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ON THE SOLVABILITY OF FINITE GROUPS AND THE NUMBER OF
SYLOW 2-SUBGROUPS

RUSONG YANG, KAIRAN YANG AND RULIN SHEN∗

Abstract. Let G be a finite group. Denoted by n2(G) the number of Sylow 2-subgroups of
G. In this paper, we prove if G is non-solvable and n2(G) is a power of a prime p, then p is a
Fermat prime.

1. Introduction

Let G be a finite group and p a prime. We denote by np(G) the number of Sylow p-subgroups
of G, which is called Sylow p-number of G (hereinafter referred to as Sylow number). The influ-
ence of the number of Sylow subgroups in finite groups on group structure is a very meaningful
research topic. In 1967, M. Hall [1], studied the number of Sylow subgroups in finite groups,
and proved that solvable group have solvable Sylow numbers, and 22 is never a Sylow 3-number
and 21 a Sylow 5-number. In 1995, Zhang [2], proved that a finite group G is p-nilpotent if
and only if p is prime to every sylow number of G. In 2003, G. Navarro [3] proved that if G
is p-solvable, then np(H) divides np(G) for every H ≤ G. In 2016 [4], Li and Liu classified
finite non-abelian simple group with only solvable Sylow numbers. We say that a group G

satisfies DivSyl(p) if np(H) divides np(G) for every H ≤ G. In 2018, Guo and E. P. Vdovin [5]
generalized the results of G. Navarro, and proved that G satisfies DivSyl(p) provided every
non-abelian composition factor of G satisfies DivSyl(p). Recently, Wu [6] proved that finite
simple group does not satisfy DivSyl(p). In this paper, we will study the relationship between
the number of Sylow 2-subgroups and the solvability of groups. Obviously, the number of Sylow
2-subgroups is odd. By the famous Feit-Thompson odd order Theorem, if the number of Sylow
2-subgroups of G is 1, then G is solvable. A natural question is whether can we determine the
solvability of G if the number of Sylow 2-subgroups of G is given? In this paper, we study the
case that Sylow 2-numbers is a prime power and obtain the following main result.

Theorem. If G is non-solvable and the number of Sylow 2-subgroups of G is a power of a
prime p, then p is a Fermat prime.

Note that a Fermat prime above means a prime of the type 2a + 1. Also when n2(G) = 3, G
is solvable. If k ≥ 2, then there exists a non-solvable group G = PSL(2, 8) × Sk−2

3 such that
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n2(G) = 3k. Suppose that p = 2a + 1 > 3 is a Fermat prime, then there exists a non-solvable
group G = PSL(2, 2a)k such that n2(G) = pk.

2. Some Lemmas

Lemma 2.1 Let G be a finite group and N a normal subgroup of G, then both n2(N) and
n2(G/N) divide n2(G).

Proof. Let P2 be a Sylow 2-subgroup of G. By Theorem 2.1 in [1], we have n2(G) = a2b2c2,
where a2 is the number of Sylow 2-subgroups in G/N , b2 is the number of Sylow 2-subgroups
in N and c2 is the number of Sylow 2-subgroups in NP2N(P2 ∩N)/P2 ∩N . Thus we get both
n2(N) and n2(G/N) divide n2(G), as required. �

Lemma 2.2 Let P2 be a Sylow 2-group of PSL(2, q), where q is power of odd prime, then
(1) if 3 < q ≡ ±3(mod 8), then NPSL(2,q)(P2) ∼= A4,
(2) if 3 < q ≡ ±1(mod 8), then NPSL(2,q)(P2) ∼= P2 .

Proof. Let G be a finite non-abelian simple group and P2 a Sylow 2-subgroup of G. By
Corollary in [7], we get that NG(P2) ∼= P2, except in the following case: G ∼= PSL(2, q),
where 3 < q ≡ ±3(mod 8) and NG(P2) ∼= A4. Therefore, for 3 < q ≡ ±3(mod 8), we have
NPSL(2,q)(P2) ∼= A4. For 3 < q ≡ ±1(mod 8), we know that NPSL(2,q)(P2) ∼= P2, as required. �

The following Lemma gives the formula for calculating the number of Sylow 2-subgroups of
PSL(2, q). We denoted by 2′ and n2′ the set of all odd primes and the 2′-part of n (i.e. the
largest odd factor of n), respectively.

Lemma 2.3

n2(PSL(2, q)) =



q + 1, where q = 2f for f is a positive integer,

q(q2 − 1)

24
, 3 < q ≡ ±3(mod 8),

(
q(q2 − 1)

2
)2′ , 3 < q ≡ ±1(mod 8).

Proof. First we denote by P2 and n2 the Sylow 2-subgroups of PSL(2, q) and the number
of Sylow 2-subgroups of PSL(2, q), respectively. Next we get, by the second Sylow theorem
in [8], that n2 = |G : NG(P2)|. If q = 2f , then

∣∣NPSL(2,q)(P2)
∣∣ = q(q − 1) by [9], and so

n2 =
∣∣PSL(2, q) : NPSL(2,q)(P2)

∣∣ = q(q2−1)
q(q−1) = q + 1. If 3 < q ≡ ±3(mod 8), by Lemma 1.2,

we have NPSL(2,q)(P2) ∼= A4, and then n2 = |PSL(2, q) : A4| = q(q2−1)
24

. Also by Lemma 1.2, if
3 < q ≡ ±1(mod 8), then NPSL(2,q)(P2) ∼= P2, and so n2 = |PSL(2, q) : P2| = ( q(q

2−1)
2

)2′ , as
required. �

Lemma 2.4 Let p and r be primes, and m and n be positive integers. Then there exists a
prime s such that s

∣∣ pn − 1 and s - pm − 1, where m < n, except (p, n) = (2, 6) or p = 2r − 1

is a Mersenne prime and n = 2.

Proof. The Lemma follows from [10] and [11]. �
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Note that the above s is called the n-th primitive prime factors of p, also known as the
Zsigmondy primes. The following Lemma gives a complete classification of simple groups
whose index of maximal subgroups are prime powers.
Lemma 2.5 Let G be a finite non-abelian simple group with H < G and |G : H| = pn, p prime.
One of the following holds.

(1) G = Am and H ∼= Am−1 with m = pn,
(2) G = PSL(m, q) and H is the stabilizer of a line or hyperplane. Then |G : H| = qm−1

q−1 = pn

(Note m must be prime),
(3) G = PSL(2, 11) and H ∼= A5,
(4) G = M23 and H ∼= M22 or G = M11 and H ∼= M10,
(5) G = PSU(4, 2) ∼= PSp(4, 3) and H is the parabolic subgroup of index 27.

Proof. The Lemma follows immediately from Theorem 1 in [12]. �

Lemma 2.6 Let G be a finite non-abelian simple group and P2 a Sylow 2-group of G. If
|G : NG(P2)| is a prime power, then G ∼= PSL(2, q).

Proof. Let H be a maximal subgroup of G. Suppose that |G : NG(P2)| is a power of a prime
p, then we set |G : NG(P2)| = pk, where k is a positive integer. Now |G : H| is also a prime
power since NG(P2) ≤ H. Furthermore, by Lemma 1.5, we get that G is isomorphic to one of
the following groups: Am with m = pn and k ≥ n, PSL(m, q) for m prime, PSL(2, 11), M23,
M11, PSU(4, 2).

If G ∼= Am with m = pn, then |G| = m!
2
. By Corollary in [7], we know that NG(P2) = P2,

thus n2(Am) = |Am : NAm(P2)| = (p
n·(pn−1)·(pn−2)·····2·1

2
)2′ , which contradicts n2(Am) = pk since

pn ≥ 5.
If G ∼= PSL(m, q) for m prime, then |G| = 1

(m,q−1)q
m(m−1)

2

∏m−1
i=1 (qi+1 − 1). Suppose first

that the characteristic of G is 2 and m ≥ 3, we see that NG(P2) is a Borel subgroup B of G
which differs from P2 by Corollary in [7]. Moreover, by [13], we get that B is the subgroup of
all lower-triangular matrices, and then B ∼= P2 : D, where D of PSL(m, q) consisting of all
diagonal matrices is easily seen to be a subgroup of order (q−1)m−1

(m,q−1) . Hence

n2(PSL(m, q)) =
∣∣PSL(m, q) : NPSL(m,q)(P2)

∣∣
= |PSL(m, q) : B| = q

m(m−1)
2 ·

∏m−1
i=1 (qi+1 − 1) · (m, q − 1)

(m, q − 1) · (q − 1)m−1 · |P2|

= (
q

m(m−1)
2 ·

∏m−1
i=1 (qi+1 − 1)

(q − 1)m−1
)2′ =

(q2 − 1)(q3 − 1) · · · · · (qm − 1)

(q − 1)m−1
.

By Lemma 2.4 the existence of primitive prime factor, there must exists 2-th and 3-th primitive
prime factor of q in n2(PSL(m, q)), so n2(PSL(m, q)) has at least two different prime factors,
and then n2(PSL(m, q)) = pk is impossible. Next suppose that q is odd and m ≥ 3. By
Corollary in [7], we get that P2 6= NG(P2) = P2 × C1 × · · · × Ct−1, where the number t ≥
2 can be found from the 2-adic expansion m = 2s1 + · · · + 2st , s1 > · · · > st ≥ 0, and
C1, · · · , Ct−2, Ct−1 are cyclic groups of orders (q + 1)2′ , · · · , (q + 1)2′ ,

(q+1)2′
(q+1,m)2′

, respectively.

Thus |NG(P2)| = |P2|·((q+1)2′ )
t−1

(q+1,m)2′
, and then n2(PSL(m, q)) =

∣∣PSL(m, q) : NPSL(m,q)(P2)
∣∣ =

(
q
m(m−1)

2 ·
∏m−1

i=1 (qi+1−1)·(q+1,m)2′
(m,q−1)·((q+1)2′ )

t−1 )2′ . We set i + 1 = n. For n 6= 2 or q is not a Mersenne prime,
we know that n2(PSL(m, q)) has at least two different primitive prime factors by Lemma 1.4
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the existence of primitive prime factor, and so n2(PSL(m, q)) = pk is impossible. Next we
consider the case n = 2 or q is a Mersenne prime of the type 2r − 1. Since m ≥ 3 is a prime,

we conclude that n2(PSL(m, q)) =
∣∣PSL(m, q) : NPSL(m,q)(P2)

∣∣ = (
q
m(m−1)

2 ·
∏m−1

i=1 (qi+1−1)
(m,q−1) )2′ and

qn − 1 = (2r − 1)2 − 1 = 2r+1(2r−1 − 1). Assume first that r 6= 7, we see, by Lemma 1.4,
that n2(PSL(m, q)) has at least two different prime factors, and so n2(PSL(m, q)) = pk is
impossible. Next assume that r = 7. Ifm = 3, then n2(PSL(3, 127)) = (127

3·(1272−1)·(1273−1)
3

)2′ =

(29 · 35 · 72 · 1273 · 5419)2′ = 35 · 72 · 1273 · 5419, which contradicts n2(PSL(m, q)) = pk. If m ≥ 5

then, by Lemma 1.4 the existence of primitive prime factor, there must exists 3-th, 4-th and
5-th primitive prime factor of q in n2(PSL(m, q)), and so n2(PSL(m, q)) has at least three
different prime factors, contrary to n2(PSL(m, q)) = pk. From the above, we get m = 2, and
then G ∼= PSL(2, q).

If G ∼= M23, then |G| = 27 · 32 · 5 · 7 · 11 · 23. Moreover, by Corollary in [7], we see that
NM23(P2) = P2, thus n2(M23) = |M23 : NM23(P2)| = |M23 : P2| = 32 · 5 · 7 · 11 · 23, which
contradicts the fact that n2(M23) = pk.

If G ∼= M11, then |G| = 24 · 32 · 5 · 11. Also by Corollary in [7], we have NM11(P2) = P2, hence
n2(M11) = |M11 : NM11(P2)| = |M11 : P2| = 32 · 5 · 11, contrary to n2(M11) = pk.

If G ∼= PSU(4, 2), then |PSU(4, 2)| = 25920. On the other hand, by the GAP [14] Small-
Groups package, we get NG(P2) = 192, so

n2(PSU(4, 2)) =
∣∣PSU(4, 2) : NPSU(4,2)(P2)

∣∣ = 135 = 33 · 5,

which contradicts n2(PSU(4, 2)) = pk, as required. �

Lemma 2.7 If n2(PSL(2, q)) = pk, where p is a prime and k a positive integer, then p is
Fermat.

Proof. We set n2(PSL(2, q)) = pk. By Lemma 1.3, we divide three cases.
Case I. If n2(PSL(2, q)) = q + 1, where q = 2f for f is a positive integer, then we have

2f + 1 = pk, and so pk − 1 = 2f . Furthermore, we conclude that p − 1
∣∣ 2f , then p − 1 = 2f

′ ,
where f ′ ≤ f is a positive integer. Thus p = 2f

′
+ 1 is Fermat.

Case II. If n2(PSL(2, q)) = q(q2−1)
24

, where 3 < q ≡ ±3(mod 8), then q(q2−1)
24

= pk , and so
q2−1
24

= 1. Furthermore we get q = p = 5 is a Fermat prime.
Case III. If n2(PSL(2, q)) = ( q(q

2−1)
2

)2′ , where 3 < q ≡ ±1(mod 8), then ( q(q
2−1)
2

)2′ = pk ,
and so (q2−1)2′ = 1. Furthermore we set q2−1 = 2l, where l is a positive integer. Since q > 3,
we have q2 − 1 ≡ 0(mod 3), contrary to q2 − 1 = 2l.

Therefore, if n2(PSL(2, q)) = pk, then p is a Fermat prime, as required. �

3. Proof of Main Result

By Lemma 2.1, the Sylow number of the normal subgroups and quotient group of G is still
a power of a prime p. So we need prove if p is not a Fermat prime and n2(G) is a power of a
prime p, then G is solvable. Let G be a counterexample of a minimal order non-solvable group
satisfying n2(G) = pk and p is not a Fermat prime, and k is a positive integer. By Lemma 1.1,
if the number of Sylow 2-subgroups of normal subgroup and factor subgroup of G is a power
of p, then G must be a non-abelian simple group. Furthermore by lemma 1.6, G ∼= PSL(2, q).
And by Lemma 1.7, we get p is a Fermat prime, a contradiction. As required. �
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