DOL: 10.28919/¢ejma.2022.2.4
Eur. J. Math. Appl. (2022)2:4
URL: http://ejma.euap.org
(©) 2022 European Journal of Mathematics and Applications

SQUARE-MEAN PSEUDO ALMOST PERIODIC SOLUTIONS OF CLASS r
UNDER THE LIGHT OF MEASURE THEORY

MOHAMADO KIEMA AND ISSA ZABSONRE*

ABSTRACT. The aim of this work is to present new concept of square-mean pseudo almost
periodic of class r using the measure theory. We use the (u,v)-ergodic process to define the
spaces of (u,v)-pseudo almost periodic processes of class r in the square-mean sense. We
present many interesting results on those spaces like completeness and composition theorems
and we study the existence and the uniqueness of the square-mean (i, v)-pseudo almost periodic

solutions of class r for the stochastic evolution equation.

1. INTRODUCTION

In this work, we study some properties of the square-mean (u,v)-pseudo almost periodic
process using the measure theory and we used those results to study the following stochastic

evolution equations in a Hilbert space H,
(1.1) dx(t) = [Az(t) + L(zy) + f(t)]dt + g(t)dW (1),

where A : D(A) C H is the infinitesimal generator of a Cp-semigroup (7(¢))i>0 on H,
f,g : R — L*(P H) are two stochastic processes and W (t) is a two-sided and standard
one-dimensional Brownian notion defined on the filtered probability space (2, F, P, F;) with
Fi = o{W(u) — W(v) | u,v < t} and L is a bounded linear operator from C into L*(P, H).
C = C([-r,0]; L*(P, H)) denotes the space of continuous functions from [—r,0] to L*(P, H)
endowed with the uniform topology norm. For every ¢ > 0, x; denotes the history function of
C' defined by 4(0) = z(t + 0) for —r < 6 < 0.

We assume (H, ||,||) is a real separable Hilbert space and L?(P, H) is the space of all H-valued
random variables x such that

Ez|? = / |zl|2dP < +oo.
Q

This work is an extension of [14] whose authors have studied equation (1.1) in the deterministic
case. Some recent contributions concerning square-mean pseudo almost periodic solutions for
abstract differrential equations similar to equation (1.1) have been made. For example in [10]
the authors studied equation(1.1) without the operator L. They showed that the equation has
a unique square-mean p-pseudo almost periodic mild solution on R when f and g are square
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mean pseudo almost periodic functions.

In [] the authors studied the square-mean almost periodic solutions to a class of nonautonomous
stochastic differential equations without our operator L and without delay on a separable real
Hilbert space. They established the existence and uniqueness of a square-mean almost periodic
mild solution to those nonautonomous stochastic differential equations with the ’Acquistapace-
Terreni’ conditions.

In [9] The authors established the existence, uniqueness and stability of square-mean p-pseudo
almost periodic (resp. automorphic) mild solution to a linear and semilinear case of the
stochastic evolution equations in case when the functions forcing are both continuous and
S? — p—pseudo almost periodic (resp. automorphic) and verify some suitable assumptions.
This work is organized as follow, in section 2, we give spectral decomposition of phase space in
section 3 we study square-mean (u, v)-ergodic process of class r, in section 4 we study square-
mean (u, v)-pseudo almost process functions and properties and last section is devoted to an
application.

2. SPECTRAL DECOMPOSITION

To equation (1.1), associate the following initial value problem

duy = [Aug + L(uy) + f(t)]dt + g(t)dW (t) for t > 0
(2.1)
ug = € C =C([-r,0],L*(P, H)),

where f: R" — L*(P,H) and g : RT — L?(P, H) are stochastic processes continuous.

Definition 2.1. We say that a continuous function u from [—r, 400l into L*(P, H) is an integral

solution of equation, if the following conditions hold:

(1) /Otu(s)ds € D(A) for t > 0,

(2) u(t) = ¢(0) + A/O u(s)ds —l—/o (L(us) + f(s))ds + /o g(s)dW (s), for t >0,
(3) up = ¢.

If D(A) = L*(P, H), the integral solution coincide with the known mild solutions. One can

see that if u(t) is an integral of equation 2.1, then u(t) € D(A) for all ¢t > 0, in particular

¢(0) € D(A)
Let us introduce the part Ay of the operator A in D(A) which defined by

D(Ay) ={z € D(A): Az € D(A)}
Aoz = Az for x € D(Ay)

The following assumption is supposed:
(Hp) A satisfies the Hille-Yosida condition.

Proposition 2.2. [7] Ay generates a strongly continuous semigroup (To(t))i>0 on D(A).

The phase space Cy of equation (2.1) is defined by

Co={peC: ¢(0) e D(A)}.
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For each ¢t > 0, the linear operator U(t) on Cj is defined by

Ut) = vl )

where v(., ¢) is the solution of the following homogeneous equation

%vt = Av; + L(v;) fort > 0

Vo = @Y € C.
Proposition 2.3. [7] (U(t))i>0 is a strongly continuous semigroup of linear operators on Cj.

Moreover, (U(t))i>o satisfies, for t >0 and 6 € [—r,0], the following translation property

(U(t+ 0)p)(0) fort+60 >0
U)p)(0) =
o(t+0) fort+6 <0.

Theorem 2.4. [J] Let Ay defined on Cy by

D(Au) = { € C1([=1,0}: X); ¢(0) € D(A) and ¢'(0) = Ap(0) + L(¢)}

Aup =" for ¢ € D(Ay).

Then Ay is the infinitesimal generator of the semigroup (U(t))i>0 on Cy.

Let (Xy) be the space defined by
<X0> = {X()QJ A X}

where the function Xy is defined by

0 if 6e[-r0]

(Xoz)(0) =

x it 0=0.
The space Cy @ (Xp) equipped with the norm |¢ + Xoc|e = |¢|c + |¢| for (¢,¢) € Cy x X is a
Banach space and consider the extension Ay, defined on Cy & (Xo) by

{ D(Ay) = {p € C1([=1,0; X) : ¢ € D(A) and ¢’ € D(A) }
Aup = ¢ + Xo(Ap + L(p) - ¢).

Proposition 2.5. [7] Assume that (Hp) holds. Then, Ay satisfies the Hille- Yosida condition
on Cy @& (Xo) there exist M >0, w € R such that |w,4+00[C p(Ay) and

—~

—~ M
(M —-Ay) ™" < ———= forneN and A\ >w

(A—w)"
Moreover,the part of;l;, on D(;l;) = (Y is exactly the operator :474

Definition 2.6. The semigroup (U(t)):>o is hyperbolic if
o(Ay)NiR =0
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For the sequel, we make the following assumption:

(Hy) Ty(t) is compact on D(A) for every t > 0.

Proposition 2.7. Assume that (Hp) and (Hy). then the semigroup (U(t))t>0 is compact for
t>r.

Proposition 2.8. Assume that (Hy) holds. If the semigroup (U(t))i>o is hyperbolic then the
space Cy is decomposed as a direct sum

Co=SaeU

of two U(t) invariant closed subspaces S and U such that the restricted semigroup on U is a
group and there exist positive constant M and w such that

Ut)p| < Me Y| for t >0 and p € S

U)o < Me*'|p| for t<0 and ¢ €U,
Where S and U are called respectively the stable and unstable space, II° and II* denote
respectively the projection operator on S and U.
3. SQUARE-MEAN (u,r)-ERGODIC PROCESS OF CLASS R

Let AV the Lebesgue o-field of R and by M the set of all positive measures p on N satisfying
w(R) = +oo and pu([a,b]) < oo, for all a,b € R (a < b). L*(P,H) is a Hilbert space with

following norm
1
el = ( [ Jaltar)
Q

Definition 3.1. Let x : R — L?(P, H) be a stochastic process.
(1) z said to be stochastically bounded if there exists C' > 0 such that

Ellz(t)|*? < CVteR.
(2) x is said to be stochastically continuous if
lim B||x(t) — z(s)|*=0VseR.
—s

Denote by SBC(R, L*(P, H)), the space of all stochastically bounded and continuous process.
Otherwise, this space endowed the following norm

1
2]l = sup (E|z(t)[1%)*
teR
is a Banach space.

Definition 3.2. Let pu,v € M. A stochastic process f is said to be square-mean (pu,v)—
ergodic if f € SBC(R, L*(P, H)) and satisfied

lin_——— [ BIfO|dute) =

s o[, 7)

We denote by (R, L2(P, H), 1, v), the space of all such process.
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Definition 3.3. Let pu,v € M. A stochastic process f is said to be square-mean (pu,v)—
ergodic of class r if f € SBC(R, L*(P, H)) and satisfied

1 T
lim —/ sup E| f(0)]|*du(t) = 0.
oo V([=7,7]) J _+ oefp—r I7@)Fdute)
We denote by (R, L*(P, H), 1, v,7), the space of all such process.
For p,v € M and a € R, we denote by p, the positive measure on (R, N') defined by

(3.1) pa(A)=pla+b:be A) for Ae N.

From p,v € M, we formulate the following hypothesis

(Hz): For all a € R, there exists § > 0 and a bounded intervall I such that p,(A) < Bu(A)
when A € N satisfies ANT = 0.

(Hs3) For all a, b and ¢ € R, such that 0 < a < b < ¢, there exist dp and «y > 0 such that

0] > 60 = p(a+0,b+0) > apu(d, ¢+ 9).
(Hy4) Let p, v € M be such that lim supM =a < 00.
oo V([=T,7])
Proposition 3.4. Assume that (H};) holds. Then E(R,L*(P,H),u,v,r) is a Banach space

with the norm ||, ||so-

Proof. We can see that E(R; L*(P,H),p,v,r) is a vector subspace of SBC(R,L*(P, H))).

To complete the proof, it is enough to prove that E(R;L*(P,H),u,v,r) is closed in

SBC(R; L*(P, H)). Let (f,)n be a sequence in E(R; L*(P, H), u,v,r) such that liril fo=1Ff
n—-+00

uniformly in SBC(R, L*(P, H)). From v(R) = 400, it follows v([—7,7]) > 0 for 7 sufficiently
large. Let ng € N such that for all n > ng, [|fn — flleo < €. Let n > ng, then

N

: ) /_tT(QESUP E||f(9)H2)du(t) > 2])/_1—7( sup Ean(e)_f(@)H?)du(t)

I/([*T,T [t—r,t] V([fTaT oct—r,t]

2 [ (s Bl dute

v([-7,7 [t—7,t]

IA

2 [ (o) - st

v([=7,7]) teR

2 })/_T(@;up E||fa(0)|) du(t

v([-7,T [t—7,t]

()
20— P

IA

2 D/j(eesup 1E||fn(9)u)du(t),

V([_T7 T [t—mr,t]

Consequently

1 +r
lim sup —/ < sup E||f(0)||2> du(t) < 2ae for any € > 0.
T—+00 V([_Tv T]) —r NOgft—nt]

The following theorem 1is a characterization of square-mean (u,v)-ergodic pro-
cesses(eventually I = ().


https://doi.org/10.28919/ejma.2022.2.4

Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.4 6

Theorem 3.5. Assume that (Hy) holds and let f € SBC(R,L*(P,H)). Then the following
assertions are equivalent:

i) ER, L*(P, H), pv,7)

1
ii) lim ——————— sup E|lf(0)|*du(t) =0
) T+oo V([_T7 T] \[) [—7,7]\I O€[t—r,t] || ( )H ( )

pate[—r7I\I: sup E[f(0)]> >5}
cee 1 9€[t77'7t}
iii) For any e > 0, TETOO v([=r, 7]\ I) -

Proof. The proof is made like the proof of Theorem(2.13) in [6].
First, we show that 7) is equivalent to 7).

Denote by A =v(I), B = / ( sup E|]f(9)\|2> du(t). A and B belong to R, since the interval
I Noeft—r,
I is bounded and the process f is stochastically bounded and continuous. For 7 > 0 such that

I C -7, 7] and v([—7,7]\ I) > 0, it follows

AT o (ol FIOP) 0 = g [ [ (o U0 e )

u([y([v_,:i; L FEw /[] (,up ELFOI)aut) - )

From above equalities and the fact that v(R) = 400, i7) is equivalent to

i [ (s BISO)dut =0,

T+ V([_TvT]) r Noe[t—rt]

that is 1).

Now, we show that ii7) implies 7).
Denote by A2 and B¢ the following sets

A = {te[—T,r]\]: sup ]E||f(0)||2>5}

oeft—r,1]
B = {tel-rr\D): 2w EISO) < e}
Assume that i) holds, that is
(A7)

(3.2) lim

r=too v([—7, 7] \ ) =0

From the equality

[ (sw BIfOF)ane ~ [
[—7,7I\I “O€ft—rt] As

),

1
/[_T,T]\I ( sup E||f(9)||2>du(t) < ||fHOOV

v([=7, 7]\ 1) 0ct—r,t)

(sup EIFOIF)du()

oelt—r,t]

(sup EJFO))2)due),

oeft—r,t]

then for 7 sufficiently large

1(A2)
([-m7IND) (=7 7]\ 1)
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By using (Hy), it follows that

1 +
limsup—/ ( sup E||f(9)||2>d,u(t) < ae, for any >0,

T—+00 V([_T7 TD -7 oet—r,t]

consequently i7) holds.

Thus, we shall show that i) implies 7).
Assume that 7i) holds. From the following inequality

/{_W(eesig_g’t]Eufw)u?)du(t) /

1 2
AN /[T,TN (,u EISOIF)dntt) 2 exrt=riy
1(A7)

1 / < 9
sup BJIf(0)2)du(t) > — T
ev([=7,7I\1T) Jioropt Noeft—rg v([=7, 7]\ 1)
for 7 sufficiently large, equation (3.2) is obtained, that is 7). O

v

(sup EF(6)]?)dut

oc[t—r,t]

(A7)

€
>4

Definition 3.6. Let f € SBC(R, L*(P,H)) and 7 € R. We denote by f, the function defined
by f,(t) = f(t + 1) for t € R. A subset § of SBC (R, L*(P, H)) is said to translation invariant
if for all f € § we have f, € § for all 7 € R.

Definition 3.7. Let py and pus € M. py is said to be equivalent to po (py ~ ws) if there
exist constants o and 5 > 0 and a bounded interval I(eventually I = () such that ap;(A4) <
po(A) < Bui(A) for A € N satisfying ANT =10

Remark 3.8. The relation ~ is an equivalence relation on M.

Theorem 3.9. Let iy, pio, 1,0 € M. If iy ~ pig and vy ~ vy, then E(R, L*(P, H), i1, v1,7) =
ER,L*(P,H), pig, va,7).

Proof. Since p; ~ ps and vy ~ vy there exist some constants oy, as, f1, 82 > 0 and a bounded
interval I (eventually I = ()) such that ajui(A) < pa(A) < Bipi(A) and asvi(A) < 1p(A) <
Bov1(A) for each A € N satisfies ANT =) i.e
1 < 1 < 1
Bov1(A) T 1a(A) T agri(A)
Since p; ~ pp and N is the Lebesgue o-field, then for 7 sufficiently large, it follows that
ayu({t € [-n 7\ swp E|fO)) > <})

oclt—r,t]

Bovi([=7, 7]\ 1)

<

w({tel=nr\1: s E|fO)*><})

oelt—r,t]

va(m 7N D)
pn({tel=mr\1: swp E|FO) > <})

0clt—r,t]
o ([=7, 7]\ 1)
Consequently by Theorem 3.5, E(R, X, uq,v1,1) = E(R, X, o, 12, 1). O

<
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Let u, v € M denote by
cl(p,v) ={wi,wy : p~wp and v ~ wa}.

Proposition 3.10. [// Let n € M. Then u satisfies (Hg) if and only if the measures p and
Wy are equivalent for all T € R.

Proposition 3.11. [0/ (Hg) implies for all o, lim sup’u([_T — 0,7 +0])
T—00 ,U/([—T, 7'])

Theorem 3.12. Assume that (Hz) holds. Then E(R, L*(P, H), u,v,r) is translation invariant.

< +00.

Proof.  The proof of this theorem is inspired by Theorem (3.5) in [!|]. Let f €
EMR,L*(P,H),p,v,7) and a € R. Since v(R) = +oo, there exists ag > 0 such that
v([—7 — lal, 7 + |a]]) > 0 for |a| > ag. Denote by

Va([_Ta T]) oet—r,t]

M, (1) = ;/[ | ( sup E||f(0)||2) dua(t) V7> 0and a € R,

where v, is the positive measure defined by equation (3.1). By using Proposition (3.10), it

follows that v and v, are equivalent, x and p, are equivalent by using Theorem (3.9) we have

EMR,L*(P,H), o, Va,7) = E(R, L*(P, H), ui, v, 1) therefore f € E(R, L*(P, H), jia, Vq,7) that is
lim M,(7) =0 for all a € R.

T—+00

For all A € N, we denote by X, the characteristic function of A. By using definition of the
measure ji,, we obtain that

Xa(t)dpa(t) = Xa(t)du(t +a) = / du(t) for all A € N.

[—7,7] [—7,7] [-T4+a,7+a]

Since t +— supge_,.q Bl f(0)]|” is the pointwise limit of an increasing sequence of linear combi-
nations of functions, see(| [13]; Theorem 1.17 p.15]), we deduce that

/ sup E[f(0)|Pdua(t) = / s EIIS(0)]Pdu(t).
[—7,7] [-7+a,7+a] oe|

oc(t—rt] t—a—r,t—al
If we denote by a™ := max(a,0) and ¢~ = max(—a,0) we have |a| + a = 2a™, |a| — a = 2a7,
and
[—T74+a—|a|, 7 +a+ |a|]] = [-7 — 2a~,7 + 2a™]. Therefore we obtain
1
3.3 M, (T + |a]) = / sup  E|f(0)|*du(t).
( ) ( ’ |) V([_T —2a7,7+ 2(I+] [-7—2a—,7+2a*] O€[t—a—r,t—a) || ( )” ( )

From equation (3.3) and the following inequality

ﬁ/[ sup  E|L(0)|du(t) <

—71,7] O€lt—a—r,t—al

1
—/ sup  E[If(0)]*du(t)
V([—T, T]) [-7—2a~,74+2a™1] O€t—a—rt—a]

we obtain

m/[ sup  E[|f(0)[Pdu(t) < v([=7 —2a", 7+ 2a"]

—7,7] 0€lt—a—r,t—al V([_T7 TD

x M, (T + |al).
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This implies ,

1 “ ) V([—T—2]a|,7+2|a\])x il
50 e, BP0 < My(r + ).

t—a—r,t—a) v([-T,7])

From equation (3.3) and equation (3.4) and using Proposition (3.11) we deduce that

. 1 2 _
Jlim e /[ s E|f(0)|Pdu(t) = 0

—1,7] O€t—a—r,t—al

which equivalent to

lim /[ sup E|£(0 — a)|2dp(t) = 0,

T—H_OOV([_T? T]) —7,7] O€t—rit]
that is f_, € E(R, L*(P,H),u,v,r). We have proved that f € &(R,L*(P,H),pu,v,7) then
fra € ER,L*(P,H), p,v,7) for a € R. That is (R, L*(P, H), j1, v, r) is translation invariant.

Proposition 3.13. The space SPAP(R, L*(P, H), u,v,r) is translation invariant, that is for
alla €R and f € SPAP(R, L*(P,H), u,v,r), fo € SPAP(R, L*(P,H), u,v,r).
4. SQUARE-MEAN (p,v)-PSEUDO ALMOST PERIODIC PROCESS

In this section, we define square-mean (u, v)-pseudo almost periodic process and we study

their basic properties.

Definition 4.1. Let f : R — L?(P,H) be a continuous stochastic process. f is said be

square-mean almost periodic process if for all @ € R, there exists 7 € [a, a + [] such that
(4.1) supE|[f(t +7) — f(B)]* < ¢

teR
We denote the space of all such stochastic processes by SAP(R, L*(P, H)).

Theorem 4.2. [/0] The space SAP(R, L*(P, H)) endowed the norm ||, ||« is a Banach space.

Definition 4.3. Let p,v € M and f: R — L?(P, H) be a continuous stochastic process.
f is said be (u,v)— square-mean pseudo almost periodic process if it can be decomposed as
follows

f=g+9¢
where g € SAP(R, L*(P,H)) and ¢ € E(R, L*(P, H), j1, v).

We denote the space of such stochastic processes by SPAP(R, L?(P, H), j1, V).

Proposition 4.4. [7] Assume that (Hg) holds. Then the decomposition of (p, v)-pseudo almost
periodic function in the form f = g+ ¢ where g € AP(R, X) and ¢ € E(R, X, p,v) is unique.

Proposition 4.5. [1/] Let u, v € M. Assume (Hg) holds. Then the decomposition of a (u,v)-
pseudo almost periodic function ¢ = ¢1 + ¢a, where ¢p1 € AP(R, X) and ¢o € E(R, X, pu,v) is
unque.

Remark 4.6. Let X = L?(P, H). Then the Proposition (4.4) always holds.
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Definition 4.7. Let u,v € M and f: R — L?(P, H) be a continuous stochastic process.
f is said be (i, v)— square-mean pseudo almost periodic process of class r if it can be decom-
posed as follows

f=9+0¢
where g € SAP(R, L*(P,H)) and ¢ € E(R, L*(P, H), u, v, 7).

We denote the space of such stochastic processes by SPAP(R, L?(P, H), i, v, 7).
Proposition 4.8. SPAP(R, L*(P, H), u,v,r) is a Banach space.
Proof. This proposition is a consequence of Theorem(4.2) and Proposition(3.4). O

Proposition 4.9. [1/] Let p,v € M and assume (Hg) holds. Then the decomposition of
(u,v)-pseudo almost periodic function ¢ = ¢1 + ¢o, where ¢ € AP(R,L*(P,H)) and ¢y €
ER,L*(P,H), i, v,7) is unique.

Proposition 4.10. Let py, po, vi and vo € M if py ~ ps and vy ~ vy, then
SPAP(R,L*(P,H), piy,v1,7) = SPAP(R; L*(P, H), ji2, V2, 7).

This Proposition is a consequence of Theorem(3.9).

Theorem 4.11. Assume that (Hg) holds. Let yu,v € M and ¢ € SPAP(R, L*(P,H), i, v,r)
then the function t — ¢y, belongs to SPAP(C([—r,0], L*(P, H)), i, v, 7).

Proof. Assume that ¢ = g + h, where g € SAP(R, L*(P,H)) and h € E(R, L*(P, H), j1, v, 7).
Then we can see that, ¢; = ¢g; + h; and ¢, is square mean almost periodic process. Let us denote
by
1 T
M, (T :—/ ( sup E|h(0)|*)dpualt).
(1) PR AL [h(0)]] (

Where p,, and v, are the positive measures defined by equation (3.1). By using Proposition
(3.10), it follows that u, and p are equivalent and v, and v are also equivalent. Then by
using Theorem (4.10) we have E(R, L*(P, H), fta, Va,7) = E(R, L*(P, H), p, v,7) therefore h €
E(R,L*(P,H), jta, Va,r) that is TEIPMMQ(T) = 0 for all @ € R. On the other hand, for r > 0

we have

! i su su 2 1 ! su 2
v([=7]) /_T(ee[tfi,t] <n6[—lr)70] (ER@ -+l )) W= T])/_T veli—r (EIRO)I) du(t)
1 T 9 )
< L EER) + s @6
L ’ 2 v ! U 2
N e P (SO dute4) + | o (EIROI) da)
v(=r=r7+r]) 1 . , ;
- (s el o MU LC T
=y B L O
Consequently,
L ) v(=r 1.7 +1])
i ] (&301 (I6 + )| )> WO < T < M)

! / sup  E[|h(8)|Pdu(t)

v([-77]) )+ oelt—r,t]
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Using Proposition(3.11), and Proposition(3.10), it follows that,
¢; € SPAP(C[—r,0], L*(P, H)), i, v,7). Thus, we obtain the desired result O

Next, we study the composition of the space square-mean (u,r) -pseudo almost periodic

process.

Definition 4.12. [10] Let f : R x L?(P,H) — L*(P, H), (t,x) — f(t,z) be continuous. f
is said be square-mean almost periodic in ¢ € R uniformly in z € L?(P, H) if for all compact
K of L*(P,H) and for any € > 0 there exists I(¢, K) such that for all a € R, there exists
T € [o,a + (g, K)| with
v € K, supE|f(t+7,2) — f(t,2)|* <e.
teR

We denote the following space of stochastic processes by SAP(R x L?(P, H), L*(P, H)).

Theorem 4.13. [/0] Let f : R x L*(P,H) — L*(P,H), (t,z) — f(t,z) be a square almost
periodic process in t uniformly in x € L*(P, H). Suppose that f is Lipschitz in the following
sense: there exists a positive number L such that for any x,y € L*(P, H),

E|lf(t,z) = ft,»)|* < L-Elz -y
Then t — f(t,z(t)) € SAP(R, L*(P, H)) for any v € SAP(R, L*(P, H)).
Definition 4.14. Let pu,v € M. A continuous functions f(¢,z) : R x L*(P,H) — L*(P, H)
is said to be square-mean (u,v)-pseudo almost periodic of class r in ¢ for any z € L*(P, H)
if it can be decomposed as f = g + ¢, where g € SAP(R x L*(P,H),L*(P,H)),p € £R x

L*(P,H),L*(P,H),u,v,r). Denote the set of all such stochastically continuous processes by
SPAP(R x LX(P, H), L*(P, H), i, v, 7).

n 2 n
Proposition 4.15. Let a; € R, i € N. Then ‘Zai < nZ!ai|2.

i=1 i=1
Theorem 4.16. Let p,v € M satisfy (Hg) .  Suppose that f € SPAP(R x
L*(P, H),L*(P,H),u,v,r) and that there exists a positive number L such that, for any z,y €
L*(P H),

E|f(t,x) = ft, I < L-Ellz —y|
for t € R Then t — f(t,x(t)) € SPAPR,L*(P,H),p,v,r) for any = €
SPAP(R; L*(P,H), u,v,r).
Proof. Since x € SPAP(R; L*(P,H), u,v,r), then we can decompose x = w1 + Ty, where
r1 € SAP(R, L*(P,H)) and x5 € E(R, L*(P, H), j1, v, 7).
Otherwise, since f € SPAP(R x L*(P,H),L*(P,H),u,v,r), then f = fi + fo, where f; €
SAP(R x L*(P,H),L*(P,H)) and f, € E(R x L*(P,H), L*(P,H), p, v, 7).
The function f can be decomposed as
fz@) = filt, () + [F(Ex(0) = f(E 22(6)] + [ (£ 21(2) — fr(E, 21(0))]
= Silt, 21 (1) + [f(t, 2(t) — f(t,22(8))] + fa(t, 21 (1))

Using Theorem (4.13), we have (t — f1(t,z,(t)) € SAP(R x L*(P,H),L*(P, H)).
It remains to show that the both functions ¢ — [f(¢,z(t)) — f(¢t,z1(t))] and t — fo(t, x1(¢))
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belong to E(R x L*(P,H), L*(P,H), u,v,r).
We have,

Ellf(t,2(t)) — f(tan)* < LE[x(t) — 2 (1))
sup E[|f(0,2(0)) — f(0,2:(0)* < L. sup Ella(0) — 21(0)]*

oelt—rt] oclt—rt]

It follows that

: /[ sup EI|f(0. 2(6)) — £(0. 22(0)]*du(t) <

V([_T7 T]) T,7]0€t—7,1]

: /[_ sup Ellz(0) — 21(0)||Pdpu(t) <

V([_Ta T]) T,7]0€[t—7,t]

; / sup Ell2o(0) d(t).

V([_T) T]) T,7]0€[t—7,t]

Since 9 € E(R, L*(P, H), p,v,7) then t — f(t,x(t)) — f(t,z1(t)) is (u, v)-ergodic
Now to complete the proof, it is enough to prove t — fo(t,z1(t)) is (u, v)-ergodic. Since fy
is uniformly continuous on the compact set K = {z,(t) : t € R} with respect to the second
variable z, we deduce that for given e, there exists § > 0 such that for all ¢t € R, (; and {, € K,
one has

G =Gl <0 = [[f2(t.G) = fo(t. &) < e
Therefore, there exist n(¢) € N and {xz}?:(i) C K, such that
n(e)
K c | B(x:.9),
i=1

then

n(e)
2O < e+ Z |1 £2(t, 24

n(e)
120t a1 ()P < [ e+ ) lIfalt,z)]
=1

n(e)

e’ + Z“fZ(ta i) ||
i=1

IA
N

By using the Proposition (4.15), we have

n(e)
£t ar (O < 2 | e +ne)Y llfalt,z)]
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It follows that

! /[ sup | fol6, 21(0)) |2dpu(t) <

V([_7-7 T]) —7,7] O€t—r,t]

ep([—, 7] 1 / )
2 +n(e)) sup B[] f2(0, ) [I"du(t)
v([=7,7]) i—1 v([=7.7]) Jirm oelt—r ’
By the fact that
Vi€ {lnE), lim /M( |l fo(6,)|)dia(t) = 0
i yenn(e)},  lim ——— su T =
T—+00 V([_Ta T]) -7 9€[t}2‘,t] ? s

we deduce that

1 ad
Ve >0, lim sup ———— / (s Ellf(6,2:(0)P)du(t) < 20

T—+00 I/([_Ta T]) T oet—r,t]

Therefore t — f5(t,z1(t)) is ergodic and the theorem is proved. U
(Hs): g is a stochastically bounded process.

Theorem 4.17. Assume that (Hyp), (Hy), (Hy) and (Hjs) hold and the semigroup (U(t))i>o is
hyperbolic. If f is bounded and continuous on R, then there exists a unique bounded solution u
of equation (1.1) on R given by

t t

u = lim U (t — s)II°(ByXof(s))ds + lim Ut — s)IT(ByXo f (s))ds
A—=+oo J_ A—400 +o0
+ lim t U (t — $)IT°(ByXog(s))dW (s) + lim t U (t — s)IT*(BrXog(s))dW (s)

A—+oo J_ o A—+400 +o0

V t >0, where E)\ =AM — /Tu)_l,Hs and IT* are the projections of Cy onto the stable and
unstable subspaces.

Proof. Let

t
u = o(t)+ )\lir}rq U (t — s)IT°(BrXog(s))dW (s)
—+oo J_
t ~
+ lim U (t — s)IT*(BrXog(s))dW (s)V t >0,
A—4o00 +oo
where

v(t) = Al_i>11100 t U (t — )T (ByXo f(s))ds + A1_1}1300 [j U (t — $)IT*(BrXof(s))ds

Let us first prove that u, exists. The existence of v(t) have proved by [!]. Now, we show that
t

the limit )\1151_1 U (t — $)I1° By(Xog(s))dW (s) exist.
=400 J_ o

For t € R we have,
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2

. ‘ “/_too U (1 — $)IT¥( EAXog(S))dW(S) E(‘/_too M2e—2w(t—8)|ﬂs‘2|| EA(XOQ(S))HQ(ZS)

IN

IN

t
—2 —2w(t—s s 53
TE( [ eI By(Xog(s)) ds)

IN

N t
M2M2|Hs|2E(/ e—Qw(t—s)Hg(S)HQdS)

—00

IN

n=1 t—n

Using the Holder inequality, we obtain

2
<

E ' ' /_ ; LS (t — $)TT* By(Xog(s))dW (s)

o +oo t—n+1 3 t—n+1 3
M M2|HS|QZ </ 6—4w(t—5)d8) E (/ ||g(s)||2ds) <
n=1 t—n t—n

1
o~ 1 o) 1 t—n—+1 3
M M2|Hs’2 2 : e~dw(n=1) _ —dwn)2 @ </ Hg(S)szS) <

—n

o 1 0 t—n-+1 %
M2M2|Hs|2m(e4w” —1)2Y e xR (/tn ||g(s)||2ds) .

n=1

Since the serie 26_2‘”” is convergent, then it exists a constant ¢ > 0 such that

n=1
o
26_2“’” < ¢, moreover it follows that
n=1

2

H/ U (t — $)II°( ByXog(s))dW (s)|| <

M| \/—( )7E|g(s IIZ

)
< 726—211171
n=1

< ¢

-9~ 1 1
where, y = M M2|II[2 (€ = DAElg(s)].
Let F(n,s,t) =U(t — s)II°( BxXog(s)) for n € N for s < ¢t.

For n is sufficiently large and o < t, we have

S

H/ (n, s, t)dW (s)
VRS e —dw(t=s)g 2 E T 24 ’ <
| IZ e s) X lg(s)||"ds ) <

n=1 o—n —n

N > t—n+1
Ay e ([ ey as).
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Wi M2|Hs|2 (Z —dw(t—o+n—1) _ 6—4w(t—a+n))% % E(/

— a—n

—~ o—n+1
M2M2|HS’22\/_ —2w(t—0o) Ze 2wnig (/ Hg(S)HQdS)%) < 706_2“}“_0)
w

It follows that for n and m sufficiently large and o < ¢, we have

o—n—+1

lg(s)|*ds)?) ) <

2
<

EH / t F(n, s,t)dW(s) — /O: F(m, s,t)dW (s)

EH/ (n, 5, 8)dW (s) + /;F(n,s,t)dW(s)—/a F(m, s,{)dW (s)

—00

2
\ <

jAFmﬁﬁﬂW@
/_ ;F(n, 5, 1AW ()

2
31[«:7’ ’

2 (o
+3EH/ F(m, s,1)dW (s)

2

F(n,s, t)dW(s) — / F(m,s,t)dW(s)

—2w(t—o) 2

Gyce tF(n, s, t)dW (s) — /tF(m, s, t)dW (s)

t
Since lim EH/F(n,s,t)dW(s)

n—-4o00

exists, then

t t 9
limsupIEH/ F(n,s,t)dW(s) _/ F(m,s,t)dW(s)|| < 6yce 2=

n,m—-+oo

If o — —o0, then

limsupEH/_tooF(n,s,t)dW(s) - /_tooF(m,s,t)dW(s)Hz 0.

n,m——+00

We deduce that the limit

2
lim EH/ (n, s, t)dW (s ’ = lim EH/ U(t ( BaXog(s))dW (S)H
n—-+00 n—+00

t

exists. Therefore, lim U (t — $)IT*( B, Xog(s))dW (s) exists. In addition, one can show

n—-+o0o

that the function -
2
t - lim IEH/ Ut ( BuXog(s)ds ‘
n—-4o0o
is bounded on R. Similary, we can show that the function
+o0 .
t— lirf Ut — s)I*( B, Xog(s))dW (s)
n——+00 t
is well defined and bounded on R. O

Proposition 4.18. [1/] A function ¢ € C(R, X) is almost periodic if and only if the space of
functions {¢. : 7 € R}, where ¢.(t) = ¢(t + 1), is relatively compact in BC(R; X)

Remark 4.19. As L?*(P, H) is a space Banach then the Proposition(4.18) holds.


https://doi.org/10.28919/ejma.2022.2.4

Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.4 16

Theorem 4.20. Assume that (Hs). Let f,g € SAP(R; L*(P, H)) and T be the mapping defined
fort e R by

P(f.9)(t) = lim [ Z/{s(t—s)HS(EAXOf(s))ds+AEr+nm /+ Ut — $)IT(BrXof(s))ds
+ lim t U (t — $)TT*(ByXog(s))dW (s)
+ lim t U (t — $)IT*(BrXog(s))dW (s)

A——+o00 +00

Then T'(f,g) € SAP(R; L*(P, H)).

Proof. T'(f,9)-(t) = T'(f,9)(t + 7)

t+7 - t+T1 .
= lim Ut +7—9)II°(BaXof(s))ds+ lim Ut +7— s)IT"(BaXof(s))ds
A——+o0o — 0 A——+oo +oo
t+r N t+T ~
+ lim UP(t+ 7 — s)IT°(BaXog(s))dW(s) + lim U (t+ 7 — s)IT*(BaXog(s))dW (s)
A—=+oo J_ A—+o0 +oo
¢ ¢
= lim Ut — s)ITI*(BrXof(s +7))ds + lim U (t — s)IT"(BrXof(s +7))ds
A— 400 o A—+oo +oo
¢ t
+ lim U (t — s)IT°(BrXog(s + 7))dW(s) + lim Ut — s)IT*(BrXog(s + 7))dW (s)
A—=+oo J A—+o0 +oo
¢ ¢
= lim Ut — s)II°(BrXo f-(s))ds + lim Ut — s)I*(BrXo f-(s))ds
A— 400 — o A——+o0 +oo
¢ t
+ lim U (t — s)TT°(BrXog-(s))dW (s) + lim U (t — s)IT*(BrXog-(s))dW (s)
A—=+oo J A—+o0 +oo

= T'(fr,g-)(t) for allt € R.

Thus I'(f,9)r = TI'(fr,g-) which implies {I'(f,g)s,0 € R} is relatively compact in
SBC(R, L*(P, H)). Since I' is continuous from SBC(R, L?(P, H)) into SBC (R, L*(P, H)) then
D(f,g) € SAP(R, I2(P, H). .

Theorem 4.21. Assume that (Hg) and (Hjs) holds. Let f,g € E(R,L*(P,H),u,v,r) then
D(f,9) € ER, AP, H), j,v,7).

Proof. We have,

t

P(f9)(t) = [Jim [ U (t — $)I1°(BrXo f(s))ds
+ lim t Ut — )T By Xo f (s))ds

A——+00 +00
t

+ Jim 7 US(t — $)IT*(ByXog(s))dW (s)
+ lim t Z/lu(t— S)HU(EAXog(S))dW(S)

A—400 +00
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]EHF(f,g)(@)HQ = E|| tim /6 U (t — $)TT(ByXo f(5))ds

A——+o00 S
0 ~
+ lim U (t — s)IT*(BrXof(s))ds
A—400 +oo
9 ~
+ lim U (t — s)IT°(BrXog(s))dW (s)

A——+oo |

0 - 2
4 olim [ Ut — $)IT(BaXog(s))dW (s) ‘ .
A——+o00 +o00
| sw BING.o)@)Pdutt) <
—Tee[t—’r',t]
T —~—o 7]
/ sup 48 (NN / e=24(0=9) [T 2| £(s)|[2ds
—7 O€[t—r,t] —0o0

. +o00 . 0
+ MQMQ/ I £ (s) || ds + MQMQ/ eI P g(s) | ds
0 —00

— +00
+ NP [ gl ds ) dut)

T

AN | / s ( / 9 e 2O PR £(5) [2ds ) dpa(t)

—7 0e [t—T,t]

IN

+ /T sup (/9+°°e2w(t—s)|Hu|2E||f(8)||2ds>dM(t)

—7 0€t—r,t]

T 0 +o00
b [ s ([ e pEg(s) s+ [ PE g )]s )duto)
—o0 0

—7 0c [t—T‘,t]

< aPI[np [ s I / " B ()] + (o)) ) du)

—7 O€ft—rt —o0

e [ s ([ + Bl

—7 O€ft—rt
one the one hand using Fubini’s theorem, we have

e [* [ s [ e w617+ Bt Pas] )

-7 oeft—r,t] J —oo

< emp [ s ([ OB+ Rl )ity

—7 0€ft—r,t] N —o00

< e[ s ([ R + Bl sty

—T QG[t—T,t]

< e [C([ @R + Bl s ) dute)
< e [C([ e IS = o+ Bllgte - )]s ) dut
< e [ e [ (B - 917+ Elgte - ol duteyis

-7
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By using Proposition(3.13) we deduce that

i [ (B 9+ Bl - 9)1)du(t) -0

e[, 71)

for all s € Rt and

e ws T 9 2 e > u([—,7]) 2 2
i | (Bl = 9l + Elgte = ) dutt) < e CACRA 7Y
Since f and g are bounded functions, then the function s 2:(8{1( 7[__:]’)7]) (|| A+ g||go>

belongs to L!([0, +00[) in view of the Lebesgue dominated convergence Theorem, it follows that

o e +o0 6—2(1.)8 T ) )
er lim B (EHf(t—s)H +E|g(t— )| )du(t)ds—>0.

oo v([=T 7)) ),
On the other hand by Fubini’s theorem, we also have

e [ s ([ +Elg(o)is) (o

-7 O€ft—r]

< mp ([ + Bl ) du)

—71 0€ft—r,t] —r

< e ([T 5P + Elg()P)ds) du(t)
[ (

-7 t—r

< [ ([ @I + Elg)Pds)da(e)
< mE [ ([ @IS+ Elg(s) ) ds
2ws
Since the function s s ———— (||f||30 + ||g||§o) belongs to L'(] — 0o, 7]) resoning like above,
Z=)

it follows that . .
lin_ [ s oo ([ @R + Bl dute))ds = 0

T—+00 | _r
Consequently
1 / T
lim —— sup E|T(f,¢)(0)|*du(t) =0
oo ([=7, 7)) ) ; peft—ry [P 9)E) i)
Thus, we obtain the desired result. [l

Theorem 4.22. Assume (Hyp) , (Hy) , (Hs) and (Hs) hold. Then equation (1.1) has a unique
square mean cl(u,v)-pseudo almost periodic solution of class r.

Proof. Since f and g are square mean (u,v)-pseudo almost periodic function, f, ¢g has a
decomposition f = fi + fo and g = g + g2 where fi, g1 € SAP(R;L*(P,H)) and f,,
go € ER; L*(P,H), p,v,7). Using Theorem(4.20), Theorem(4.2) and Theorem(4.17), we get
the desired result. 0

Our next objective is to show the existence of square mean(u,v)-pseudo almost periodic
solutions of class r for the following problem

(4.2) du(t) = [Au(t) + L(ug) + f(t,ue)]dt + g(t,u)dW (t) for t € R
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where f: RxC — L*(P,H) and g : Rx C — L*(P, H) are two stochastic continuous processes.
For the sequel, we formulate the following assumptions

(Hg) Let p, v € M and f : Rx C([—r,0], L*(P, H)) — L*(P, H) square mean cl(u, v)-pseudo
almost periodic of class r such that there exists a constant L; such that E‘ ’ ft, 1) —
2
[(t,62)|| < Ly x Ellor = al]? for all t € R and gu, 65 € C([=7,0], L*(P, H)).
(H7) Let p, v € M and g : Rx C([—r,0], L*(P,H)) — L*(P, H) square mean cl(p, v)-pseudo

almost periodic of class r such that there exists a constant L, such that

EHg(t, 1) —g(t, 69)||” < Ly E||¢1— o for all ¢ € R and oy, ¢y € C(|=r, 0], L(P, H)).

Theorem 4.23. Assume (Hy), (H;), (Hg), (Hy) ,(Hg) and (Hy) hold. If

t +o0o
A2 2 s —2w(t—s u w(t—s 1
M*M sup (yn |2/ e 2= (L% + L2)ds + |11 |2/t et >(L§+L§)ds) <7

teR —00

then equation (4.2) has a unique square mean cl(p,v)-pseudo almost periodic solution of class

r.

Proof. Let = be a function in SPAP(R, L*(P,H), u,v,r) from Theorem(4.11) the function
t — x; belongs to SPAP(C([—r,0]; L*(P, H), u,v,r). Hence Theorem(4.16) implies that the
function g(.) := f(.,z.) is in SPAP(R; L*(P, H), uu,v,r). Consider the following mapping:
H:SPAPR; L*(P,H),p,v,r) — SPAP(R; L*(P,H), u,v,r) defined for t € R by

t

(Hz)(t) = lim | Ut — s)EBA(Xof(s,a,))ds

A——+00 oo

t

+ lim U (t — $)TT“By(Xo f (s, x5))ds

A——+00 +00
t

+ lim U (t — $)TT By (Xog(s, z))dW (s)

A—~+00 oo

t

+ lim U (t — $)IT"Br(Xog(s, x5))dW (s)

A—+00 +00

From Theorem(4.20), Theorem(4.22) and Theorem(4.17), it suffices now to show that
the operator H has a unique fixed point in SPAP(R;L*(P,H),pu,v,r). Let x,20 €
SPAP(R; L*(P,H), u,v,r). Then we have

)

US(t — $)TT®BA(Xo(f (s, 215) — f(5,225))ds

t
E[Har () — Has(®)? < 4IE( mf/ |

+4E (/\Er}rloo UU(t - S)HUB)\(Xo(f(S,xQS) — f(573513))ds‘ ‘2)
(/\EI_POO Z/{S t— S)H B)\(XO( (S xls) _ 9(57$2s))d5H2)

(}\Er}rloo L{“(t — $)IT“Bx(Xo(g(s, m2s) — g(s,xls))ds‘ ’2)
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t
< 4M2M2]E(|H3|2/ e_QW(t_S)(L? + L;)Hxls — 2o, %ds

+oo
+|H“|2/ =L} + LY)||1s — x23||2d5)
t
t

AMPIIE (|2 — xzu2)su£(|m|2/ e 2L + L2)ds
te

— 00

IN

400
+|H“|2/t e* (=) (L5 +L§)ds).

This means that H is a strict contraction. Thus by Banach? fixed point theorem, H has a
unique fixed point u in SPAP(R; L*(P, H), i, v,7). We conclude that equation (4.2), has one

and only one square mean cl(u, v)-pseudo almost periodic solution of class 7. 0

Proposition 4.24. Assume (Hyp), (Hy), (Hp), (Hy) and f, g are lipschitz continuous with

respect the second argument. If

Lip(f) = Lip(g) < <4M2M2(|H5|2 N |H“|2)>

then equation (5.1) has a unique cl(p,v)-pseudo almost periodic solution of class r, where

Lip(f), Lip(g) are respectively the Lipschitz constant of f and g.

Proof. Let us pose k = Lip(f) = Lip(g), we have

t
0 o
Bl (t) ~ Haa)F < ANPAB(loy — ol Phsup (1 [ 025 + L3)as
—0o0
+oo
+|H“\2/ (=) (L5 + Lg)ds)
t
—— o t +oo
< AMPM E(||lz1 — 22]*)sup (|HS|2/ 222w (t=5) gs + |H“|2/ 2/-:%2“”“—8)013)
teR —o0 t
ARENN (T2 + 1T
w
. . .o w
Consequently H is a strict contraction if k* < O

MM (I3 [2 + T15[2)
5. APPLICATION

For illustration, we propose to study the existence of solutions for the following model

( 2 0
dz(t,x) = %z(t, x)dt + [/ G(0)z(t + 0, x)d + sin(t) 4 sin(v/2t) + arctan(t)
+/Oh(9 2(t+6 :U)d@] dt + [L(t) + arctan(t)
N ’ 2 + cos(v/2t)
(5.1)
0
+/ R0, =(t + 0, :v))d(‘)] dw (t)
| 2(t,0) =z(t,m)=0fort €R
Where G : [—7,0] — R is a continuous function and h : [—r,0] x R — R is continuous,

Lipschitzian with respect to the second argument. W (t¢) is a two-sided and standard one-

dimensional Brownian notion defined on the filtered probability space (Q,F,P,F;) with
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Fi=o{W(u) —W(v) | u,v <t}. To rewrite equation (5.1) in the abstract form , we introduce
the space H = L?((0,7)). Let A: D(A) — L*((0,7)) defined by

D(A) = H'((0,7)) N Hy((0,1))
Ay(t) = y"(t) fort € (0,7) and y € D(A)
Then A generates a Cy-semigroup (U(t))s>o on L*((0,)) given by

UBD)(r) =D e ™™ < e, >p2 en(r)

Where e, (1) = v/2sin(nar) for n = 1,2, ..., and |[U(t)|| < e ™ for all t > 0. Thus M = 1 and
w = 7%, Then A satisfied the Hille-Yosida condition in L*((0,7)). Moreover the part A of A
in D(A). It follows that (Hg) and (Hy) are satisfied.

We define f: R x C — L*((0,7)) and L : C' — L?((0,7)) as follows

0

flt,¢)(x) = (sin(t) +sin(v/2t)) + arctan(t) + / h(0, $(0)(x))do

T

cos o
g(t,9)(x) = 2+TS(;)\/%)+8chtan(t)—i—/_h(9,gb(«9)(3§))al9

L(6)(z) = /_ G0, 6(0)(x))df for —r <0< 0and z € (0,7)

let us pose v(t) = z(t,z). Then equation(5.1) takes the following abstract form
dv(t) = [Av(t) + L(ve) + f(t,v)]dt + g(t, v,)dW (t) for t € R

Consider the measures p and v where its Radon-Nikodyn derivative are respectively py, ps :
R — R defined by

lfort>0
p1(t) =

et fort <0
and
po(t) = It] for t € R
i.e du(t) = pi(t)dt and dv(t) = pa(t)dt where dt denotes the Lebesgue measure on R and

u(A) = /Apl(t)dt for v(A) = /A,Oz(t)dt for A € B.

From [6] p, v € M, p, v satisfy (Hy) and sin(t) + sin(v/2t) + g is almost periodic.
We have

0 T
/ eldt + / dt
— 1—e T
lim supM = limsup=—= 0 = lim supe—Q—H—

oo V([T 7)) roteo 2/0 oo T

-7

=0 < o0,
tdt

which implies that (Hy) is satisfied.

For all t € R, g < arctant < g therefore, for all § € [t — r,¢t], arctan(t — r) < arctan(f). It

follows | arctan § — g = g — arctan § < ‘ arctan(t —r) — g = g — arctan(t — r), implies that
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|2 |2 |2 |2
arctanf — —| < ‘ arctan(t —r) — =| hence sup E|arctanf — —‘ < E|arctan(t —r) — =| .
2 oct—r,t] 2 2
One the one hand, we have the following:
1 /T |2 1 T 2
—— [ Elarctan(t —r) — —| dt = —/ E(— — arctan(t — 7")) dt
v([=7.7]) Jo 2 v([=7,71) Jo N2
1 T
< — | —dt
V([_Tv T]) 0 4
2
< — —0as— +©
4t
On the other hand we have
1 0 2 1 T 2
—/ E|arctan(t — r) — T etat < —/ T etdt
V([_T7 TD -7 2 V([_Ta T]) 0 4
721 —e"
< 1 — 0 as — 400
T

Consequently

1 o
lim —— / sup E

T_H_OOV([_T? T]) —7  O€[t—r,t]

“du(t) = 0

T
arctand — —
2

T
It follows that ¢ — arctant — — is square mean (u,v)-ergodic of class r, consequently, f is

uniformly square mean (u, v)-pseudo almost periodic of class r. Moreover, L is bounded linear
operator from C' to L?(P, L*((0,n)).
Let k be the lipschiz constant of h, then for every ¢, ¢o € C' and t > 0, we have

E|f(t.00)() - o @lF = | [ 16,010 ~ 0. 500101

< [=

< / Ok:IE‘ 6:(0)(@) - ¢2(0)(x)H2d0

h(6,:(0)(x)) — h(6, 62(0) () || o

B|f(t.01)(x) ~ t. @) < kr sup Efjor(e)(o) - 02(6)(a)|
o1(0)(z) — ¢2(0)(x)

2
< k?“oz]E‘ for a certain a € R,

Consequently, we conclude that f and g are Lipschitz continuous and ¢l(u, v)-pseudo almost
periodic of class r.
Moreover, since h is stochastically bounded, i.e E||h(t, ¢(t)(x))|| < B, t € R, we have

Blotol? < 37+ [ 8o o]

4+
2

B with 8, =

IN

+7r.p
4+

IN

+r.g.
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Which implies that ¢ satisfies (Hs)
For the hyberbolicity, we suppose that

(HS)/_O\G(G)]dH <1

Proposition 5.1. [/1] Assume that (Hg) and (Hy) holds. Then the semigroup (U(t));>o is
hyperbolic.

Then by Proposition (4.24) we deduce the following result.

Theorem 5.2. Under the above assumptions, if Lip(h) is small enough, then equation (5.1)

has a unique cl(p, v)-pseudo almost periodic solution v of class r.
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