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ON THE SOLVABILITY OF FINITE GROUPS AND THE NUMBER OF
SYLOW 2-SUBGROUPS

RUSONG YANG, KAIRAN YANG AND RULIN SHEN*

ABSTRACT. Let G be a finite group. Denoted by n2(G) the number of Sylow 2-subgroups of
G. In this paper, we prove if G is non-solvable and ny(G) is a power of a prime p, then p is a

Fermat prime.

1. INTRODUCTION

Let G be a finite group and p a prime. We denote by n,(G) the number of Sylow p-subgroups
of G, which is called Sylow p-number of G (hereinafter referred to as Sylow number). The influ-
ence of the number of Sylow subgroups in finite groups on group structure is a very meaningful
research topic. In 1967, M. Hall [1], studied the number of Sylow subgroups in finite groups,
and proved that solvable group have solvable Sylow numbers, and 22 is never a Sylow 3-number
and 21 a Sylow 5-number. In 1995, Zhang [2], proved that a finite group G is p-nilpotent if
and only if p is prime to every sylow number of G. In 2003, G. Navarro [3] proved that if G
is p-solvable, then n,(H) divides n,(G) for every H < G. In 2016 ||, Li and Liu classified
finite non-abelian simple group with only solvable Sylow numbers. We say that a group G
satisfies DivSyl(p) if n,(H) divides n,(G) for every H < G. In 2018, Guo and E. P. Vdovin |7
generalized the results of G. Navarro, and proved that G satisfies DivSyl(p) provided every
non-abelian composition factor of G satisfies DivSyl(p). Recently, Wu [] proved that finite
simple group does not satisfy DivSyl(p). In this paper, we will study the relationship between
the number of Sylow 2-subgroups and the solvability of groups. Obviously, the number of Sylow
2-subgroups is odd. By the famous Feit-Thompson odd order Theorem, if the number of Sylow
2-subgroups of (G is 1, then G is solvable. A natural question is whether can we determine the
solvability of G if the number of Sylow 2-subgroups of G is given? In this paper, we study the
case that Sylow 2-numbers is a prime power and obtain the following main result.

Theorem. If G is non-solvable and the number of Sylow 2-subgroups of G is a power of a

prime p, then p is a Fermat prime.

Note that a Fermat prime above means a prime of the type 2* + 1. Also when ny(G) =3, G
is solvable. If k > 2, then there exists a non-solvable group G = PSL(2,8) x S§_2 such that
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no(G) = 3*. Suppose that p = 2% + 1 > 3 is a Fermat prime, then there exists a non-solvable
group G = PSL(2,2%)* such that ny(G) = p*.

2. SOME LEMMAS

Lemma 2.1 Let G be a finite group and N a normal subgroup of G, then both ny(N) and
ne(G/N) divide na(G).

Proof. Let P, be a Sylow 2-subgroup of G. By Theorem 2.1 in [1]|, we have ny(G) = asbaca,
where ay is the number of Sylow 2-subgroups in G/N, by is the number of Sylow 2-subgroups
in N and ¢, is the number of Sylow 2-subgroups in Np,n(P> N N)/P, N N. Thus we get both
ne(N) and ne(G/N) divide no(G), as required. O

Lemma 2.2 Let Py be a Sylow 2-group of PSL(2,q), where q is power of odd prime, then
(1) if 3 < g = £3(mod 8), then Npgr(2,q)(FP2) = Ay,
(2) Zf3 <qg= :tl(mod 8), then NPSL(2,q)(P2) =P

Proof. Let G be a finite non-abelian simple group and P, a Sylow 2-subgroup of G. By
Corollary in [7], we get that Ng(P,) = P,, except in the following case: G = PSL(2,q),
where 3 < ¢ = +3(mod 8) and Ng(P,) = A4. Therefore, for 3 < ¢ = £3(mod 8), we have
Npsi,qg)(P) = Ay. For 3 < ¢ = +£1(mod 8), we know that Npgp(a,q)(P2) = P, as required. [

The following Lemma gives the formula for calculating the number of Sylow 2-subgroups of
PSL(2,q). We denoted by 2" and ny the set of all odd primes and the 2'-part of n (i.e. the

largest odd factor of n), respectively.
Lemma 2.3

q+ 1, where ¢ =2 for f is a positive integer,

2
q(¢” — 1
no(PSL(2,q)) = ( o ), 3 < q==+3(mod 8),

2
-1
(%)2/, 3 < q==+1(mod 8).

Proof. First we denote by P, and ny the Sylow 2-subgroups of PSL(2,q) and the number
of Sylow 2-subgroups of PSL(2,q), respectively. Next we get, by the second Sylow theorem
in [3], that ny = |G : Ng(P)|. If ¢ = 2/, then ‘NPSL(M)(PQ)} = q(¢ — 1) by [9], and so
Ny = |PSL(2,q) : NPSL(qu)(PQ)‘ = % =q+1 If 3 <q= 43(mod 8), by Lemma 1.2,
we have Npgr(2,q)(FP2) = A4, and then ny = |PSL(2,q) : Ay| = %. Also by Lemma 1.2, if
3 < q = £1(mod 8), then Npgr(2,q) (o) = P», and so ny = |PSL(2,q) : P»| = (@)2/, as
required. O

Lemma 2.4 Let p and r be primes, and m and n be positive integers. Then there exists a
prime s such that s | p" — 1 and st p™ — 1, where m < n, except (p,n) = (2,6) or p=2"—1

18 a Mersenne prime and n = 2.

Proof. The Lemma follows from [10] and [I1]. O
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Note that the above s is called the n-th primitive prime factors of p, also known as the
Zsigmondy primes. The following Lemma gives a complete classification of simple groups
whose index of maximal subgroups are prime powers.

Lemma 2.5 Let G be a finite non-abelian simple group with H < G and |G : H| = p", p prime.
One of the following holds.
(1) G= A, and H = A, with m = p",

(2) G = PSL(m,q) and H is the stabilizer of a line or hyperplane. Then |G : H| = q:__ll =p"
(Note m must be prime),

(3) G =PSL(2,11) and H = As,

(4) G = M23 and H = M22 or G = M11 and H = MlO;

(5) G = PSU(4,2) = PSp(4,3) and H is the parabolic subgroup of index 27.

Proof. The Lemma follows immediately from Theorem 1 in [12]. O

Lemma 2.6 Let G be a finite non-abelian simple group and Py a Sylow 2-group of G. If
|G : Ng(P2)| is a prime power, then G = PSL(2,q).

Proof. Let H be a maximal subgroup of G. Suppose that |G : Ng(F2)| is a power of a prime
p, then we set |G : Ng(P,)| = p¥, where k is a positive integer. Now |G : H| is also a prime
power since Ng(P,) < H. Furthermore, by Lemma 1.5, we get that G is isomorphic to one of
the following groups: A,, with m = p" and k > n, PSL(m,q) for m prime, PSL(2,11), Mas,
My, PSU(4,2).

If G = A, with m = p", then |G| = %' By Corollary in [7], we know that Ng(FP2) = P,
thus ne(An) = |Am : Na,, (P)| = (pn'(pn_l)'(gn_2)'""2'1)2/, which contradicts ny(A,,) = p* since
p" = 5.

If G = PSL(m,q) for m prime, then |G| = mq H;’Zl(qi“ — 1). Suppose first
that the characteristic of G' is 2 and m > 3, we see that Ng(Pz) is a Borel subgroup B of G
which differs from P, by Corollary in [7]. Moreover, by [13], we get that B is the subgroup of

m(m—1)

all lower-triangular matrices, and then B = P, : D, where D of PSL(m,q) consisting of all

(¢=1)™~1
(qufl)

diagonal matrices is easily seen to be a subgroup of order . Hence

na(PSL(m,q)) = |PSL(m,q) : Npspm,q(P2)]
m(m—1) . H;r;—ll(qi_i_l o 1) . (m7 q— 1)
(m,q—1)-(g—1)m"- |

G VA Uit [ Ui R Uit
G- P
By Lemma 2.4 the existence of primitive prime factor, there must exists 2-th and 3-th primitive

— |PSL(m,q): B| = 2

m(m—1)

— (L

prime factor of ¢ in no(PSL(m,q)), so na(PSL(m,q)) has at least two different prime factors,
and then no(PSL(m,q)) = p* is impossible. Next suppose that ¢ is odd and m > 3. By
Corollary in [7], we get that P, # Ng(P,) = P, x Cy X -+ x C;_1, where the number ¢ >

2 can be found from the 2-adic expansion m = 2% + .- 4 2% s > ... > g > 0, and
Ci,++,Ci_9,Cy1 are cyclic groups of orders (¢ + 1), -+, (q + 1)o, (;ﬂ%;/’ respectively.
. )1
Thus |Ng(Py)| = PHEE— and then ny(PSL(m,q)) = [PSL(m,q) : Npspmg(P2)| =
m(m—1)

(e ) (g Lm)y
(m,q—=1)-((g+1)gr)" !
we know that ny(PSL(m,q)) has at least two different primitive prime factors by Lemma 1.4

Jor. We set i + 1 = n. For n # 2 or ¢ is not a Mersenne prime,
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the existence of primitive prime factor, and so ny(PSL(m,q)) = p* is impossible. Next we
consider the case n = 2 or ¢ is a Mersenne prime of the type 2" — 1. Since m > 3 is a prime,

m(m—1) — i _
we conclude that no(PSL(m,q)) = |PSL(m,q) : Npspm.e(P2)| = (2 ('71;1’2:_111)@ i 1))2/ and
" —1=(2"—1)> =1 = 2271 —1). Assume first that r # 7, we see, by Lemma 1.4,
that no(PSL(m,q)) has at least two different prime factors, and so n2<3PSL2(m’q))3: Pk is
impossible. Next assume that r = 7. If m = 3, then ny(PSL(3,127)) = (20 _31)'(127 =), =
23074 . o =327 . , which contradicts ny m,q)) =p°. lfm>
29.35.72.127% 5419 3% 721273 - 5419, which di PSL koOIf )

then, by Lemma 1.4 the existence of primitive prime factor, there must exists 3-th, 4-th and

5-th primitive prime factor of ¢ in no(PSL(m,q)), and so ny(PSL(m,q)) has at least three
different prime factors, contrary to no(PSL(m,q)) = p*. From the above, we get m = 2, and
then G = PSL(2,q).

If G = My, then |G| = 27-3%-5-7-11-23. Moreover, by Corollary in [7], we see that
Ny (Po) = P, thus na(Mas) = |Mas : Nupy(Pa)| = [Mag: Po] = 32 -5-7- 11 - 23, which
contradicts the fact that ny(Mas) = pF.

If G = My, then |G| =21-3%-5-11. Also by Corollary in |7], we have Ny, (P2) = Py, hence
no(Myy) = | My : Ny, (Ps)| = My 2 Py| = 3%-5- 11, contrary to ng(Mi;) = p*.

If G = PSU(4,2), then |PSU(4,2)| = 25920. On the other hand, by the GAP [11]| Small-
Groups package, we get Ng(Py) = 192, so

na(PSU(4,2)) = |PSU(4,2) : Npsyz)(P)| =135 =3 -5,
which contradicts ny(PSU(4,2)) = p*, as required. O

Lemma 2.7 If ny(PSL(2,q)) = p*, where p is a prime and k a positive integer, then p is
Fermat.

Proof. We set ny(PSL(2,q)) = p*. By Lemma 1.3, we divide three cases.

Case I. If noy(PSL(2,q)) = q + 1, where ¢ = 2/ for f is a positive integer, then we have
2/ +1 = p*, and so p¥ — 1 = 2/. Furthermore, we conclude that p — 1 } 2/ then p — 1 = 2/,
where f' < f is a positive integer. Thus p = 2" + 1 is Fermat.

2 2_
] Case II. If no(PSL(2,q)) = %, where 3 < ¢ = £3(mod 8), then % = p* | and so
% = 1. Furthermore we get ¢ = p = 5 is a Fermat prime.

Case I11. 1f ny(PSL(2,q)) = (Y2-1), where 3 < ¢ = +1(mod 8), then (4T=1), — pk |
and so (¢> — 1)y = 1. Furthermore we set ¢> — 1 = 2!, where [ is a positive integer. Since ¢ > 3,
we have ¢ — 1 = 0(mod 3), contrary to ¢ — 1 = 2.

Therefore, if no(PSL(2,q)) = p*, then p is a Fermat prime, as required. O

3. PROOF OF MAIN RESULT

By Lemma 2.1, the Sylow number of the normal subgroups and quotient group of G is still
a power of a prime p. So we need prove if p is not a Fermat prime and ny(G) is a power of a
prime p, then G is solvable. Let G be a counterexample of a minimal order non-solvable group
satisfying n,(G) = p* and p is not a Fermat prime, and k is a positive integer. By Lemma 1.1,
if the number of Sylow 2-subgroups of normal subgroup and factor subgroup of G is a power
of p, then G must be a non-abelian simple group. Furthermore by lemma 1.6, G = PSL(2,q).
And by Lemma 1.7, we get p is a Fermat prime, a contradiction. As required. O
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