SQUARE-MEAN PSEUDO ALMOST PERIODIC SOLUTIONS OF CLASS \(r \)
UNDER THE LIGHT OF MEASURE THEORY

MOHAMADO KIEMA AND ISSA ZABSONRE

Abstract. The aim of this work is to present new concept of square-mean pseudo almost periodic of class \(r \) using the measure theory. We use the \((\mu, \nu)\)-ergodic process to define the spaces of \((\mu, \nu)\)-pseudo almost periodic processes of class \(r \) in the square-mean sense. We present many interesting results on those spaces like completeness and composition theorems and we study the existence and the uniqueness of the square-mean \((\mu, \nu)\)-pseudo almost periodic solutions of class \(r \) for the stochastic evolution equation.

1. Introduction

In this work, we study some properties of the square-mean \((\mu, \nu)\)-pseudo almost periodic process using the measure theory and we used those results to study the following stochastic evolution equations in a Hilbert space \(H \),

\[
dx(t) = [Ax(t) + L(x_t) + f(t)]dt + g(t)dW(t),
\]

where \(A : D(A) \subset H \) is the infinitesimal generator of a \(C_0 \)-semigroup \((T(t))_{t \geq 0} \) on \(H \), \(f, g : \mathbb{R} \rightarrow L^2(P, H) \) are two stochastic processes and \(W(t) \) is a two-sided and standard one-dimensional Brownian motion defined on the filtered probability space \((\Omega, \mathcal{F}, P, \mathcal{F}_t)\) with \(\mathcal{F}_t = \sigma\{W(u) - W(v) \mid u, v \leq t\} \) and \(L \) is a bounded linear operator from \(C \) into \(L^2(P, H) \).

\(C = C([-r, 0]; L^2(P, H)) \) denotes the space of continuous functions from \([-r, 0]\) to \(L^2(P, H) \) endowed with the uniform topology norm. For every \(t \geq 0 \), \(x_t \) denotes the history function of \(x \) defined by \(x_t(\theta) = x(t + \theta) \) for \(-r \leq \theta \leq 0\).

We assume \((H, \| \cdot \|, \| \cdot \|)\) is a real separable Hilbert space and \(L^2(P, H) \) is the space of all \(H \)-valued random variables \(x \) such that

\[
\mathbb{E}\|x\|^2 = \int_{\Omega} \|x\|^2 dP < +\infty.
\]

This work is an extension of [14] whose authors have studied equation (1.1) in the deterministic case. Some recent contributions concerning square-mean pseudo almost periodic solutions for abstract differential equations similar to equation (1.1) have been made. For example in [10] the authors studied equation (1.1) without the operator \(L \). They showed that the equation has a unique square-mean \(\mu \)-pseudo almost periodic mild solution on \(\mathbb{R} \) when \(f \) and \(g \) are square
mean pseudo almost periodic functions.
In [5] the authors studied the square-mean almost periodic solutions to a class of nonautonomous stochastic differential equations without our operator \(L \) and without delay on a separable real Hilbert space. They established the existence and uniqueness of a square-mean almost periodic mild solution to those nonautonomous stochastic differential equations with the 'Acquistapace-Terreni' conditions.

In [9] The authors established the existence, uniqueness and stability of square-mean \(\mu \)-pseudo almost periodic (resp. automorphic) mild solution to a linear and semilinear case of the stochastic evolution equations in case when the functions forcing are both continuous and \(S^2 - \mu \)-pseudo almost periodic (resp. automorphic) and verify some suitable assumptions.

This work is organized as follow, in section 2, we give spectral decomposition of phase space in section 3 we study square-mean \((\mu, \nu)\)-ergodic process of class \(r \), in section 4 we study square-mean \((\mu, \nu)\)-pseudo almost process functions and properties and last section is devoted to an application.

2. Spectral decomposition

To equation (1.1), associate the following initial value problem

\[
\begin{align*}
\frac{du}{dt} &= [Au_t + L(u_t) + f(t)]dt + g(t)dW(t) \text{ for } t \geq 0 \\
\quad u_0 &= \varphi \in C = C([-r, 0], L^2(P, H)),
\end{align*}
\]

where \(f : \mathbb{R}^+ \rightarrow L^2(P, H) \) and \(g : \mathbb{R}^+ \rightarrow L^2(P, H) \) are stochastic processes continuous.

Definition 2.1. We say that a continuous function \(u \) from \([-r, +\infty[\) into \(L^2(P, H) \) is an integral solution of equation, if the following conditions hold:

1. \(\int_0^t u(s)ds \in D(A) \) for \(t \geq 0 \),
2. \(u(t) = \phi(0) + A\int_0^t u(s)ds + \int_0^t (L(u_s) + f(s))ds + \int_0^t g(s)dW(s), \) for \(t \geq 0 \),
3. \(u_0 = \varphi. \)

If \(\overline{D(A)} = L^2(P, H) \), the integral solution coincide with the known mild solutions. One can see that if \(u(t) \) is an integral of equation 2.1, then \(u(t) \in \overline{D(A)} \) for all \(t \geq 0 \), in particular \(\phi(0) \in \overline{D(A)} \)

Let us introduce the part \(A_0 \) of the operator \(A \) in \(\overline{D(A)} \) which defined by

\[
\begin{align*}
D(A_0) &= \{ x \in D(A) : Ax \in \overline{D(A)} \} \\
A_0x &= Ax \text{ for } x \in D(A_0)
\end{align*}
\]

The following assumption is supposed:

(H\(_0\)) \(A \) satisfies the Hille-Yosida condition.

Proposition 2.2. \([2]\) \(A_0 \) generates a strongly continuous semigroup \((T_0(t))_{t \geq 0} \) on \(\overline{D(A)} \).

The phase space \(C_0 \) of equation (2.1) is defined by

\[
C_0 = \{ \varphi \in C : \varphi(0) \in \overline{D(A)} \}.
\]
For each $t \geq 0$, the linear operator $U(t)$ on C_0 is defined by

$$U(t) = v_t(.,\varphi)$$

where $v(.,\varphi)$ is the solution of the following homogeneous equation

$$\begin{cases}
\frac{d}{dt}v_t = Av_t + L(v_t) & \text{for } t \geq 0 \\
v_0 = \varphi \in C.
\end{cases}$$

Proposition 2.3. $[3]$ $(U(t))_{t \geq 0}$ is a strongly continuous semigroup of linear operators on C_0. Moreover, $(U(t))_{t \geq 0}$ satisfies, for $t \geq 0$ and $\theta \in [-r, 0]$, the following translation property

$$(U(t)\varphi)(\theta) = \begin{cases} (U(t+\theta)\varphi)(0) & \text{for } t+\theta \geq 0 \\ \varphi(t+\theta) & \text{for } t+\theta \leq 0. \end{cases}$$

Theorem 2.4. $[3]$ Let A_U defined on C_0 by

$$\begin{cases}
D(A_U) = \{ \varphi \in C^1([-r, 0]; X) : \varphi(0) \in \overline{D(A)} \text{ and } \varphi'(0) = A \varphi(0) + L(\varphi) \} \\
A_U \varphi = \varphi' \text{ for } \varphi \in D(A_U).
\end{cases}$$

Then A_U is the infinitesimal generator of the semigroup $(U(t))_{t \geq 0}$ on C_0.

Let $\langle X_0 \rangle$ be the space defined by

$$\langle X_0 \rangle = \{ X_0x : x \in X \}$$

where the function X_0x is defined by

$$(X_0x)(\theta) = \begin{cases} 0 & \text{if } \theta \in [-r, 0], \\
x & \text{if } \theta = 0. \end{cases}$$

The space $C_0 \oplus \langle X_0 \rangle$ equipped with the norm $|\varphi + X_0c|_c = |\varphi|_c + |c|$ for $(\varphi, c) \in C_0 \times X$ is a Banach space and consider the extension A_U defined on $C_0 \oplus \langle X_0 \rangle$ by

$$\begin{cases}
D(\tilde{A}_U) = \{ \varphi \in C^1([-r, 0]; X) : \varphi \in D(A) \text{ and } \varphi' \in \overline{D(A)} \} \\
\tilde{A}_U \varphi = \varphi' + X_0(A \varphi + L(\varphi) - \varphi').
\end{cases}$$

Proposition 2.5. $[3]$ Assume that (H_0) holds. Then, \tilde{A}_U satisfies the Hille-Yosida condition on $C_0 \oplus \langle X_0 \rangle$ there exist $\tilde{M} \geq 0, \tilde{\omega} \in \mathbb{R}$ such that $|\tilde{\omega}, +\infty| \subset \rho(\tilde{A}_U)$ and

$$|(\lambda I - \tilde{A}_U)^{-n}| \leq \frac{\tilde{M}}{(\lambda - \tilde{\omega})^n} \text{ for } n \in \mathbb{N} \text{ and } \lambda > \tilde{\omega}$$

Moreover, the part of \tilde{A}_U on $D(\tilde{A}_U) = C_0$ is exactly the operator \tilde{A}_U.

Definition 2.6. The semigroup $(U(t))_{t \geq 0}$ is hyperbolic if

$$\sigma(\tilde{A}_U) \cap i\mathbb{R} = \emptyset$$
For the sequel, we make the following assumption:

\((H_1)\) \(T_0(t)\) is compact on \(D(A)\) for every \(t > 0\).

Proposition 2.7. Assume that \((H_0)\) and \((H_1)\). then the semigroup \((U(t))_{t \geq 0}\) is compact for \(t > r\).

Proposition 2.8. Assume that \((H_1)\) holds. If the semigroup \((U(t))_{t \geq 0}\) is hyperbolic then the space \(C_0\) is decomposed as a direct sum

\[C_0 = S \oplus U \]

of two \(U(t)\) invariant closed subspaces \(S\) and \(U\) such that the restricted semigroup on \(U\) is a group and there exist positive constant \(\bar{M}\) and \(\omega\) such that

\[|U(t)\varphi| \leq \frac{\bar{M}e^{-\omega t}}{\omega} |\varphi| \] for \(t \geq 0\) and \(\varphi \in S\)

\[|U(t)\varphi| \leq \frac{\bar{M}e^{\omega t}}{\omega} |\varphi| \] for \(t \leq 0\) and \(\varphi \in U\).

Where \(S\) and \(U\) are called respectively the stable and unstable space, \(\Pi^s\) and \(\Pi^u\) denote respectively the projection operator on \(S\) and \(U\).

3. Square-Mean \((\mu, \nu)\)-Ergodic process of class \(r\)

Let \(\mathcal{N}\) the Lebesgue \(\sigma\)-field of \(\mathbb{R}\) and by \(\mathcal{M}\) the set of all positive measures \(\mu\) on \(\mathcal{N}\) satisfying \(\mu(\mathbb{R}) = +\infty\) and \(\mu([a, b]) < \infty\), for all \(a, b \in \mathbb{R}\) (\(a \leq b\)). \(L^2(P, H)\) is a Hilbert space with following norm

\[\|x\|_{L^2} = \left(\int_\Omega \|x\|^2 dP \right)^{\frac{1}{2}} \]

Definition 3.1. Let \(x : \mathbb{R} \rightarrow L^2(P, H)\) be a stochastic process.

1. \(x\) said to be stochastically bounded if there exists \(C > 0\) such that

\[\mathbb{E}\|x(t)\|^2 \leq C \forall t \in \mathbb{R}. \]

2. \(x\) is said to be stochastically continuous if

\[\lim_{t \rightarrow s} \mathbb{E}\|x(t) - x(s)\|^2 = 0 \forall s \in \mathbb{R}. \]

Denote by \(SBC(\mathbb{R}, L^2(P, H))\), the space of all stochastically bounded and continuous process. Otherwise, this space endowed the following norm

\[\|x\| = \sup_{t \in \mathbb{R}} \left(\mathbb{E}\|x(t)\|^2 \right)^{\frac{1}{2}} \]

is a Banach space.

Definition 3.2. Let \(\mu, \nu \in \mathcal{M}\). A stochastic process \(f\) is said to be square-mean \((\mu, \nu)\)-ergodic if \(f \in SBC(\mathbb{R}, L^2(P, H))\) and satisfied

\[\lim_{\tau \rightarrow +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \mathbb{E}\|f(t)\|^2 d\mu(t) = 0. \]

We denote by \(\mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu)\), the space of all such process.
Definition 3.3. Let $\mu, \nu \in \mathcal{M}$. A stochastic process f is said to be square-mean (μ, ν)-ergodic of class r if $f \in SBC(\mathbb{R}, L^2(P, H))$ and satisfied

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-t, t]} \mathbb{E}\|f(\theta)\|^2 d\mu(t) = 0.$$

We denote by $\mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)$, the space of all such process.

For $\mu, \nu \in \mathcal{M}$ and $a \in \mathbb{R}$, we denote by μ_a the positive measure on $(\mathbb{R}, \mathcal{N})$ defined by

$$(3.1) \quad \mu_a(A) = \mu(a + b : b \in A) \quad \text{for } A \in \mathcal{N}.$$

From $\mu, \nu \in \mathcal{M}$, we formulate the following hypothesis

$$(H_2): \text{For all } a \in \mathbb{R}, \text{ there exists } \beta > 0 \text{ and a bounded intervall } I \text{ such that } \mu_a(A) \leq \beta \mu(A) \quad \text{when } A \in \mathcal{N} \text{ satisfies } A \cap I = \emptyset.$$

$$(H_3) \text{ For all } a, b \text{ and } c \in \mathbb{R}, \text{ such that } 0 \leq a < b \leq c, \text{ there exist } \delta_0 \text{ and } \alpha_0 > 0 \text{ such that}$$

$$|\delta| \geq \delta_0 \implies \mu(a + \delta, b + \delta) \geq \alpha_0 \mu(\delta, c + \delta).$$

$$(H_4) \text{ Let } \mu, \nu \in \mathcal{M} \text{ be such that } \limsup_{\tau \to +\infty} \frac{\mu([-\tau, \tau])}{\nu([-\tau, \tau])} = \alpha < \infty.$$

Proposition 3.4. Assume that (H_4) holds. Then $\mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)$ is a Banach space with the norm $\| \cdot \|_\infty$.

Proof. We can see that $\mathcal{E}(\mathbb{R}; L^2(P, H), \mu, \nu, r)$ is a vector subspace of $SBC(\mathbb{R}, L^2(P, H))$. To complete the proof, it is enough to prove that $\mathcal{E}(\mathbb{R}; L^2(P, H), \mu, \nu, r)$ is closed in $SBC(\mathbb{R}; L^2(P, H))$. Let $(f_n)_n$ be a sequence in $\mathcal{E}(\mathbb{R}; L^2(P, H), \mu, \nu, r)$ such that $\lim_{n \to +\infty} f_n = f$ uniformly in $SBC(\mathbb{R}, L^2(P, H))$. From $\nu(\mathbb{R}) = +\infty$, it follows $\nu([-\tau, \tau]) > 0$ for τ sufficiently large. Let $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $\|f_n - f\|_\infty < \varepsilon$. Let $n \geq n_0$, then

$$\frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-t, t]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t) \leq \frac{2}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-t, t]} \mathbb{E}\|f_n(\theta) - f(\theta)\|^2 \right) d\mu(t)$$

$$+ \frac{2}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-t, t]} \mathbb{E}\|f_n(\theta)\|^2 \right) d\mu(t)$$

$$\leq \frac{2}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-t, t]} \mathbb{E}\|f_n(t) - f(t)\|^2 \right) d\mu(t)$$

$$+ \frac{2}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-t, t]} \mathbb{E}\|f_n(\theta)\|^2 \right) d\mu(t)$$

$$\leq 2 \|f_n - f\|_\infty^2 \frac{\mu([-\tau, \tau])}{\nu([-\tau, \tau])}$$

$$+ \frac{2}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-t, t]} \mathbb{E}\|f_n(\theta)\| \right) d\mu(t).$$

Consequently

$$\limsup_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-t, t]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t) \leq 2\alpha\varepsilon \quad \text{for any } \varepsilon > 0.$$

\[\square\]

The following theorem is a characterization of square-mean (μ, ν)-ergodic processes eventually $I = \emptyset$.
Theorem 3.5. Assume that \((H_4)\) holds and let \(f \in SBC(\mathbb{R}, L^2(P, H))\). Then the following assertions are equivalent:

i) \(\mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, \tau)\)

\[
\lim_{\tau \to +\infty} \frac{1}{\nu([\tau, \tau] \setminus I)} \int_{[\tau, \tau] \setminus I} \frac{\sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2}{\mu([\tau, \tau] \setminus I)} d\mu(t) = 0
\]

ii) \(\lim_{\tau \to +\infty} \frac{1}{\nu([\tau, \tau] \setminus I)} \int_{[\tau, \tau] \setminus I} \sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 d\mu(t) = 0\)

iii) For any \(\varepsilon > 0\), \(\lim_{\tau \to +\infty} \frac{1}{\nu([\tau, \tau] \setminus I)} \int_{[\tau, \tau] \setminus I} \sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 > \varepsilon\)

Proof. The proof is made like the proof of Theorem(2.13) in [6]. First, we show that i) is equivalent to ii).

Denote by \(A = \nu(I), B = \int_I \left(\sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t)\). A and B belong to \(\mathbb{R}\), since the interval \(I\) is bounded and the process \(f\) is stochastically bounded and continuous. For \(\tau > 0\) such that \(I \subseteq [\tau, \tau] \setminus I\) and \(\nu([\tau, \tau] \setminus I) > 0\), it follows

\[
\frac{1}{\nu([\tau, \tau] \setminus I)} \int_{[\tau, \tau] \setminus I} \left(\sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t) = \frac{1}{\nu([\tau, \tau])} - A \left[\int_{[\tau, \tau]} \sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 d\mu(t) - B \right]
\]

\[
= \frac{1}{\nu([\tau, \tau])} - A \left[\frac{1}{\nu([\tau, \tau])} \int_{[\tau, \tau]} \sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 d\mu(t) - \frac{B}{\nu([\tau, \tau])} \right].
\]

From above equalities and the fact that \(\nu(\mathbb{R}) = +\infty\), ii) is equivalent to

\[
\lim_{\tau \to +\infty} \frac{1}{\nu([\tau, \tau] \setminus I)} \int_{[\tau, \tau] \setminus I} \sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 d\mu(t) = 0,
\]

that is i).

Now, we show that iii) implies ii).

Denote by \(A_\tau^\varepsilon\) and \(B_\tau^\varepsilon\) the following sets

\[
A_\tau^\varepsilon = \left\{ t \in [\tau, \tau] \setminus I : \sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 > \varepsilon \right\}
\]

\[
B_\tau^\varepsilon = \left\{ t \in [\tau, \tau] \setminus I : \sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 \leq \varepsilon \right\}.
\]

Assume that iii) holds, that is

\[
\lim_{\tau \to +\infty} \frac{\mu(A_\tau^\varepsilon)}{\nu([\tau, \tau] \setminus I)} = 0.
\]

From the equality

\[
\int_{[\tau, \tau] \setminus I} \left(\sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t) = \int_{A_\tau^\varepsilon} \left(\sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t)
\]

\[
+ \int_{B_\tau^\varepsilon} \left(\sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t),
\]

then for \(\tau\) sufficiently large

\[
\frac{1}{\nu([\tau, \tau] \setminus I)} \int_{[\tau, \tau] \setminus I} \left(\sup_{\theta \in [\tau, \tau]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t) \leq \|f\|_\infty \frac{\mu(A_\tau^\varepsilon)}{\nu([\tau, \tau] \setminus I)} + \varepsilon \frac{\mu(B_\tau^\varepsilon)}{\nu([\tau, \tau] \setminus I)}.
\]
By using \((H_4)\), it follows that
\[
\limsup_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{+\tau} \left(\sup_{\theta \in [t-\tau, t]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t) \leq \alpha \varepsilon, \text{ for any } \varepsilon > 0,
\]
consequently \(ii)\) holds.

Thus, we shall show that \(ii)\) implies \(iii)\).

Assume that \(ii)\) holds. From the following inequality
\[
\frac{1}{\nu([-\tau, \tau] \setminus I)} \int_{[-\tau, \tau] \setminus I} \left(\sup_{\theta \in [t-\tau, t]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t) \geq \int_{\mathcal{A}_\tau^E} \left(\sup_{\theta \in [t-\tau, t]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu(t)
\]
for \(\tau\) sufficiently large, equation (3.2) is obtained, that is \(iii)\). \(\square\)

Definition 3.6. Let \(f \in SBC(\mathbb{R}, L^2(P, H))\) and \(\tau \in \mathbb{R}\). We denote by \(f_{\tau}\) the function defined by \(f_{\tau}(t) = f(t + \tau)\) for \(t \in \mathbb{R}\). A subset \(\mathfrak{F}\) of \(SBC(\mathbb{R}, L^2(P, H))\) is said to translation invariant if for all \(f \in \mathfrak{F}\) we have \(f_{\tau} \in \mathfrak{F}\) for all \(\tau \in \mathbb{R}\).

Definition 3.7. Let \(\mu_1\) and \(\mu_2 \in \mathcal{M}\). \(\mu_1\) is said to be equivalent to \(\mu_2\) \((\mu_1 \sim \mu_2)\) if there exist constants \(\alpha\) and \(\beta > 0\) and a bounded interval \(I\) (eventually \(I = \emptyset\)) such that \(\alpha \mu_1(A) \leq \mu_2(A) \leq \beta \mu_1(A)\) for \(A \in \mathcal{N}\) satisfying \(A \cap I = \emptyset\).

Remark 3.8. The relation \(\sim\) is an equivalence relation on \(\mathcal{M}\).

Theorem 3.9. Let \(\mu_1, \mu_2, \nu_1, \nu_2 \in \mathcal{M}\). If \(\mu_1 \sim \mu_2\) and \(\nu_1 \sim \nu_2\), then \(\mathcal{E}(\mathbb{R}, L^2(P, H), \mu_1, \nu_1, r) = \mathcal{E}(\mathbb{R}, L^2(P, H), \mu_2, \nu_2, r)\).

Proof. Since \(\mu_1 \sim \mu_2\) and \(\nu_1 \sim \nu_2\) there exist some constants \(\alpha_1, \alpha_2, \beta_1, \beta_2 > 0\) and a bounded interval \(I\) (eventually \(I = \emptyset\)) such that \(\alpha_1 \mu_1(A) \leq \mu_2(A) \leq \beta_1 \mu_1(A)\) and \(\alpha_2 \nu_1(A) \leq \nu_2(A) \leq \beta_2 \nu_1(A)\) for each \(A \in \mathcal{N}\) satisfies \(A \cap I = \emptyset\) i.e
\[
\frac{1}{\beta_2 \nu_1(A)} \leq \frac{1}{\nu_2(A)} \leq \frac{1}{\alpha_2 \nu_1(A)}.
\]
Since \(\mu_1 \sim \mu_2\) and \(\mathcal{N}\) is the Lebesgue \(\sigma\)-field, then for \(\tau\) sufficiently large, it follows that
\[
\frac{\alpha_1 \mu_1(\left\{ t \in [-\tau, \tau] \setminus I : \sup_{\theta \in [t-\tau, t]} \mathbb{E}\|f(\theta)\|^2 > \varepsilon \right\})}{\beta_2 \nu_1([-\tau, \tau] \setminus I)} \leq \frac{\mu_2(\left\{ t \in [-\tau, \tau] \setminus I : \sup_{\theta \in [t-\tau, t]} \mathbb{E}\|f(\theta)\|^2 > \varepsilon \right\})}{\nu_2([-\tau, \tau] \setminus I)} \leq \frac{\beta_1 \mu_1(\left\{ t \in [-\tau, \tau] \setminus I : \sup_{\theta \in [t-\tau, t]} \mathbb{E}\|f(\theta)\|^2 > \varepsilon \right\})}{\alpha_2 \nu_1([-\tau, \tau] \setminus I)}
\]
Consequently by Theorem 3.5, \(\mathcal{E}(\mathbb{R}, X, \mu_1, \nu_1, r) = \mathcal{E}(\mathbb{R}, X, \mu_2, \nu_2, r)\). \(\square\)
Let \(\mu, \nu \in \mathcal{M} \) denote by
\[
cl(\mu, \nu) = \{ \omega_1, \omega_2 : \mu \sim \omega_1 \text{ and } \nu \sim \omega_2 \}.
\]

Proposition 3.10. \([4]\) Let \(\mu \in \mathcal{M} \). Then \(\mu \) satisfies \((H_2)\) if and only if the measures \(\mu \) and \(\mu_\tau \) are equivalent for all \(\tau \in \mathbb{R} \).

Proposition 3.11. \([6]\) \((H_3)\) implies for all \(\sigma \),
\[
\limsup_{\tau \to -\infty} \frac{\mu([-\tau - \sigma, \tau + \sigma])}{\mu([-\tau, \tau])} < +\infty.
\]

Theorem 3.12. Assume that \((H_2)\) holds. Then \(\mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r) \) is translation invariant.

Proof. The proof of this theorem is inspired by Theorem (3.5) in [4]. Let \(f \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r) \) and \(a \in \mathbb{R} \). Since \(\nu(\mathbb{R}) = +\infty \), there exists \(a_0 > 0 \) such that \(\nu([-\tau - |a|, \tau + |a|]) > 0 \) for \(|a| \geq a_0 \). Denote by
\[
M_a(\tau) = \frac{1}{\nu([-\tau, \tau], t)} \int_{[-\tau, \tau]} \left(\sup_{\theta \in [t-r, t]} \mathbb{E}\|f(\theta)\|^2 \right) d\mu_a(t) \quad \forall \tau > 0 \text{ and } a \in \mathbb{R},
\]
where \(\nu_a \) is the positive measure defined by equation (3.1). By using Proposition (3.10), it follows that \(\nu \) and \(\nu_a \) are equivalent, \(\mu \) and \(\mu_a \) are equivalent by using Theorem (3.9) we have \(\mathcal{E}(\mathbb{R}, L^2(P, H), \mu_a, \nu_a, r) = \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r) \) therefore \(f \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu_a, \nu_a, r) \) that is
\[
\lim_{\tau \to +\infty} M_a(\tau) = 0 \text{ for all } a \in \mathbb{R}.
\]

For all \(A \in \mathcal{N} \), we denote by \(\chi_A \) the characteristic function of \(A \). By using definition of the measure \(\mu_a \), we obtain that
\[
\int_{[\tau, \tau]} \chi_A(t)d\mu_a(t) = \int_{[-\tau, \tau]} \chi_A(t)d\mu(t + a) = \int_{[-\tau + a, \tau + a]} d\mu(t) \text{ for all } A \in \mathcal{N}.
\]

Since \(t \mapsto \sup_{\theta \in [t-r, t]} \mathbb{E}\|f(\theta)\|^2 \) is the pointwise limit of an increasing sequence of linear combinations of functions, see([13]; Theorem 1.17 p.15)), we deduce that
\[
\int_{[-\tau, \tau]} \sup_{\theta \in [t-r, t]} \mathbb{E}\|f(\theta)\|^2 d\mu_a(t) = \int_{[-\tau + a, \tau + a]} \sup_{\theta \in [t-a-r, t-a]} \mathbb{E}\|f(\theta)\|^2 d\mu(t).
\]

If we denote by \(a^+ := \max(a, 0) \) and \(a^- := \max(-a, 0) \) we have \(|a| + a = 2a^+, \ |a| - a = 2a^- \), and \([-\tau + a, \tau + a, \tau + a] = [-\tau - 2a^-, \tau + 2a^+] \). Therefore we obtain
\[
M_a(\tau + |a|) = \frac{1}{\nu([-\tau - 2a^-, \tau + 2a^+], t)} \int_{[-\tau - 2a^-, \tau + 2a^+]} \sup_{\theta \in [t-a-r, t-a]} \mathbb{E}\|f(\theta)\|^2 d\mu(t).
\]

From equation (3.3) and the following inequality
\[
\frac{1}{\nu([-\tau, \tau], t)} \int_{[-\tau, \tau]} \sup_{\theta \in [t-a-r, t-a]} \mathbb{E}\|f(\theta)\|^2 d\mu(t) \leq \frac{1}{\nu([-\tau, \tau], t)} \int_{[-\tau, \tau]} \sup_{\theta \in [t-a-r, t-a]} \mathbb{E}\|f(\theta)\|^2 d\mu(t)
\]
we obtain
\[
\frac{1}{\nu([-\tau, \tau], t)} \int_{[-\tau, \tau]} \sup_{\theta \in [t-a-r, t-a]} \mathbb{E}\|f(\theta)\|^2 d\mu(t) \leq \frac{\nu([-\tau - 2a^-, \tau + 2a^+])}{\nu([-\tau, \tau])} \times M_a(\tau + |a|).
\]
This implies,

\[\frac{1}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \sup_{\theta \in [t-\tau, t+\tau]} \mathbb{E}\|f(\theta)\|^2 d\mu(t) \leq \frac{\nu([-\tau - 2|a|, \tau + 2|a|])}{\nu([-\tau, \tau])} \times M_a(\tau + |a|).\]

From equation (3.3) and equation (3.4) and using Proposition (3.11) we deduce that

\[\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \sup_{\theta \in [t-\tau, t+\tau]} \mathbb{E}\|f(\theta)\|^2 d\mu(t) = 0\]

which equivalent to

\[\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \sup_{\theta \in [t-\tau, t]} \mathbb{E}\|f(\theta - a)\|^2 d\mu(t) = 0,\]

that is \(f_{-a} \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)\). We have proved that \(f \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)\) then \(f_{-a} \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)\) for \(a \in \mathbb{R}\). That is \(\mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)\) is translation invariant.

Proposition 3.13. The space \(SPAP(\mathbb{R}, L^2(P, H), \mu, \nu, r)\) is translation invariant, that is for all \(\alpha \in \mathbb{R}\) and \(f \in SPAP(\mathbb{R}, L^2(P, H), \mu, \nu, r)\), \(f_{\alpha} \in SPAP(\mathbb{R}, L^2(P, H), \mu, \nu, r)\).

4. **Square-Mean \((\mu, \nu)\)-Pseudo Almost Periodic Process**

In this section, we define square-mean \((\mu, \nu)\)-pseudo almost periodic process and we study their basic properties.

Definition 4.1. Let \(f : \mathbb{R} \to L^2(P, H)\) be a continuous stochastic process. \(f\) is said be square-mean almost periodic process if for all \(\alpha \in \mathbb{R}\), there exists \(\tau \in [\alpha, \alpha + l]\) such that

\[(4.1) \sup_{t \in \mathbb{R}} \mathbb{E}\|f(t + \tau) - f(t)\|^2 < \varepsilon\]

We denote the space of all such stochastic processes by \(SAP(\mathbb{R}, L^2(P, H))\).

Theorem 4.2. [10] The space \(SAP(\mathbb{R}, L^2(P, H))\) endowed the norm \(\|, \|_\infty\) is a Banach space.

Definition 4.3. Let \(\mu, \nu \in \mathcal{M}\) and \(f : \mathbb{R} \to L^2(P, H)\) be a continuous stochastic process. \(f\) is said be \((\mu, \nu)\)- square-mean pseudo almost periodic process if it can be decomposed as follows

\[f = g + \phi\]

where \(g \in SAP(\mathbb{R}, L^2(P, H))\) and \(\phi \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu)\).

We denote the space of such stochastic processes by \(SPAP(\mathbb{R}, L^2(P, H), \mu, \nu)\).

Proposition 4.4. [7] Assume that \((H_3)\) holds. Then the decomposition of \((\mu, \nu)\)-pseudo almost periodic function in the form \(f = g + \phi\) where \(g \in AP(\mathbb{R}, X)\) and \(\phi \in \mathcal{E}(\mathbb{R}, X, \mu, \nu)\) is unique.

Proposition 4.5. [14] Let \(\mu, \nu \in \mathcal{M}\). Assume \((H_3)\) holds. Then the decomposition of a \((\mu, \nu)\)-pseudo almost periodic function \(\phi = \phi_1 + \phi_2\), where \(\phi_1 \in AP(\mathbb{R}, X)\) and \(\phi_2 \in \mathcal{E}(\mathbb{R}, X, \mu, \nu)\) is unique.

Remark 4.6. Let \(X = L^2(P, H)\). Then the Proposition (4.4) always holds.
\textbf{Definition 4.7.} Let $\mu, \nu \in \mathcal{M}$ and $f : \mathbb{R} \to L^2(P, H)$ be a continuous stochastic process. f is said to be (μ, ν)–square-mean pseudo almost periodic process of class r if it can be decomposed as follows
\[
f = g + \phi
\]
where $g \in SAP(\mathbb{R}, L^2(P, H))$ and $\phi \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)$.

We denote the space of such stochastic processes by $SPAP(\mathbb{R}, L^2(P, H), \mu, \nu, r)$.

\textbf{Proposition 4.8.} \(SPAP(\mathbb{R}, L^2(P, H), \mu, \nu, r)\) is a Banach space.

\textbf{Proof.} This proposition is a consequence of Theorem(4.2) and Proposition(3.4). \hfill \Box

\textbf{Proposition 4.9.} \cite{14} Let $\mu, \nu \in \mathcal{M}$ and assume (H_9) holds. Then the decomposition of (μ, ν)-pseudo almost periodic function $\phi = \phi_1 + \phi_2$, where $\phi \in AP(\mathbb{R}, L^2(P, H))$ and $\phi_2 \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)$ is unique.

\textbf{Proposition 4.10.} Let μ_1, μ_2, ν_1 and $\nu_2 \in \mathcal{M}$ if $\mu_1 \sim \mu_2$ and $\nu_1 \sim \nu_2$, then $SPAP(\mathbb{R}, L^2(P, H), \mu_1, \nu_1, r) = SPAP(\mathbb{R}; L^2(P, H), \mu_2, \nu_2, r)$.

This Proposition is a consequence of Theorem(3.9).

\textbf{Theorem 4.11.} Assume that (H_9) holds. Let $\mu, \nu \in \mathcal{M}$ and $\phi \in SPAP(\mathbb{R}, L^2(P, H), \mu, \nu, r)$ then the function $t \to \phi_t$, belongs to $SPAP(C([-r, 0], L^2(P, H)), \mu, \nu, r)$.

\textbf{Proof.} Assume that $\phi = g + h$, where $g \in SAP(\mathbb{R}, L^2(P, H))$ and $h \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)$. Then we can see that, $\phi_t = gt + ht$ and gt is square mean almost periodic process. Let us denote by
\[
M_\alpha(\tau) = \frac{1}{\nu([\tau - \tau, \tau])} \int_{\tau - \tau}^{\tau} \sup_{\theta \in [t - \tau, t]} (\mathbb{E} \|h(\theta)\|^2) d\mu_\alpha(t).
\]
Where μ_α and ν_α are the positive measures defined by equation (3.1). By using Proposition (3.10), it follows that μ_α and μ are equivalent and ν_α and ν are also equivalent. Then by using Theorem (4.10) we have $\mathcal{E}(\mathbb{R}, L^2(P, H), \mu_\alpha, \nu_\alpha, r) = \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)$ therefore $h \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu_\alpha, \nu_\alpha, r)$ that is $\lim_{\tau \to \infty} M_\alpha(\tau) = 0$ for all $\alpha \in \mathcal{M}$. On the other hand, for $r > 0$ we have
\[
\frac{1}{\nu([\tau - \tau, \tau])} \int_{\tau - \tau}^{\tau} \sup_{\theta \in [t - \tau, t]} \left(\sup_{\eta \in [-\tau, 0]} (\mathbb{E} \|h(\theta + \eta)\|^2)\right) d\mu(t) \leq \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t - 2\tau, t]} (\mathbb{E} \|h(\theta)\|^2) d\mu(t)
\]
\[
\leq \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t - 2\tau, t - \tau]} (\mathbb{E} \|h(\theta)\|^2) + \sup_{\theta \in [t - \tau, t]} (\mathbb{E} \|h(\theta)\|^2) d\mu(t)
\]
\[
\leq \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [-\tau, r] + [t - \tau, t + r]} (\mathbb{E} \|h(\theta)\|^2) \mu(t + r) + \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t - \tau, t]} (\mathbb{E} \|h(\theta)\|^2) d\mu(t)
\]
\[
\leq \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t - \tau, t + r]} (\mathbb{E} \|h(\theta)\|^2) d\mu(t + r)
\]
\[
+ \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t - \tau, t]} (\mathbb{E} \|h(\theta + \eta)\|^2) d\mu(t)
\]
Consequently,
\[
\frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t - \tau, t]} \left(\sup_{\eta \in [-\tau, 0]} (\mathbb{E} \|h(\theta + \eta)\|^2)\right) d\mu(t) \leq \frac{\nu([-\tau - r, \tau + r])}{\nu([-\tau, \tau])} \times M_r(\tau + r)
\]
\[
+ \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t - \tau, t]} (\mathbb{E} \|h(\theta)\|^2) d\mu(t)
\]
Using Proposition (3.11), and Proposition (3.10), it follows that,
\(\phi \in \text{SPAP}(C[-r,0], L^2(P,H)), \mu,\nu, \tau) \). Thus, we obtain the desired result \(\Box \).

Next, we study the composition of the space square-mean \((\mu,\nu)\) -pseudo almost periodic process.

Definition 4.12. [10] Let \(f: \mathbb{R} \times L^2(P,H) \to L^2(P,H), (t,x) \to f(t,x) \) be continuous. \(f \) is said be square-mean almost periodic in \(t \) uniformly in \(x \) if for all compact \(K \) of \(L^2(P,H) \) and for any \(\varepsilon > 0 \) there exists \(l(\varepsilon,K) \) such that for all \(\alpha \in \mathbb{R} \), there exists \(\tau \in [\alpha,\alpha + l(\varepsilon,K)] \) with

\[
\| \sup_{t \in \mathbb{R}} \mathbb{E} \| f(t+\tau,x) - f(t,x) \|^2 < \varepsilon.
\]

We denote the following space of stochastic processes by \(\text{SAP}(\mathbb{R} \times L^2(P,H), L^2(P,H)) \).

Theorem 4.13. [10] Let \(f: \mathbb{R} \times L^2(P,H) \to L^2(P,H), (t,x) \to f(t,x) \) be a square almost periodic process in \(t \) uniformly in \(x \in L^2(P,H) \). Suppose that \(f \) is Lipschitz in the following sense: there exists a positive number \(L \) such that for any \(x,y \in L^2(P,H) \),

\[
\mathbb{E} \| f(t,x) - f(t,y) \|^2 \leq L \cdot \mathbb{E} \| x - y \|^2.
\]

Then \(t \to f(t,x(t)) \in \text{SAP}(\mathbb{R}, L^2(P,H)) \) for any \(x \in \text{SAP}(\mathbb{R}, L^2(P,H)) \).

Definition 4.14. Let \(\mu,\nu \in \mathcal{M} \). A continuous functions \(f(t,x): \mathbb{R} \times L^2(P,H) \to L^2(P,H) \) is said to be square-mean \((\mu,\nu)\)-pseudo almost periodic of class \(r \) in \(t \) for any \(x \in L^2(P,H) \) if it can be decomposed as \(f = g + \phi \), where \(g \in \text{SAP}(\mathbb{R} \times L^2(P,H), L^2(P,H)), \phi \in \mathcal{E}(\mathbb{R} \times L^2(P,H), L^2(P,H), \mu,\nu,r) \). Denote the set of all such stochastically continuous processes by \(\text{SAP}(\mathbb{R} \times L^2(P,H), L^2(P,H), \mu,\nu,r) \).

Proposition 4.15. Let \(a_i \in \mathbb{R}, i \in \mathbb{N} \). Then
\[
\left| \sum_{i=1}^{n} a_i \right|^2 \leq n \sum_{i=1}^{n} |a_i|^2.
\]

Theorem 4.16. Let \(\mu,\nu \in \mathcal{M} \) satisfy \((H_2)\). Suppose that \(f \in \text{SAP}(\mathbb{R} \times L^2(P,H), L^2(P,H), \mu,\nu,r) \) and that there exists a positive number \(L \) such that, for any \(x,y \in L^2(P,H) \),

\[
\mathbb{E} \| f(t,x) - f(t,y) \|^2 \leq L \cdot \mathbb{E} \| x - y \|^2
\]

for \(t \in \mathbb{R} \). Then \(t \to f(t,x(t)) \in \text{SAP}(\mathbb{R}, L^2(P,H), \mu,\nu,r) \) for any \(x \in \text{SAP}(\mathbb{R}; L^2(P,H), \mu,\nu,r) \).

Proof. Since \(x \in \text{SAP}(\mathbb{R}; L^2(P,H), \mu,\nu,r) \), then we can decompose \(x = x_1 + x_2 \), where \(x_1 \in \text{SAP}(\mathbb{R}, L^2(P,H)) \) and \(x_2 \in \mathcal{E}(\mathbb{R}, L^2(P,H), \mu,\nu,r) \). Otherwise, since \(f \in \text{SAP}(\mathbb{R} \times L^2(P,H), L^2(P,H), \mu,\nu,r) \), then \(f = f_1 + f_2 \), where \(f_1 \in \text{SAP}(\mathbb{R} \times L^2(P,H), L^2(P,H), \mu,\nu,r) \) and \(f_2 \in \mathcal{E}(\mathbb{R} \times L^2(P,H), L^2(P,H), \mu,\nu,r) \).

The function \(f \) can be decomposed as

\[
f(t,x(t)) = f_1(t,x_1(t)) + [f(t,x(t)) - f(t,x_1(t))] + [f(t,x_1(t)) - f_1(t,x_1(t))] \\
= f_1(t,x_1(t)) + [f(t,x(t)) - f(t,x_1(t))] + f_2(t,x_1(t))
\]

Using Theorem (4.13), we have \(t \to f_1(t,x_1(t)) \in \text{SAP}(\mathbb{R} \times L^2(P,H), L^2(P,H)) \).

It remains to show that the both functions \(t \to [f(t,x(t)) - f(t,x_1(t))] \) and \(t \to f_2(t,x_1(t)) \)
belong to $E(\mathbb{R} \times L^2(P, H), L^2(P, H), \mu, \nu, r)$.

We have,

$$
\mathbb{E}\|f(t, x(t)) - f(t, x_1(t))\|^2 \leq L \mathbb{E}\|x(t) - x_1(t)\|^2
$$

$$
\sup_{\theta \in [t-r, t]} \mathbb{E}\|f(\theta, x(\theta)) - f(\theta, x_1(\theta))\|^2 \leq L \sup_{\theta \in [t-r, t]} \mathbb{E}\|x(\theta) - x_1(\theta)\|^2.
$$

It follows that

$$
\frac{1}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \sup_{\theta \in [t-r, t]} \mathbb{E}\|f(\theta, x(\theta)) - f(\theta, x_1(\theta))\|^2 d\mu(t) \leq
$$

$$
\frac{L}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \sup_{\theta \in [t-r, t]} \mathbb{E}\|x(\theta) - x_1(\theta)\|^2 d\mu(t) \leq
$$

$$
\frac{L}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \sup_{\theta \in [t-r, t]} \mathbb{E}\|x_2(\theta)\|^2 d\mu(t).
$$

Since $x_2 \in E(\mathbb{R}, L^2(P, H), \mu, \nu, r)$ then $t \to f(t, x(t)) - f(t, x_1(t))$ is (μ, ν)-ergodic.

Now to complete the proof, it is enough to prove $t \to f_2(t, x_1(t))$ is (μ, ν)-ergodic. Since f_2 is uniformly continuous on the compact set $K = \{x_1(t) : t \in \mathbb{R}\}$ with respect to the second variable x, we deduce that for given ε, there exists $\delta > 0$ such that for all $t \in \mathbb{R}$, ζ_1 and $\zeta_2 \in K$, one has

$$
\|\zeta_1 - \zeta_2\| \leq \delta \implies \|f_2(t, \zeta_1) - f_2(t, \zeta_2)\| \leq \varepsilon.
$$

Therefore, there exist $n(\varepsilon) \in \mathbb{N}$ and $\{x_i\}_{i=1}^{n(\varepsilon)} \subset K$, such that

$$
K \subset \bigcup_{i=1}^{n(\varepsilon)} B(x_i, \delta),
$$

then

$$
\|f_2(t, x_1(t))\| \leq \varepsilon + \sum_{i=1}^{n(\varepsilon)} \|f_2(t, x_i)\|
$$

$$
\|f_2(t, x_1(t))\|^2 \leq \left(\varepsilon + \sum_{i=1}^{n(\varepsilon)} \|f_2(t, x_i)\|\right)^2
$$

$$
\leq 2 \left(\varepsilon^2 + \left(\sum_{i=1}^{n(\varepsilon)} \|f_2(t, x_i)\|^2\right)\right)
$$

By using the Proposition (4.15), we have

$$
\|f_2(t, x_1(t))\|^2 \leq 2 \left(\varepsilon + n(\varepsilon) \sum_{i=1}^{n(\varepsilon)} \|f_2(t, x_i)\|^2\right).
$$
It follows that
\[
\frac{1}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \sup_{\theta \in [t-\tau, t]} \mathbb{E} \| f_2(\theta, x_1(\theta)) \|^2 d\mu(t) \leq
\]
\[
2 \left(\frac{\varepsilon \mu([-\tau, \tau]) + n(\varepsilon)}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \sup_{\theta \in [t-\tau, t]} \mathbb{E} \| f_2(\theta, x_i) \|^2 d\mu(t) \right).
\]

By the fact that
\[
\forall i \in \{1, ..., n(\varepsilon)\}, \quad \lim_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{+\tau} \left(\sup_{\theta \in [t-\tau, t]} \mathbb{E} \| f_2(\theta, x_i) \|^2 \right) d\mu(t) = 0
\]
we deduce that
\[
\forall \varepsilon > 0, \quad \limsup_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{+\tau} \left(\sup_{\theta \in [t-\tau, t]} \mathbb{E} \| f_2(\theta, x_1(\theta)) \|^2 \right) d\mu(t) \leq 2\alpha \varepsilon.
\]
Therefore $t \to f_2(t, x_1(t))$ is ergodic and the theorem is proved. \hfill \Box

\[(H_5): \text{g is a stochastically bounded process.}\]

Theorem 4.17. Assume that (H_0), (H_1), (H_4) and (H_5) hold and the semigroup $(\mathcal{U}(t))_{t \geq 0}$ is hyperbolic. If f is bounded and continuous on \mathbb{R}, then there exists a unique bounded solution u of equation (1.1) on \mathbb{R} given by

\[
u(t) = \lim_{\lambda \to +\infty} \int_{-\infty}^{+\infty} \mathcal{U}^s(t-s) \Pi^s(\tilde{B}_\lambda X_0 f(s)) ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{+\infty} \mathcal{U}^u(t-s) \Pi^u(\tilde{B}_\lambda X_0 f(s)) ds
\]
\[
+ \lim_{\lambda \to +\infty} \int_{-\infty}^{+\infty} \mathcal{U}^s(t-s) \Pi^s(\tilde{B}_\lambda X_0 g(s)) dW(s) + \lim_{\lambda \to +\infty} \int_{-\infty}^{+\infty} \mathcal{U}^u(t-s) \Pi^u(\tilde{B}_\lambda X_0 g(s)) dW(s)
\]
\[
\forall \ t \geq 0, \text{ where } \tilde{B}_\lambda = \lambda(\lambda I - \tilde{A}_d)^{-1}, \Pi^s \text{ and } \Pi^u \text{ are the projections of } C_0 \text{ onto the stable and unstable subspaces.}
\]

Proof. Let

\[
u(t) = v(t) + \lim_{\lambda \to +\infty} \int_{-\infty}^{+\infty} \mathcal{U}^s(t-s) \Pi^s(\tilde{B}_\lambda X_0 g(s)) dW(s)
\]
\[
+ \lim_{\lambda \to +\infty} \int_{+\infty}^{+\infty} \mathcal{U}^u(t-s) \Pi^u(\tilde{B}_\lambda X_0 g(s)) dW(s) \forall \ t \geq 0,
\]

where

\[
v(t) = \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^s(t-s) \Pi^s(\tilde{B}_\lambda X_0 f(s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^u(t-s) \Pi^u(\tilde{B}_\lambda X_0 f(s)) ds
\]

Let us first prove that u_t exists. The existence of $v(t)$ have proved by [1]. Now, we show that the limit \(\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^s(t-s) \Pi^s(\tilde{B}_\lambda X_0 g(s)) dW(s) \) exist.

For $t \in \mathbb{R}$ we have,
\[
\mathbb{E} \left\| \int_{-\infty}^{t} \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda}X_0g(s))dW(s) \right\|^2 \leq \mathbb{E} \left(\int_{-\infty}^{t} M^2 e^{-2w(t-s)} \| \Pi^s \| \| \widetilde{B}_{\lambda}(X_0g(s)) \|^2 ds \right) \\
\leq M^2 \mathbb{E} \left(\int_{-\infty}^{t} e^{-2w(t-s)} \| \Pi^s \| \| \widetilde{B}_{\lambda}(X_0g(s)) \|^2 ds \right) \\
\leq M^2 \widetilde{M}^2 \| \Pi^s \|^2 \mathbb{E} \left(\int_{-\infty}^{t} e^{-2w(t-s)} \| g(s) \|^2 ds \right) \\
\leq M^2 \widetilde{M}^2 \| \Pi^s \|^2 \sum_{n=1}^{+\infty} \mathbb{E} \left(\int_{\sigma-n}^{\sigma-n+1} e^{-2w(t-s)} \| g(s) \|^2 ds \right).
\]

Using the Hölder inequality, we obtain

\[
\mathbb{E} \left\| \int_{-\infty}^{t} \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda}X_0g(s))dW(s) \right\|^2 \leq \\
M^2 \widetilde{M}^2 \| \Pi^s \|^2 \sum_{n=1}^{+\infty} \left(\int_{\sigma-n}^{\sigma-n+1} e^{-4w(t-s)} ds \right) \frac{1}{2} \mathbb{E} \left(\int_{\sigma-n}^{\sigma-n+1} \| g(s) \|^2 ds \right) \frac{1}{2} \\
\leq M^2 \widetilde{M}^2 \| \Pi^s \|^2 \frac{1}{2 \sqrt{w}} \sum_{n=1}^{+\infty} \left(e^{-4w(n-1)} - e^{-4wn} \right) \frac{1}{2} \mathbb{E} \left(\int_{\sigma-n}^{\sigma-n+1} \| g(s) \|^2 ds \right) \frac{1}{2} \\
\leq M^2 \widetilde{M}^2 \| \Pi^s \|^2 \frac{1}{2 \sqrt{w}} \left(e^{4wn} - 1 \right) \frac{1}{2} \sum_{n=1}^{+\infty} e^{-2wn} \times \mathbb{E} \left(\int_{\sigma-n}^{\sigma-n+1} \| g(s) \|^2 ds \right) \frac{1}{2}.
\]

Since the serie \(\sum_{n=1}^{+\infty} e^{-2wn} \) is convergent, then it exists a constant \(c > 0 \) such that

\[
\sum_{n=1}^{+\infty} e^{-2wn} \leq c,
\]

moreover it follows that

\[
\mathbb{E} \left\| \int_{-\infty}^{t} \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda}X_0g(s))dW(s) \right\|^2 \leq \\
\frac{\gamma}{2} \sum_{n=1}^{+\infty} e^{-2wn} \\
\leq \gamma c,
\]

where \(\gamma = M^2 \widetilde{M}^2 \| \Pi^s \|^2 \frac{1}{2 \sqrt{w}} \left(e^{4wn} - 1 \right) \frac{1}{2} \mathbb{E} \| g(s) \|. \)

Let \(F(n, s, t) = \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda}X_0g(s)) \) for \(n \in \mathbb{N} \) for \(s \leq t \).

For \(n \) is sufficiently large and \(\sigma \leq t \), we have

\[
\mathbb{E} \left\| \int_{-\infty}^{\sigma} F(n, s, t)dW(s) \right\|^2 \leq \\
\frac{\gamma}{2} \sum_{n=1}^{+\infty} \left(\int_{\sigma-n}^{\sigma-n+1} e^{-4w(t-s)} ds \right) \frac{1}{2} \times \mathbb{E} \left(\int_{\sigma-n}^{\sigma-n+1} \| g(s) \|^2 ds \right) \frac{1}{2} \leq
\]
It follows that for n and m sufficiently large and $\sigma \leq t$, we have

$$\mathbb{E} \left| \int_{-\infty}^{t} F(n, s, t) dW(s) - \int_{\sigma}^{t} F(m, s, t) dW(s) \right|^2 \leq$$

$$\mathbb{E} \left| \int_{-\infty}^{\sigma} F(n, s, t) dW(s) + \int_{\sigma}^{t} F(n, s, t) dW(s) - \int_{-\infty}^{\sigma} F(m, s, t) dW(s) - \int_{\sigma}^{t} F(m, s, t) dW(s) \right|^2 \leq$$

$$3\mathbb{E} \left| \int_{-\infty}^{\sigma} F(n, s, t) dW(s) \right|^2 + 3\mathbb{E} \left| \int_{-\infty}^{\sigma} F(m, s, t) dW(s) \right|^2$$

$$+ 3\mathbb{E} \left| \int_{\sigma}^{t} F(n, s, t) dW(s) - \int_{\sigma}^{t} F(m, s, t) dW(s) \right|^2 \leq$$

$$6\gamma ce^{-2\omega(t-\sigma)} + 3\mathbb{E} \left| \int_{\sigma}^{t} F(n, s, t) dW(s) - \int_{\sigma}^{t} F(m, s, t) dW(s) \right|^2$$

Since $\lim_{n \to +\infty} \mathbb{E} \left| \int_{\sigma}^{t} F(n, s, t) dW(s) \right|^2$ exists, then

$$\lim_{n \to +\infty} \limsup_{m \to +\infty} \mathbb{E} \left| \int_{-\infty}^{t} F(n, s, t) dW(s) - \int_{-\infty}^{t} F(m, s, t) dW(s) \right|^2 \leq 6\gamma ce^{-2\omega(t-\sigma)}$$

If $\sigma \to -\infty$, then

$$\lim_{n \to +\infty} \limsup_{m \to +\infty} \mathbb{E} \left| \int_{-\infty}^{t} F(n, s, t) dW(s) - \int_{-\infty}^{t} F(m, s, t) dW(s) \right|^2 = 0.$$
Theorem 4.20. Assume that \((H_5)\). Let \(f, g \in \text{SAP}(\mathbb{R}; L^2(P, H))\) and \(\Gamma\) be the mapping defined for \(t \in \mathbb{R}\) by

\[
\Gamma(f, g)(t) = \lim_{\lambda \to +\infty} \int_{-\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0f(s))ds \\
+ \lim_{\lambda \to +\infty} \int_{-\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0g(s))dW(s) \\
+ \lim_{\lambda \to +\infty} \int_{+\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0g(s))dW(s)
\]

Then \(\Gamma(f, g) \in \text{SAP}(\mathbb{R}; L^2(P, H))\).

Proof. \(\Gamma(f, g)_\tau(t) = \Gamma(f, g)(t + \tau)\)

\[
\begin{align*}
\Gamma(f, g)(t) &= \lim_{\lambda \to +\infty} \int_{-\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0f(s))ds \\
&+ \lim_{\lambda \to +\infty} \int_{-\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0g(s))dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0g(s))dW(s) \\
&= \lim_{\lambda \to +\infty} \int_{-\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0f(s))ds \\
&+ \lim_{\lambda \to +\infty} \int_{-\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0g(s))dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0g(s))dW(s) \\
&= \Gamma(f_\tau, g_\tau)(t) \text{ for all } t \in \mathbb{R}.
\end{align*}
\]

Thus \(\Gamma(f, g)_\tau = \Gamma(f_\tau, g_\tau)\) which implies \(\{\Gamma(f, g)_\delta, \delta \in \mathbb{R}\}\) is relatively compact in \(\text{SBC}(\mathbb{R}, L^2(P, H))\). Since \(\Gamma\) is continuous from \(\text{SBC}(\mathbb{R}, L^2(P, H))\) into \(\text{SBC}(\mathbb{R}, L^2(P, H))\) then \(\Gamma(f, g) \in \text{SAP}(\mathbb{R}, L^2(P, H))\). \(\square\)

Theorem 4.21. Assume that \((H_3)\) and \((H_5)\) holds. Let \(f, g \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)\) then \(\Gamma(f, g) \in \mathcal{E}(\mathbb{R}, L^2(P, H), \mu, \nu, r)\).

Proof. We have,

\[
\begin{align*}
\Gamma(f, g)(t) &= \lim_{\lambda \to +\infty} \int_{-\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0f(s))ds \\
&+ \lim_{\lambda \to +\infty} \int_{+\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0f(s))ds \\
&+ \lim_{\lambda \to +\infty} \int_{-\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0g(s))dW(s) \\
&+ \lim_{\lambda \to +\infty} \int_{+\infty}^{t} U^\lambda(t-s)\Pi^\lambda(B_\lambda X_0g(s))dW(s)
\end{align*}
\]
\[
\begin{align*}
\mathbb{E}\left|\Gamma(f,g)(\theta)\right|^2 &= \mathbb{E}\left| \lim_{\lambda \to +\infty} \int_{-\infty}^{\theta} \mathcal{U}^\theta(t-s)\Pi^\theta(\tilde{B}_\lambda X_0 f(s))ds \right. \\
&\hspace{4em} + \lim_{\lambda \to +\infty} \int_{+\infty}^{\theta} \mathcal{U}^\theta(t-s)\Pi^\theta(\tilde{B}_\lambda X_0 f(s))ds \\
&\hspace{4em} + \lim_{\lambda \to +\infty} \int_{-\infty}^{\theta} \mathcal{U}^\theta(t-s)\Pi^\theta(\tilde{B}_\lambda X_0 g(s))dW(s) \\
&\hspace{4em} + \lim_{\lambda \to +\infty} \int_{+\infty}^{\theta} \mathcal{U}^\theta(t-s)\Pi^\theta(\tilde{B}_\lambda X_0 g(s))dW(s)\right|^2.
\end{align*}
\]

\[
\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E}\left|\Gamma(f,g)(\theta)\right|^2 d\mu(t) \leq \\
\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{-\infty}^{\theta} e^{-2\omega(t-s)}\Pi^\theta \|f(s)\|^2 ds + \int_{-\infty}^{\theta} e^{-2\omega(t-s)}\Pi^\theta \|g(s)\|^2 ds \right) d\mu(t)
\]

\[
\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{-\infty}^{\theta} e^{-2\omega(t-s)}\Pi^\theta \|f(s)\|^2 ds + \int_{-\infty}^{\theta} e^{-2\omega(t-s)}\Pi^\theta \|g(s)\|^2 ds \right) d\mu(t)
\]

\[
\leq 4M^2 \mathcal{M}^2 \left[\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{-\infty}^{\theta} e^{-2\omega(t-s)}\Pi^\theta \|f(s)\|^2 ds + \int_{-\infty}^{\theta} e^{-2\omega(t-s)}\Pi^\theta \|g(s)\|^2 ds \right) d\mu(t) \right]
\]

one the one hand using Fubini’s theorem, we have

\[
\left|\Pi^\theta\right|^2 \int_{-\tau}^{\tau} \left[\sup_{\theta \in [t-r,t]} \left(\int_{-\infty}^{\theta} e^{-2\omega(t-s)}(\mathbb{E}\|f(s)\|^2 + \mathbb{E}\|g(s)\|^2)ds \right) d\mu(t) \right]
\]

\[
\leq e^{\omega r} \left|\Pi^\theta\right|^2 \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{-\infty}^{\theta} e^{-2\omega(t-s)}(\mathbb{E}\|f(s)\|^2 + \mathbb{E}\|g(s)\|^2)ds \right) d\mu(t)
\]

\[
\leq e^{\omega r} \left|\Pi^\theta\right|^2 \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{-\infty}^{t} e^{-2\omega(t-s)}(\mathbb{E}\|f(s)\|^2 + \mathbb{E}\|g(s)\|^2)ds \right) d\mu(t)
\]

\[
\leq e^{\omega r} \left|\Pi^\theta\right|^2 \int_{-\tau}^{\tau} \left(\int_{-\infty}^{t} e^{-2\omega(t-s)}(\mathbb{E}\|f(t-s)\|^2 + \mathbb{E}\|g(t-s)\|^2)ds \right) d\mu(t)
\]

\[
\leq e^{\omega r} \left|\Pi^\theta\right|^2 \int_{0}^{+\infty} e^{-2\omega s} \left(\mathbb{E}\|f(t-s)\|^2 + \mathbb{E}\|g(t-s)\|^2 \right) ds d\mu(t)
\]
By using Proposition(3.13) we deduce that

\[
\lim_{\tau \to +\infty} \frac{e^{-2\omega s}}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \left(\mathbb{E} \| f(t-s) \|^2 + \mathbb{E} \| g(t-s) \|^2 \right) d\mu(t) \to 0
\]

for all \(s \in \mathbb{R}^+ \) and

\[
\frac{e^{-2\omega s}}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \left(\mathbb{E} \| f(t-s) \|^2 + \mathbb{E} \| g(t-s) \|^2 \right) d\mu(t) \leq \frac{e^{-2\omega s} \mu([-\tau, \tau])}{\nu([-\tau, \tau])} \left(\| f \|_\infty^2 + \| g \|_\infty^2 \right)
\]

Since \(f \) and \(g \) are bounded functions, then the function \(s \mapsto \frac{e^{-2\omega s} \mu([-\tau, \tau])}{\nu([-\tau, \tau])} \left(\| f \|_\infty^2 + \| g \|_\infty^2 \right) \) belongs to \(L^1([0, +\infty[) \) in view of the Lebesgue dominated convergence theorem, it follows that

\[
\lim_{\tau \to +\infty} \frac{e^{2\omega \tau}}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \left(\mathbb{E} \| f(t-s) \|^2 + \mathbb{E} \| g(t-s) \|^2 \right) d\mu(t) ds \to 0.
\]

On the other hand by Fubini’s theorem, we also have

\[
|\Pi^u|^2 \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{-\tau}^{+\infty} e^{2\omega(t-s)} (\mathbb{E} \| f(s) \|^2 + \mathbb{E} \| g(s) \|^2) ds \right) d\mu(t)
\]

\[
\leq \ |\Pi^u|^2 \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{-\tau}^{+\infty} e^{2\omega(t-s)} (\mathbb{E} \| f(s) \|^2 + \mathbb{E} \| g(s) \|^2) ds \right) d\mu(t)
\]

\[
\leq \ |\Pi^u|^2 \int_{-\tau}^{\tau} \left(\int_{-\tau}^{+\infty} e^{2\omega(t-s)} (\mathbb{E} \| f(s) \|^2 + \mathbb{E} \| g(s) \|^2) ds \right) d\mu(t)
\]

\[
\leq \ |\Pi^u|^2 \int_{-\tau}^{\tau} \left(\int_{-\tau}^{+\infty} e^{2\omega(t-s)} (\mathbb{E} \| f(s) \|^2 + \mathbb{E} \| g(s) \|^2) ds \right) d\mu(t)
\]

Since the function \(s \mapsto \frac{e^{2\omega s}}{\nu([-\tau, \tau])} \left(\| f \|_\infty^2 + \| g \|_\infty^2 \right) \) belongs to \(L^1([- \infty, r]) \) resoning like above, it follows that

\[
\lim_{\tau \to +\infty} \int_{-\infty}^{\infty} e^{2\omega s} \times \frac{1}{\nu([-\tau, \tau])} \left(\int_{-\tau}^{\tau} e^{2\omega s} (\mathbb{E} \| f(s) \|^2 + \mathbb{E} \| g(s) \|^2) d\mu(t) \right) ds = 0
\]

Consequently

\[
\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \| \Gamma(f, g)(\theta) \|^2 d\mu(t) = 0
\]

Thus, we obtain the desired result. \(\square \)

Theorem 4.22. Assume \((H_0), (H_1), (H_3)\) and \((H_5)\) hold. Then equation \((1.1)\) has a unique square mean \(cl(\mu, \nu)\)-pseudo almost periodic solution of class \(r\).

Proof. Since \(f \) and \(g \) are square mean \((\mu, \nu)\)-pseudo almost periodic function, \(f, g \) has a decomposition \(f = f_1 + f_2 \) and \(g = g_1 + g_2 \) where \(f_1, g_1 \in SAP(\mathbb{R}; L^2(P, H)) \) and \(f_2, g_2 \in \mathcal{E}(\mathbb{R}; L^2(P, H), \mu, \nu, r) \). Using Theorem(4.20), Theorem(4.2) and Theorem(4.17), we get the desired result. \(\square \)

Our next objective is to show the existence of square mean \((\mu, \nu)\)-pseudo almost periodic solutions of class \(r\) for the following problem

\[
(4.2) \quad du(t) = [Au(t) + L(u_t) + f(t, u_t)] dt + g(t, u_t) dW(t) \quad t \in \mathbb{R}
\]
where \(f : \mathbb{R} \times C \to L^2(P, H) \) and \(g : \mathbb{R} \times C \to L^2(P, H) \) are two stochastic continuous processes. For the sequel, we formulate the following assumptions

(H\(_6\)) Let \(\mu, \nu \in \mathcal{M} \) and \(f : \mathbb{R} \times C([-r, 0], L^2(P, H)) \to L^2(P, H) \) square mean \(cl(\mu, \nu) \)-pseudo almost periodic of class \(r \) such that there exists a constant \(L_f \) such that \(E \| f(t, \phi_1) - f(t, \phi_2) \|^2 \leq L_f \times E \| \phi_1 - \phi_2 \|^2 \) for all \(t \in \mathbb{R} \) and \(\phi_1, \phi_2 \in C([-r, 0], L^2(P, H)). \)

(H\(_7\)) Let \(\mu, \nu \in \mathcal{M} \) and \(g : \mathbb{R} \times C([-r, 0], L^2(P, H)) \to L^2(P, H) \) square mean \(cl(\mu, \nu) \)-pseudo almost periodic of class \(r \) such that there exists a constant \(L_g \) such that \(E \| g(t, \phi_1) - g(t, \phi_2) \|^2 \leq L_g \times E \| \phi_1 - \phi_2 \|^2 \) for all \(t \in \mathbb{R} \) and \(\phi_1, \phi_2 \in C([-r, 0], L^2(P, H)). \)

Theorem 4.23. Assume (H\(_9\)), (H\(_4\)), (H\(_2\)), (H\(_4\)), (H\(_6\)) and (H\(_7\)) hold. If

\[
\tilde{M}^2 \tilde{M}^2 \sup_{t \in \mathbb{R}} \left(\| \Pi^v \|^2 \int_{-\infty}^{t} e^{-2\omega(t-s)}(L_f^2 + L_g^2)ds + \| \Pi^u \|^2 \int_{t}^{+\infty} e^{2\omega(t-s)}(L_f^2 + L_g^2)ds \right) < \frac{1}{4},
\]

then equation (4.2) has a unique square mean \(cl(\mu, \nu) \)-pseudo almost periodic solution of class \(r \).

Proof. Let \(x \) be a function in \(S P A P(\mathbb{R}, L^2(P, H), \mu, \nu, r) \) from Theorem(4.11) the function \(t \to x_t \) belongs to \(S P A P(C([-r, 0]; L^2(P, H), \mu, \nu, r) \). Hence Theorem(4.16) implies that the function \(g(\cdot) := f(\cdot, x) \) is in \(S P A P(\mathbb{R}; L^2(P, H), \mu, \nu, r) \). Consider the following mapping:

\[\mathcal{H} : S P A P(\mathbb{R}; L^2(P, H), \mu, \nu, r) \to S P A P(\mathbb{R}; L^2(P, H), \mu, \nu, r) \]

defined for \(t \in \mathbb{R} \) by

\[
(\mathcal{H}x)(t) = \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^s(t-s)\Pi^v \tilde{B}_\lambda(X_0 f(s, x_s))ds
+ \lim_{\lambda \to +\infty} \int_{t}^{+\infty} \mathcal{U}^s(t-s)\Pi^v \tilde{B}_\lambda(X_0 f(s, x_s))ds
+ \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^s(t-s)\Pi^v \tilde{B}_\lambda(X_0 g(s, x_s))dW(s)
+ \lim_{\lambda \to +\infty} \int_{t}^{+\infty} \mathcal{U}^s(t-s)\Pi^v \tilde{B}_\lambda(X_0 g(s, x_s))dW(s)
\]

From Theorem(4.20), Theorem(4.22) and Theorem(4.17), it suffices now to show that the operator \(\mathcal{H} \) has a unique fixed point in \(S P A P(\mathbb{R}; L^2(P, H), \mu, \nu, r) \). Let \(x_1, x_2 \in S P A P(\mathbb{R}; L^2(P, H), \mu, \nu, r) \). Then we have

\[
E\| \mathcal{H}x_1(t) - \mathcal{H}x_2(t) \|^2 \leq 4E \left(\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \| \mathcal{U}^s(t-s)\Pi^v \tilde{B}_\lambda(X_0(f(s, x_{1s}) - f(s, x_{2s})))ds \|^2 \right)
+ 4E \left(\lim_{\lambda \to +\infty} \int_{t}^{+\infty} \| \mathcal{U}^s(t-s)\Pi^v \tilde{B}_\lambda(X_0(f(s, x_{2s}) - f(s, x_{1s})))ds \|^2 \right)
+ 4E \left(\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \| \mathcal{U}^s(t-s)\Pi^v \tilde{B}_\lambda(X_0(g(s, x_{1s}) - g(s, x_{2s})))ds \|^2 \right)
+ 4E \left(\lim_{\lambda \to +\infty} \int_{t}^{+\infty} \| \mathcal{U}^s(t-s)\Pi^v \tilde{B}_\lambda(X_0(g(s, x_{2s}) - g(s, x_{1s})))ds \|^2 \right)
\]
and only one square mean unique fixed point (\(\Omega\)-dimensional Brownian notion defined on the filtered probability space
Lipschitzian with respect to the second argument.

Let us pose

\[
\text{Proof.}
\]

\[
\text{Consequently}
\]

\[
\text{This means that } H \text{ is a strict contraction. Thus by Banach’s fixed point theorem, } H \text{ has a unique fixed point } u \text{ in } SPAP(\mathbb{R}, L^2(P, H)), \mu, \nu, r). \text{ We conclude that equation (4.2), has one and only one square mean cl}(\mu, \nu)\text{-pseudo almost periodic solution of class } r. \]

Proposition 4.24. Assume \((H_0), (H_1), (H_2), (H_4)\) and \(f, g\) are lipschitz continuous with respect the second argument. If

\[
\text{Lip}(f) = \text{Lip}(g) < \left(\frac{\omega}{4\tilde{M}^2\tilde{M}^2(\|\Pi^s\|^2 + \|\Pi^u\|^2)}\right)^{\frac{1}{2}}
\]

then equation (5.1) has a unique cl}(\mu, \nu)\text{-pseudo almost periodic solution of class } r, \text{ where Lip}(f), \text{Lip}(g) \text{ are respectively the Lipschitz constant of } f \text{ and } g.

Proof. Let us pose \(k = \text{Lip}(f) = \text{Lip}(g)\), we have

\[
\mathbb{E}[\|Hx_1(t) - Hx_2(t)\|^2] \leq 4\tilde{M}^2\tilde{M}^2\mathbb{E}[\|x_1 - x_2\|^2] \sup_{t \in \mathbb{R}} \left(\|\Pi^s\|^2 \int_{-\infty}^{t} e^{-2\omega(t-s)}(L_j^2 + L_o^2)ds + \|\Pi^u\|^2 \int_{t}^{+\infty} 2k^2 e^{-2\omega(t-s)}ds + \|\Pi^s\|^4 \int_{-\infty}^{t} 2k^2 e^{2\omega(t-s)}ds\right)
\]

\[
\leq \frac{4kL^2\tilde{M}^2(\|\Pi^s\|^2 + \|\Pi^u\|^2)}{\omega} \mathbb{E}[\|x_1 - x_2\|^2].
\]

Consequently \(H\) is a strict contraction if \(k^2 < \frac{\omega}{4\tilde{M}^2\tilde{M}^2(\|\Pi^s\|^2 + \|\Pi^u\|^2)}\). \(\square\)

5. APPLICATION

For illustration, we propose to study the existence of solutions for the following model

\[
\begin{cases}
\quad dz(t,x) = \frac{\partial^2}{\partial x^2}z(t,x)dt + \left[\int_{-r}^{0} G(\theta)z(t + \theta, x)d\theta + \sin(t) + \sin(\sqrt{2}t) + \arctan(t)\right] + \int_{-r}^{0} h(\theta, z(t + \theta, x))d\theta dt + \left[\frac{\cos(t)}{2 + \cos(\sqrt{2}t)} + \arctan(t)\right] + \int_{-r}^{\theta} h(\theta, z(t + \theta, x))d\theta dW(t)
\end{cases}
\]

\[
z(t,0) = z(t, \pi) = 0 \text{ for } t \in \mathbb{R}
\]

Where \(G : [-r, 0] \rightarrow \mathbb{R}\) is a continuous function and \(h : [-r, 0] \times \mathbb{R} \rightarrow \mathbb{R}\) is continuous, Lipschitzian with respect to the second argument. \(W(t)\) is a two-sided and standard one-dimensional Brownian motion defined on the filtered probability space \((\Omega, \mathcal{F}, P, \mathcal{F}_t)\) with
Consider the measures \(F_t = \sigma \{ W(u) - W(v) \mid u, v \leq t \} \). To rewrite equation (5.1) in the abstract form, we introduce the space \(H = L^2((0, \pi)) \). Let \(A : D(A) \to L^2((0, \pi)) \) defined by

\[
\begin{cases}
D(A) = H^1((0, \pi)) \cap H_0^1((0, 1)) \\
Ag(t) = y''(t) \text{ for } t \in (0, \pi) \text{ and } y \in D(A)
\end{cases}
\]

Then \(A \) generates a \(C_0 \)-semigroup \((U(t))_{t \geq 0} \) on \(L^2((0, \pi)) \) given by

\[
(U(t)x)(r) = \sum_{n=1}^{\infty} e^{-n^2 \pi^2 t} < x, e_n >_{L^2} e_n(r)
\]

Where \(e_n(r) = \sqrt{2} \sin(n \pi r) \) for \(n = 1, 2, \ldots \), and \(\|U(t)\| \leq e^{-\pi^2 t} \) for all \(t \geq 0 \). Thus \(\overline{M} = 1 \) and \(\omega = \pi^2 \). Then \(A \) satisfied the Hille-Yosida condition in \(L^2((0, \pi)) \). Moreover the part \(A_0 \) of \(A \) in \(\overline{D(A)} \). It follows that \((H_0) \) and \((H_1) \) are satisfied.

We define \(f : \mathbb{R} \times C \to L^2((0, \pi)) \) and \(L : C \to L^2((0, \pi)) \) as follows

\[
f(t, \phi)(x) = (\sin(t) + \sin(\sqrt{2}t)) + \arctan(t) + \int_{-\tau}^{\theta} h(\theta, \phi(\theta)(x))d\theta
\]
\[
g(t, \phi)(x) = \frac{\cos(t)}{2 + \cos(\sqrt{2}t)} + \arctan(t) + \int_{-\tau}^{\theta} h(\theta, \phi(\theta)(x))d\theta
\]
\[
L(\phi)(x) = \int_{-\tau}^{\theta} G(\theta, \phi(\theta)(x))d\theta \text{ for } -r \leq \theta \leq 0 \text{ and } x \in (0, \pi)
\]

let us pose \(v(t) = z(t, x) \). Then equation (5.1) takes the following abstract form

\[
dv(t) = [Av(t) + L(v_t) + f(t, v_t)]dt + g(t, v_t)dW(t) \text{ for } t \in \mathbb{R}
\]

Consider the measures \(\mu \) and \(\nu \) where its Radon-Nikodym derivative are respectively \(\rho_1, \rho_2 : \mathbb{R} \to \mathbb{R} \) defined by

\[
\rho_1(t) = \begin{cases} 1 \text{ for } t > 0 \\
e^t \text{ for } t \leq 0 \end{cases}
\]

and

\[
\rho_2(t) = |t| \text{ for } t \in \mathbb{R}
\]

i.e \(d\mu(t) = \rho_1(t)dt \) and \(dv(t) = \rho_2(t)dt \) where \(dt \) denotes the Lebesgue measure on \(\mathbb{R} \) and

\[
\mu(A) = \int_A \rho_1(t)dt \text{ for } \nu(A) = \int_A \rho_2(t)dt \text{ for } A \in \mathcal{B}.
\]

From [6] \(\mu, \nu \in \mathcal{M} \), \(\mu, \nu \) satisfy \((H_4) \) and \(\sin(t) + \sin(\sqrt{2}t) + \frac{\pi}{2} \) is almost periodic. We have

\[
\limsup_{\tau \to +\infty} \frac{\mu([-\tau, \tau])}{\nu([-\tau, \tau])} = \limsup_{\tau \to +\infty} \frac{\int_{-\tau}^{0} e^t dt + \int_{0}^{\tau} dt}{2 \int_{-\tau}^{0} dt} = \limsup_{\tau \to +\infty} \frac{1 - e^{-\tau} + \tau}{\tau^2} = 0 < \infty,
\]

which implies that \((H_2) \) is satisfied.

For all \(t \in \mathbb{R} \), \(\frac{\pi}{2} \leq \arctan t \leq \frac{\pi}{2} \) therefore, for all \(\theta \in [t - r, t] \), \(\arctan(t - r) \leq \arctan(\theta) \). It follows \(|\arctan(\theta - \pi) - \arctan(\theta) | = \frac{\pi}{2} \arctan(\theta) \leq |\arctan(t - r) - \arctan(\theta) | = \frac{\pi}{2} - \arctan(t - r) \), implies that
\[
\left| \arctan \theta - \frac{\pi}{2} \right|^2 \leq \left| \arctan(t-r) - \frac{\pi}{2} \right|^2 \quad \text{hence} \quad \sup_{\theta \in [t-r,t]} \mathbb{E} \left| \arctan \theta - \frac{\pi}{2} \right|^2 \leq \mathbb{E} \left| \arctan(t-r) - \frac{\pi}{2} \right|^2.
\]
One the one hand, we have the following:
\[
\frac{1}{\nu([-\tau, \tau])} \int_0^\tau \mathbb{E} \left| \arctan(t-r) - \frac{\pi}{2} \right|^2 dt = \frac{1}{\nu([-\tau, \tau])} \int_0^\tau \mathbb{E} \left(\frac{\pi}{2} - \arctan(t-r) \right)^2 dt \\
\leq \frac{1}{\nu([-\tau, \tau])} \int_0^\tau \frac{\pi^2}{4} dt \\
\leq \frac{\pi^2}{4\tau} \to 0 \quad \text{as} \quad \tau \to +\infty
\]
On the other hand we have
\[
\frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^0 \mathbb{E} \left| \arctan(t-r) - \frac{\pi}{2} \right|^2 e^t dt \leq \frac{1}{\nu([-\tau, \tau])} \int_0^\tau \frac{\pi^2}{4} e^t dt \\
\leq \frac{\pi^2(1-e^{-\tau})}{4\tau} \to 0 \quad \text{as} \quad \tau \to +\infty
\]
Consequently
\[
\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{+\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \left| \arctan \theta - \frac{\pi}{2} \right|^2 d\mu(t) = 0
\]
It follows that \(t \mapsto \arctan t - \frac{\pi}{2} \) is square mean \((\mu, \nu)\)-ergodic of class \(r \), consequently, \(f \) is uniformly square mean \((\mu, \nu)\)-pseudo almost periodic of class \(r \). Moreover, \(L \) is bounded linear operator from \(C \) to \(L^2(P, L^2((0, \pi)) \).
Let \(k \) be the lipschit constant of \(h \), then for every \(\phi_1, \phi_2 \in C \) and \(t \geq 0 \), we have
\[
\mathbb{E} \| f(t, \phi_1)(x) - f(t, \phi_2)(x) \|^2 = \mathbb{E} \left\| \int_{-\tau}^{0} \left[h(\theta, \phi_1(\theta)(x)) - h(\theta, \phi_2(\theta)(x)) \right] \right\|^2 d\theta \\
\leq \int_{-\tau}^{0} \mathbb{E} \left\| h(\theta, \phi_1(\theta)(x)) - h(\theta, \phi_2(\theta)(x)) \right\|^2 d\theta \\
\leq \int_{-\tau}^{0} k \mathbb{E} \left\| \phi_1(\theta)(x) - \phi_2(\theta)(x) \right\|^2 d\theta
\]
\[
\mathbb{E} \| f(t, \phi_1)(x) - f(t, \phi_2)(x) \|^2 \leq kr \sup_{-\tau \leq \theta \leq 0} \mathbb{E} \left\| \phi_1(\theta)(x) - \phi_2(\theta)(x) \right\|^2 \\
\leq k \alpha \mathbb{E} \left\| \phi_1(\theta)(x) - \phi_2(\theta)(x) \right\|^2 \quad \text{for a certain} \quad \alpha \in \mathbb{R}_+
\]
Consequently, we conclude that \(f \) and \(g \) are Lipschitz continuous and \(cl(\mu, \nu)\)-pseudo almost periodic of class \(r \).
Moreover, since \(h \) is stochastically bounded, i.e \(\mathbb{E} \| h(t, \phi(t)(x)) \| \leq \beta \), \(t \in \mathbb{R} \), we have
\[
\mathbb{E} \| g(t, \phi)(x) \|^2 \leq \frac{4 + \pi}{2} + \int_{-\tau}^{0} \mathbb{E} \left\| h(\theta, \phi(\theta)(x)) \right\|^2 d\theta \\
\leq \frac{4 + \pi}{2} + r, \beta \\
\leq \beta_1 \quad \text{with} \quad \beta_1 = \frac{4 + \pi}{2} + r, \beta.
Which implies that g satisfies (H_5)

For the hyperbolicity, we suppose that

$$(H_5) \int_{-r}^{0} |G(\theta)|d\theta < 1.$$

Proposition 5.1. [11] Assume that (H_θ) and (H_η) holds. Then the semigroup $(U(t))_{t \geq 0}$ is hyperbolic.

Then by Proposition (4.24) we deduce the following result.

Theorem 5.2. Under the above assumptions, if $\text{Lip}(h)$ is small enough, then equation (5.1) has a unique $\text{cl}(\mu, \nu)$-pseudo almost periodic solution ν of class r.

REFERENCES

