
= −eTmCmem + ξTm [em + Θm + ∆m

−τm − τh]

(41)

where ζm = Pm

(
q̈mr + Λmėm + λmβ̇ (em)

)
,Θm = Qmξm+Qmq̇m+Gm+ζm−Πm. By utilizing

the RBFNN, we can have Θm = W T
mΨm + εm. Then, the master equivalent control law τmeqv

is derived as
τmeqv = em + Ŵ T

mΨm − τh (42)
The adaptive master switching controller is given by
τmr = Kmξm+(α̂m0 + α̂m1 |em|+ α̂m2 |ėm|) sign (ξm) (43)
where α̂mi are the estimates of α̂mii = 0, 1, 2. Thus, the overall master control law is designed

as

https://doi.org/10.28919/ejma.2022.2.7
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τm = τmeqv + τmr

= em + Ŵ T
mΨm − τe +Kmξm

+ (α̂m0 + α̂m1 |em|+ α̂m2 |ėm|) sign (ξm)

(44)

The parameters are updated by the following adaptive laws
˙̂
Wm = γmΨmξ

T
m−µγmŴm (45)

˙̂αm0 = %m0 ·|ξm|−µ%m0α̂m0 (46)
˙̂αm1 = %m1 ·|em|·|ξm|−µ%m1α̂m1 (47)
˙̂αm2 = %m2 · |ėm| · |ξm|−µ%m2α̂m2 (48)
where γm > 0, µ > 0%mi > 0 ( i = 0, 1, 2 ) are constants.
Theorem 2: Consider the master system (2) and the surface (34), if the control law is set as

(44) with adaptive laws (45)-(48), the closed-loop master system is bounded.
Proof 2: Consider the following Lyapunov function
Vm = Vm2+ 1

2
W̃ T
mγ
−1
m W̃m+

α̃2
m0

2%m0
+

α̃2
m1

2%m1
+

α̃2
m2

2%m2
(49)

where W̃m = Wm − Ŵm, α̃mi = αmi − α̂mii = (0, 1, 2). The derivative of Vm with respect to
time can be derived as
V̇m = −eTmCmem + ξTm

[
em +W T

mΨm + εm

+∆m − τm − τe]−
˙̂
Wmγ

−1
m W̃m −

˙̂αm0α̃2
m0

%m0

−
˙̂αm1α̃2

m1

%m1
−

˙̂αm2α̃2
m2

%m2

(50)

Substituting the control law (44) into (50) yields
V̇m = −eTmCmem − ξTmKmξm + W̃ T

mΨmξm
+
[
ξTm (εm + ∆m)− (α̂m0 + α̂m1 |em|+ α̂m2 |ėm|) |ξm|

]
− ˙̂
Wmγ

−1
m W̃m − α̇m0α̃2

m0

%m0
−

˙̂αm1α̃2
m1

%m1
−

˙̂αm2α̃2
m2

%m2

(51)

Using α̂mi = αmi − α̃mi, (i = 0, 1, 2), we have
V̇m = −eTmCmem − ξTmKmξm

+
[
ξTm (εm + ∆m)− (αm0 + αm1 |em|+ αm2 |ėm|) |ξm|

]
+W̃ T

m

[
Ψmξ

T
m − γ−1m

˙̂
Wm

]
+ α̃m0

[
|ξm| −

˙̂αm0

%m0

]
+α̃m1

[
|em ‖ ξm| −

˙̂αm1

%m1

]
+ α̃m2

[
|ėm| |ξm| −

˙̂αm2

%m2

] (52)

By substituting (45)-(48) into (52), we have
V̇m ≤ − ‖ Cm ‖ ‖ eTm ‖ − ‖ Km ‖ ‖ ξm ‖ +µ ‖ W̃m ‖ ‖ Ŵm ‖

+µα̃m0α̂m0 + µα̃m1α̂m1 + µα̃m2α̂m2

(53)

The following inequalities hold

‖ W̃m ‖ ‖ Ŵm ‖ ≤ ‖Wm ‖2
2
− ‖W̃m ‖2

2

α̃miα̂mi ≤ α2
mi
2
− α̃2

mi
2
, (i = 0, 1, 2)

Equation (53) can be expressed as
V̇m ≤ −bm1Vm + bm2 (54)
where bm1 = min (2 ‖ Cm ‖, 2 ‖ Km ‖, µαm0, µαm1, µαm2) , bm2 = µ

α2
m0

2
+ µ

α2
m1

2
+ µ

α2
m2

2
. By

computing the general solution of (54), one has
Vm ≤ bm2

bm1
+
(
Vm(0)− bm2

bm1

)
e−bm1t (55)

When t −→ ∞, Vm ≤ bm2

bm1
. Therefore, all the error signals in the closed loop system are

uniformly bounded in the compact set expressed as
Φm =

{
em, ξm, W̃m, α̃mi, (i = 0, 1, 2) : Vm ≤ bm2

bm1

}
(56)
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Remark 1: Our work cannot be compared with that of [41]. This is because we take into
account the time-varying delays in the communication channel, and the actuator deadzone in
both master and slave plants.

4. COMPUTER SIMULATION

This section presents the simulation results of the 2-degree of freedom teleoperation sys-
tem under the action of the BNFTSMC-RBFNN. The dynamic descriptions and parame-
ters of the teleoperation system are given in [30]. The time-varying delay in the commu-
nication channel is set as d(t) = 0.2 + 0.02sin(4t) + 0.05cos(7t). The initial conditions of

the system are qi(0) = q̇i(0) =
[
0.1 0.1

]T
(i=m,s). The external disturbances are cho-

sen as ∆i = [0.5sin(2)0.5sin(2)]T (i = m, s). The human force to drive the two joints is
τh = [5cos(t)5cos(t)]T . When the slave manipulator is in contact with the environment, the
contact force is modelled as a passive spring force expressed as

τe =

{
pe (qs − qe) qs ≥ qe

0 qs < qe
(57)

where pe = 1 N/m denote the stiffness constant of the object to be grasped, qe = 1.5 m

stand for the contact position of the slave with the environment.
The parameters of the reference trajectories are set as Pr = diag

[
1 1

]
, Qr =

diag
[
0 0

]
, Gr = diag

[
4 4

]
qmr. The low pass filter for generating the slave reference trajec-

tories is designed as τf = 0.002. The parameters of the controllers are: Λs = diag[9090],Λm =

diag
[
100 100

]
, λs = diag

[
1 1

]
, λm = diag

[
1 1

]
, Ks = diag

[
19 19

]
, Km = diag[2223],

the initial conditions of the update laws are %si(0) = %mi(0) = 0.01(i = 0, 1, 2). The number of
RBFNN node is 5, v = 2, γs = γm = 0.05, µ = 0.0001, c =

[
−4 −2 0 1

]
.

The position tracking results of the master and slave plants are depicted in Fig. 2 and Fig.
3 respectively. The trajectory tracking deviations are very small (of order 10−5 ) as shown in
Fig. 4 and Fig. 5. Therefore, a good tracking performance is achieved. The responses of the
input torques of the master and the slave are displayed in Fig. 6, and Fig. 7, respectively.
Moreover, it can be observed that the slave’s control torque is faster than the master’s control
torque. This is due to the fact that the slave’s control torque puts in more effort to follow the
delayed information from the master plant.

5. CONCLUSION

In this article, a BNFTSMC-RBFNN has been designed for uncertain bilateral teleoperation
systems with time-varying delays and unknown actuator dead-zone. The devised scheme guar-
antees that the position tracking errors asymptotically converge to a very small neighborhood of
zero. The BNFTSMC-RBFNN is model free and the dead-zone inverse and its prior knowledge
are not needed. As such, the proposed control technique is easy to be implemented in physical
system. The effectiveness of the proposed controller has been verified via numerical simulations.
Moreover, its effectiveness in practical application will be verified when the hardware of the
teleoperation system is acquired.
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Figure 2. Position tracking result of the master plant

Figure 3. Position tracking result of the slave plant
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Figure 4. Position tracking error of the master plant

Figure 5. Position tracking error of the slave plant
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Figure 6. Input torque of the master plant

Figure 7. Input torque of the slave plant
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