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SOME RESULTS ON THE CONTINUOUS DEPENDENCE OF COUPLED
FIXED POINTS IN A COMPLETE METRIC SPACE

M. O. OLATINWO1,∗ AND K. R. TIJANI2

Abstract. In paper of the author [M. O. Olatinwo; Stability of coupled fixed point iterations
and the continuous dependence of coupled fixed points, Communications on Applied Nonlinear
Analysis 19(2)(2012), 71-83], the concepts of the continuous dependence of coupled fixed points
as well as the stability of coupled fixed point iterations were initiated and discussed. The
contractive conditions employed were those used in [F. Sabetghadam, H. P. Masiha and A. H.
Sanatpour; Some coupled fixed point theorems in cone metric spaces, Fixed Point Theory and
Applications, Volume 2009, Article ID 125426, 8 Pages (2009)]. The purpose of the present
article is therefore, to establish some new results on the continuous dependence of coupled fixed
points by using more general contractive conditions of rational type, some of which involve
strict comparison functions. An example illustrating some of the results is given to fascinate
the audience of the subject being discussed in the present article.

1. Introduction

We consider the following definitions which shall be employed in the sequel:
Definition 1.1 [2, 5, 20]: Let (X, d) be a metric space. An element (x, y) ∈ X ×X is said to
be a coupled fixed point of the mapping T : X ×X → X if T (x, y) = x and T (y, x) = y.

Definition 1.2: (a) A function ψ : IR+ → IR+ is called a comparison function if it sat-
isfies the following conditions:
(i) ψ is monotone increasing;
(ii) lim

n→∞
ψn(t) = 0, ∀ t ≥ 0, where ψn(t) denotes the n−th iterate of ψ.

(b) A comparison function satisfying t − ψ(t) → ∞ as t → ∞ is called a strict comparison
function.
See Berinde [4], Rus [17] and Rus et al. [18] for the definition and examples of comparison
functions.

Remark 1.3: Every comparison function satisfies ψ(0) = 0.
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Example 1.4: Consider the function ψ : IR+ → IR+ defined by

ψ(t) = kt, ∀ t ∈ IR+, k ∈ [0, 1).

Then, ψ is a strict comparison function, since
(i) ψ(t) is monotone increasing;
(ii) lim

n→∞
ψn(t) = lim

n→∞
knt = 0, ∀ t ≥ 0 and,

(iii) t− ψ(t)→∞ as t→∞.

Example 1.5: Define ψ : IR+ → IR+ by

ψ(t) =
t

1 + t
, ∀ t ∈ IR+.

Then, ψ is a strict comparison function too since again,
(i) ψ is monotone increasing;
(ii) lim

n→∞
ψn(t) = lim

n→∞
t

1+nt
= 0, ∀ t ≥ 0 and,

(iii) t− ψ(t)→∞ as t→∞.
Remark 1.3 (that is, ψ(0) = 0) is also valid for each of both Example 1.4 and Example 1.5.

Stefan Banach [1], a great Polish Mathematician gave an abstract formulation providing a
concise method for obtaining the fixed points of a map. His celebrated work gave birth to one
of the fundamental theorems in functional analysis. The theorem ensures the existence and
uniqueness of a fixed point under appropriate conditions. The result is stated as follows:

Theorem 1.6 (Banach’s Contraction Mapping Principle [1, 4]): Let (X, d) be a
complete metric space and T : X → X an operator satisfying

d(Tx, Ty) ≤ ad(x, y), x, y ∈ X, (1)

with a ∈ [0, 1) fixed. Then;
(i) T has a unique fixed point, that is FT = {x∗};
(ii) the Picard iteration associated to T, that is, the sequence {xn}∞n=0 , defined by

xn = T (xn−1) = T n(x0), n = 1, 2, · · · , (2)

converges to x∗, for any initial guess x0 ∈ X;

(iii) the a priori and a posteriori error estimates

d(xn, x
∗) ≤ an

1− a
.d(x0, x1), n = 1, 2, · · · ,

and
d(xn, x

∗) ≤ a

1− a
.d(xn−1, xn), n = 1, 2, · · · ,

hold respectively, and
(iv) the rate of convergence is given by

d(xn, x
∗) ≤ ad(xn−1, x

∗) ≤ a2d(xn−2, x
∗) ≤ · · · ≤ and(x0, x

∗), (n = 1, 2, · · · ).

The condition (1) is called the Banach’s contractive condition and the Picard iteration (2)
was employed to approximate the fixed point x∗ of T.

https://doi.org/10.28919/ejma.2022.2.6
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In many applications, the operator T in the Picard iteration (2) may depend on additional
parameter λ ∈ Y , where Y is a parameter space (or, in a more general context, Y is a topological
space). Therefore, the fixed point iterative procedure (2) is replaced by

xλ = Sλxλ, xλ ∈ X. (3)

Let (X, d) be a complete metric space, (Y, τ) a topological space and S : X×Y → X a mapping
depending on the parameter λ ∈ Y. Suppose that Sλ = S(x, λ), x ∈ X, λ ∈ Y, has a unique
fixed point x∗λ ∈ X, for any λ ∈ Y. We define the mapping U : Y → X by U(λ) = x∗λ, ∀ λ ∈ Y.
Our interest lies in obtaining sufficient conditions on Sλ that guarantee the continuity of the
mapping U.

Some authors in fixed point theory have worked on the continuous dependence of fixed points.
Condition (1) was employed in Zeidler [22] to prove a result on the continuous dependence of
the fixed point on a parameter. Also, in Olatinwo [8], the notion of stability of the fixed point
(that is, continuous dependence of the fixed points on a parameter) has been extended from
the complete metric space to the normed linear space setting for Schaefer and Mann iterative
algorithms, and this article contains the pioneering work on the continuous dependence of the
fixed points in Banach space and normed linear space. For more detail on the contributions of
authors on the concept of continuous dependence of fixed point, we refer to Berinde [4], Rus
and Rus [15], Rus and Muresan [16] as well as some others in the literature. The study of the
continuous dependence of the fixed points has been extended to the coupled fixed point setting
in Olatinwo [12].

The continuous dependence of the coupled fixed point has been formulated in the following
general context in [12]:
Let (X, d) be a complete metric space, (Y, τ) a topological space and T : X × X × Y → X a
mapping depending on the parameter λ ∈ Y . The operator T in the coupled iteration may
depend on additional parameter λ ∈ Y, where Y is a parameter space (or, in a more general
context, Y is a topological space).
Therefore, the coupled fixed point iterative procedure

{
(xn, yn)

}∞
n=0
⊂ X ×X defined by

xn+1 = T (xn, yn), yn+1 = T (yn, xn), n = 0, 1, 2, · · · , (C1)

is replaced by

xλ = Tλ(xλ, yλ), yλ = Tλ(yλ, xλ), xλ, yλ ∈ Y. (C2)

Suppose that Tλ = T (x, y, λ), x, y ∈ X, λ ∈ Y, has a unique coupled fixed point (x∗λ, y
∗
λ) ∈

X ×X, for any λ ∈ Y.
We define the mappings U, V : Y → X by U(λ) = x∗λ, V (λ) = y∗λ, ∀ λ ∈ Y.
We are interested in obtaining sufficient conditions on Sλ that guarantee the continuity of the
mappings U, V : Y → X.

We also refer to the articles of the author [9, 10, 13] for various results on the notion of the
continuous dependence of fixed points for different iterative processes and different contractive
conditions.

Furthermore, in this paper, we present some results on the continuous dependence of coupled
fixed point in complete metric spaces using rational type contractive conditions.
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2. Main Results

Theorem 2.1: Let (X, d) be a complete metric space and (Y, τ) a topological space. Let
T : X ×X × Y → X be a continuous mapping satisfying the contractive condition of rational
type

d(T (x, y, λ), T (u, v, λ)) ≤ α [d(x,T (u,v,λ))]q .d(x,T (x,y,λ)).d(u,T (u,v,λ))
d(x,u)+γd(u,T (u,v,λ))

+ψ(d(x, u)), ∀ x, y, u, v ∈ X, (4)
where d(x, u) + γd(u, T (u, v, λ) > 0, q ≥ 0, α ≥ 0, γ ≥ 0 and ψ : IR+ → IR+ is a strict
comparison function. Let (x∗λ, y

∗
λ) be the unique coupled fixed point of Tλ defined in (C2).

Suppose that {(xn, yn)}∞n=0 ⊂ X × X is the coupled fixed point iterative procedure defined
by (C1). Then, U, V : Y → X defined by U(λ) = x∗λ, V (λ) = y∗λ, x

∗
λ, y

∗
λ ∈ X, λ ∈ Y are

continuous mappings.

Proof: Let λ1, λ2 ∈ Y. Since (x∗λ, y
∗
λ) is a unique coupled fixed point of Tλ, we have

that x∗λ = T (x∗λ, y
∗
λ, λ), y

∗
λ = T (y∗λ, x

∗
λ, λ).

By Condition (4), we have that

d(x∗λ1 , x
∗
λ2
) = d(T (x∗λ1 , y

∗
λ1
, λ1), T (x

∗
λ2
, y∗λ2 , λ2)),

≤ d(T (x∗λ1 , y
∗
λ1
, λ1), T (x

∗
λ2
, y∗λ2 , λ1)) + d(T (x∗λ2 , y

∗
λ2
, λ1) + T (x∗λ2 , y

∗
λ2
, λ2))

≤ α
[d(x∗λ1

,T (x∗λ2
,y∗λ2

,))]q .d(x∗λ1
,T (x∗λ1

,y∗λ1
,λ1)).d(x∗λ2

,T (x∗λ2
,y∗λ2

,λ1))

d(x∗λ1
,x∗λ2

)+γd(x∗λ2
,T (x∗λ2

,y∗λ2
,λ1))

+ψ(d(x∗λ1 , x
∗
λ2
)) + d(Tλ1(x

∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2))

= α
[d(x∗λ2

,T (x∗λ2
,y∗λ2

,λ1))]q .d(x∗λ1
,x∗λ1

).d(x∗λ2
,T (x∗λ2

,y∗λ2
,λ1))

d(x∗λ1
,x∗λ2

)+γd(x∗λ2
,T (x∗λ2

,y∗λ2
,λ1))

+ψ(d(x∗λ1 , x
∗
λ2
)) + d(Tλ1(x

∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2))

= ψ(d(x∗λ1 , x
∗
λ2
)) + d(Tλ1(x

∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2)) (5)

By Condition (4) again, we have

d(y∗λ1 , y
∗
λ2
) = d(T (y∗λ1 , x

∗
λ1
, λ1), T (y

∗
λ2
, x∗λ2 , λ2)),

≤ d(T (y∗λ1 , x
∗
λ1
, λ1), T (y

∗
λ2
, x∗λ2 , λ1)) + d(T (y∗λ2 , x

∗
λ2
, λ1) + T (y∗λ2 , x

∗
λ2
, λ2))

≤ α
[d(y∗λ1

,T (y∗λ2
,x∗λ2

,λ1))]q .d(y∗λ1
,T (y∗λ1

,x∗λ1
,λ1)).d(y∗λ2

,T (y∗λ2
,x∗λ2

,λ1))

d(y∗λ1
,y∗λ2

)+γd(y∗λ2
,T (y∗λ2

,x∗λ2
,λ1))

+ψ(d(y∗λ1 , y
∗
λ2
)) + d(Tλ1(y

∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2))

= α
[d(y∗λ1

,T (y∗λ2
,x∗λ2

,λ1))]q .d(y∗λ1
,y∗λ1

).d(y∗λ2
,T (y∗λ2

,x∗λ2
,λ1))

d(y∗λ1
,y∗λ2

)+γd(y∗λ2
,T (y∗λ2

,x∗λ2
,λ1))

+ψ(d(y∗λ1 , y
∗
λ2
)) + d(Tλ1(y

∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2))

= ψ(d(y∗λ1 , y
∗
λ2
)) + d(Tλ1(y

∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2)). (6)

Adding (5) and (6) yields

[d(x∗λ1 , x
∗
λ2
)− ψ(d(x∗λ1 , x

∗
λ2
))] +[d(y∗λ1 , y

∗
λ2
)− ψ(d(y∗λ1 , y

∗
λ2
))] ≤ d(Tλ1(x

∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2))

+d(Tλ1(y
∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2)). (??)

Since T is continuous and ψ is a strict comparison function, we have
d(Tλ1(x

∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2)) + d(Tλ1(y

∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2))→ 0 as λ2 → λ1.

Therefore, we obtain from (??) that
[d(x∗λ1 , x

∗
λ2
)− ψ(d(x∗λ1 , x

∗
λ2
))] + [d(y∗λ1 , y

∗
λ2
)− ψ(d(y∗λ1 , y

∗
λ2
))]→ 0 as λ2 → λ1,

from which it follows that
d(x∗λ1 , x

∗
λ2
)− ψ(d(x∗λ1 , x

∗
λ2
))→ 0 as λ2 → λ1, yielding d(x∗λ1 , x

∗
λ2
)→ 0 as λ2 → λ1.

Also, d(y∗λ1 , y
∗
λ2
)− ψ(d(y∗λ1 , y

∗
λ2
))→ 0 as λ2 → λ1 gives d(y∗λ1 , y

∗
λ2
)→ 0 as λ2 → λ1.

https://doi.org/10.28919/ejma.2022.2.6
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Hence, d(x∗λ1 , x
∗
λ2
)→ 0 as λ2 → λ1 implies d(U(λ1), U(λ2))→ 0 as λ2 → λ1,

and also
d(y∗λ1 , y

∗
λ2
)→ 0 as λ2 → λ1 implies d(V (λ1), V (λ2))→ 0 as λ2 → λ1.

Therefore, the mappings U, V : Y → X are continuous.

The following result is a corollary of Theorem 2.1:

Corollary 2.2: Let (X, d) be a complete metric space and (Y, τ) a topological space.
Let T : X × X × Y → X be a continuous mapping satisfying the contractive condition of
rational type

d(T (x, y, λ), T (u, v, λ)) ≤ α [d(x,T (u,v,λ))]q .d(x,T (x,y,λ)).d(u,T (u,v,λ))
d(x,u)+γd(u,T (u,v,λ))

+βd(x, u)), ∀ x, y, u, v ∈ X, (7)

d(x, u) + γd(u, T (u, v, λ) > 0, where q, α, γ ≥ 0 and β ∈ [0, 1).

Let (x∗λ, y
∗
λ) be the unique coupled fixed point of Tλ defined in (C2). Suppose that{

(xn, yn)
}∞
n=0
⊂ X ×X is the coupled fixed point iterative procedure defined by (C1). Then,

U, V : Y → X defined by U(λ) = x∗λ, V (λ) = y∗λ, x
∗
λ, y

∗
λ ∈ X, λ ∈ Y are continuous mappings.

Proof: Let λ1, λ2 ∈ Y. Since (x∗λ, y
∗
λ) is a unique coupled fixed point of Tλ, we have

that x∗λ = T (x∗λ, y
∗
λ, λ), y∗λ = T (y∗λ, x

∗
λ, λ).

By using Condition (7), we have that

d(x∗λ1 , x
∗
λ2
) ≤ 1

1− β
d(Tλ1(x

∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2)), (8)

and
d(y∗λ1 , y

∗
λ2
) ≤ 1

1− β
d(Tλ1(y

∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2)). (9)

Adding (8) and (9) gives

d(x∗λ1 , x
∗
λ2
) + d(y∗λ1 , y

∗
λ2
) ≤ 1

1−β [d(Tλ1(x
∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2))

+d(Tλ1(y
∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2))]→ 0 as λ2 → λ1,

since T is continuous.
Hence,

d(x∗λ1 , x
∗
λ2
) + d(y∗λ1 , y

∗
λ2
)→ 0 as λ2 → λ1.

That is, d(x∗λ1 , x
∗
λ2
)→ 0 as λ2 → λ1,

so that d(U(λ1), U(λ2))→ 0 as λ2 → λ1.

Similarly, d(y∗λ1 , y
∗
λ2
)→ 0 as λ2 → λ1,

so that d(V (λ1), V (λ2))→ 0 as λ2 → λ1.

Therefore, the mappings U, V : Y → X as defined are continuous.

Theorem 2.3: Let (X, d) be a complete metric space and (Y, τ) a topological space.
Let T : X × X × Y → X be a continuous mapping satisfying the contractive condition of
rational type

d(T (x, y, λ), T (u, v, λ)) ≤ α(d(x,T (u,v,λ)).d(x,T (x,y,λ)).d(u,T (u,v,λ))
d(x,u)+d(u,T (u,v,λ))

)

+ψ(d(x, u)), ∀ x, y, u, v ∈ X (10)
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where d(x, u) + d(u, T (u, v, λ) > 0, α : IR+ → IR+ is a monotone increasing function such
that α(0) = 0 and ψ : IR+ → IR+ is a strict comparison function. Let (x∗λ, y

∗
λ) be the unique

coupled fixed point of Tλ defined in (C2). Suppose that
{
(xn, yn)

}∞
n=0

⊂ X × X is the
coupled fixed point iterative procedure defined by (C1). Then, U, V : Y → X defined by
U(λ) = x∗λ, V (λ) = y∗λ, x

∗
λ, y

∗
λ ∈ X, λ ∈ Y are continuous mappings.

Proof: Let λ1, λ2 ∈ Y . Since (x∗λ, y
∗
λ) is a unique coupled fixed point of Tλ, we have

that x∗λ = T (x∗λ, y
∗
λ, λ), y∗λ = T (y∗λ, x

∗
λ, λ).

By Condition (10), we have that

d(x∗λ1 , x
∗
λ2
) = d(T (x∗λ1 , y

∗
λ1
, λ1), T (x

∗
λ2
, y∗λ2 , λ2)),

≤ d(T (x∗λ1 , y
∗
λ1
, λ1), T (x

∗
λ2
, y∗λ2 , λ1)) + d(T (x∗λ2 , y

∗
λ2
, λ1) + T (x∗λ2 , y

∗
λ2
, λ2))

≤ α
(d(x∗λ1 ,T (x∗λ2 ,y∗λ2 ,λ1)).d(x∗λ1 ,T (x∗λ1 ,y∗λ1 ,λ1)).d(x∗λ2 ,T (x∗λ2 ,y∗λ2 ,λ1))

d(x∗λ1
,x∗λ2

)+d(x∗λ2
,T (x∗λ2

,y∗λ2
,λ1))

)
+ψ(d(x∗λ1 , x

∗
λ2
)) + d(Tλ1(x

∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2))

= α
(d(x∗λ2 ,T (x∗λ2 ,y∗λ2 ,λ1)).d(x∗λ1 ,x∗λ1 ).d(x∗λ2 ,T (x∗λ2 ,y∗λ2 ,λ1))

d(x∗λ1
,x∗λ2

)+d(x∗λ2
,T (x∗λ2

,y∗λ2
,λ1))

)
+

ψ(d(x∗λ1 , x
∗
λ2
)) + d(Tλ1(x

∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2))

= ψ(d(x∗λ1 , x
∗
λ2
)) + d(Tλ1(x

∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2)), since α(0) = 0. (11)

Again, by Condition (10), we have

d(y∗λ1 , y
∗
λ2
) = d(T (y∗λ1 , x

∗
λ1
, λ1), T (y

∗
λ2
, x∗λ2 , λ2)),

≤ d(T (y∗λ1 , x
∗
λ1
, λ1), T (y

∗
λ2
, x∗λ2 , λ1)) + d(T (y∗λ2 , x

∗
λ2
, λ1) + T (y∗λ2 , x

∗
λ2
, λ2))

≤ α
(d(y∗λ1 ,T (y∗λ2 ,x∗λ2 ,λ1)).d(y∗λ1 ,T (y∗λ1 ,x∗λ1 ,λ1)).d(y∗λ2 ,T (y∗λ2 ,x∗λ2 ,λ1))

d(y∗λ1
,y∗λ2

)+d(y∗λ2
,T (y∗λ2

,x∗λ2
,λ1))

)
+ ψ(d(y∗λ1 , y

∗
λ2
)) + d(Tλ1(y

∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2))

= α
(d(y∗λ1 ,T (y∗λ2 ,x∗λ2 ,λ1).d(y∗λ1 ,y∗λ1 ).d(y∗λ2 ,T (y∗λ2 ,x∗λ2 ,λ1))

d(y∗λ1
,y∗λ2

)+d(y∗λ2
,T (y∗λ2

,x∗λ2
,λ1))

+ψ(d(y∗λ1 , y
∗
λ2
)) + d(Tλ1(y

∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2))

= ψ(d(y∗λ1 , y
∗
λ2
)) + d(Tλ1(y

∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2)), since α(0) = 0. (12)

Adding (11) and (12) yields inequality (??) as in the proof of Theorem 2.1.
Thus, since T is continuous and ψ is a strict comparison function, we have as in the proof of
Theorem 2.2 that
d(U(λ1), U(λ2))→ 0 as λ2 → λ1 and d(V (λ1), V (λ2))→ 0 as λ2 → λ1.

That is, the mappings U, V : Y → X are continuous.

Theorem 2.4 Let (X, d) be a complete metric space and (Y, τ) a topological space.
Let T : X × X × Y → X be a continuouos mapping satisfying the contractive condition of
rational type

d(T (x, y, λ), T (u, v, λ)) ≤ α

(
d(x, T (x, y, λ)).d(u, T (u, v, λ))

d(x, u)

)
+ ψ(d(x, u)), (13)

∀ x, y, u, v ∈ X, d(x, u) > 0, where α : IR+ → IR+ is a monotone increasing function such
that α(0) = 0 and ψ : IR+ → IR+ is a continuous, strict comparison function. Let (x∗λ, y∗λ) be
the unique coupled fixed point of Tλ defined in (C2). Suppose that

{
(xn, yn)

}∞
n=0
⊂ X ×X is

the coupled fixed point iterative procedure defined by (C1).

Then, U, V : Y → X defined by U(λ) = x∗λ, V (λ) = y∗λ, x
∗
λ, y

∗
λ ∈ X, λ ∈ Y are continuous

https://doi.org/10.28919/ejma.2022.2.6
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mappings.

Proof: The proof of this result follows similar line of argument as in Theorem 2.3.

Remark 2.5: Theorem 2.1 - Theorem 2.4 (including Corollary 2.2) contained in the
present article generalize Theorem 3.1 - Theorem 3.6 established in Olatinwo [12]. Further-
more, Theorem 2.1, Theorem 2.3 as well as Theorem 2.4 are generalizations and extensions of
Theorem 7.7 in Berinde [4] (which is itself Theorem 7.1.2 in Rus [17]).

Consider the following example regarding Theorem 2.1:
Example 2.6: Let Tλ(x, y) = T (x, y, λ) in the contractive condition (4) and suppose that
X = C[a, b] = {h ∈ X | h : [a, b]→ IR} =space of all real-valued continuous bounded functions
on [a, b] ⊂ Y = IR with the usual topology.
Define T : X ×X × Y → X by Tλ(xµ, yη) = e−λ − yη, where xµ, yη ∈ X, λ, µ, η ∈ [a, b].

Let ψ : IR+ → IR+ defined by ψ(t) = 3
4
t, t ∈ IR+, be a given strict comparison function. Then,

( e
−λ

3
, 2e

−λ

3
) is the the unique coupled fixed point of Tλ and the mappings U, V : [a, b] → X

defined by U(λ) = x∗λ, V (λ) = y∗λ, x
∗
λ, y

∗
λ ∈ X, λ ∈ [a, b] are continuous, where (x∗λ, y

∗
λ) is the

unique coupled fixed point of Tλ.

Solution: Assume the usual metric on IR (that is, d(u, v) = |u − v|, u, v ∈ IR). In-
deed, ψ : IR+ → IR+ defined by ψ(t) = 3

4
t, t ∈ IR+, is a strict comparison function.

Recall that in a proof line of Theorem 2.1, we have the Inequality (??) as follows:

[d(x∗λ1 , x
∗
λ2
)− ψ(d(x∗λ1 , x

∗
λ2
))] +[d(y∗λ1 , y

∗
λ2
)− ψ(d(y∗λ1 , y

∗
λ2
))] ≤ d(Tλ1(x

∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2))

+d(Tλ1(y
∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2)). (??)

Since

Tλ(xµ, yη) = e−λ − yη, xµ, yη ∈ X, λ, µ, η ∈ [a, b], (14)

then by using Definition 1.1 in (14), we have that

Tλ(
e−λ

3
,
2e−λ

3
) =

e−λ

3
, and Tλ(

2e−λ

3
,
e−λ

3
) =

2e−λ

3
,

and thus, (x∗λ, y∗λ) is the unique coupled fixed point of Tλ, where x∗λ =
e−λ

3
, y∗λ =

2e−λ

3
.

Again, by invoking an elementary result in real analysis- that the sum, or, difference of two
continuous functions is continuous, then it is clear from (14) that Tλ is continuous.
Now, we obtain by using (14) that

Tλ1(x
∗
λ2
, y∗λ2) = e−λ1 − y∗λ2 = e−λ1 − 2e−λ2

3
, Tλ2(x

∗
λ2
, y∗λ2) = e−λ2 − y∗λ2 =

e−λ2

3
, (15)

and

Tλ1(y
∗
λ2
, x∗λ2) = e−λ1 − x∗λ2 = e−λ1 − e−λ2

3
, Tλ2(y

∗
λ2
, x∗λ2) = e−λ2 − x∗λ2 =

2e−λ2

3
. (16)

Using (15) gives

d(Tλ1(x
∗
λ2
, y∗λ2), Tλ2(x

∗
λ2
, y∗λ2)) = |Tλ1(x

∗
λ2
, y∗λ2)− Tλ2(x

∗
λ2
, y∗λ2)| = |e

−λ1 − e−λ2|. (17)
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Using (16) yields

d(Tλ1(y
∗
λ2
, x∗λ2), Tλ2(y

∗
λ2
, x∗λ2)) = |Tλ1(y

∗
λ2
, x∗λ2)− Tλ2(y

∗
λ2
, x∗λ2)| = |e

−λ1 − e−λ2|. (18)

By using (17) and (18) in the Inequality (??) (and with the usual metric on IR), we have

[|x∗λ1 − x
∗
λ2
| − ψ(|x∗λ1 − x

∗
λ2
|)] + [|y∗λ1 − y

∗
λ2
| − ψ(|y∗λ1 − y

∗
λ2
|)] ≤ |Tλ1(x∗λ2 , y

∗
λ2
)− Tλ2(x∗λ2 , y

∗
λ2
)|

+|Tλ1(y∗λ2 , x
∗
λ2
)− Tλ2(y∗λ2 , x

∗
λ2
)|

= 2|e−λ1 − e−λ2|.

Therefore,

[|x∗λ1 − x
∗
λ2
| − ψ(|x∗λ1 − x

∗
λ2
|)] + [|y∗λ1 − y

∗
λ2
| − ψ(|y∗λ1 − y

∗
λ2
|)] = [|x∗λ1 − x

∗
λ2
| − 3

4
|x∗λ1 − x

∗
λ2
|]

+[|y∗λ1 − y
∗
λ2
| − 3

4
|y∗λ1 − y

∗
λ2
|]

≤ 2|e−λ1 − e−λ2|,

that is,
|x∗λ1 − x

∗
λ2
|+ |y∗λ1 − y

∗
λ2
| ≤ 8|e−λ1 − e−λ2| → 0 as λ2 → λ1,

from which it follows that

|x∗λ1 − x
∗
λ2
| → 0 as λ2 → λ1 =⇒ |U(λ1)− U(λ2)| → 0 as λ2 → λ1,

and that
|y∗λ1 − y

∗
λ2
| → 0 as λ2 → λ1 =⇒ |V (λ1)− V (λ2)| → 0 as λ2 → λ1.

Hence, the mappings U, V : [a, b]→ X are continuous.

3. Conclusion

So far, we have established some results on the continuous dependence (or, stability) of the
coupled fixed points for a distinct set of contractive inequality conditions. To the best of our
knowledge, the results contained in the present article are new and original.
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